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Preface

For more than 40 years, pattern recognition approaches are continuinglyimproving and have 
been used in an increasing number of areas with greatsuccess. This book discloses recent ad-
vances and new ideas in approachesand applications for pattern recognition.

Chapters 1 to 13 are devoted to new models and algorithms for genericpattern recognition 
problems ranging from improving primitivefunctionalities (calibration, segmentation, detec-
tion, registration, recognition,etc.) to the design of an integrated vision system. Since the use 
of biometricsin automatic control is given more attention, Chapters 14 to 17 present sever-
alapplications in face recognition, posture estimation, and speaker recognition.

The intelligent processing of medical images is introduced in Chapters 18 to20. At last, a 
number of applications in various domains are summarized.Chapter 21 describes the recogni-
tion of color characters in scene images.Chapter 22 details the segmentation for license plate 
regions. Chapters 23 to25 propose approaches for recognition of plant branching, textile, and 
seabed,respectively. Chapter 26 introduces the use of pattern recognition in theprotection of 
power systems. Chapter 27 is devoted to the forecasting of airquality. The advent of Internet 
also promotes pattern recognition in newapplications such as spam recognition (Chapter 28), 
network security(Chapter 29), and content-based image retrieval (Chapter 30).

The 30 chapters selected in this book cover the major topics in patternrecognition. These chap-
ters propose state-of-the-art approaches andcutting-edge research results. I could not thank 
enough to the contributions ofthe authors. This book would not have been possible without 
their support.

Peng-Yeng Yin
October 2009

Department of Information Management
National Chi Nan University

Nantou, Taiwan
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1. Introduction 
 

A triangulation-based structured light system consists of a camera and a projector. The 
system is similar to passive stereo vision system whose camera is replaced by the projector. 
Various light projection techniques, e.g. light section method and space encoding method, 
have been proposed (Shirai, 1972; Posdamer & Altschuler, 1982). These methods allow us to 
recover the 3D shape by the camera observing a light stripe projected from the projector. 
Then, the system using an electrically controlled liquid crystal device (Sato & Inokuchi, 
1987) and the system using a semiconductor laser and a synchronized scanned mirror (Sato 
& Otsuki, 1993) have been proposed. These systems capture accurate 3D shape at high speed 
using highly intense light stripes. 
Typically, the geometry of a structured light system is expressed by the pinhole model 
(Bolles et al., 1981). The camera geometry is represented by a 3 x 4 matrix having 11 degrees 
of freedom and the projector geometry is represented by a 2 x 4 matrix having 7 degrees of 
freedom. The two matrices allow 3D reconstruction of a target object (Li et al., 2003; Fukuda 
et al., 2006; Zhang et al., 2007). Although the pinhole model is suited for the camera 
geometry, it is not applicable to the projector geometry. For example, light stripes do not 
always pass through the optical center of the projector using a rotatable mirror, e.g. 
galvanometer mirror and polygon mirror. 
Subsequently, the triangulation principle based on the baseline is also utilized for a 
structured light system. Given one side and two angles of a triangle determine the position 
of a target object. One side is the baseline which is defined as the distance between the 
camera and the projector. One of the angles indicates camera view and the other angle 
indicates projector view. The invariable baseline model (Matsuki & Ueda, 1989; Sansoni et 
al., 2000) fails to represent some projectors using a rotatable mirror, but the variable baseline 
model (Hattori & Sato, 1996; Reid, 1996) eases this problem. However, these models assume 
that a light stripe is vertical to the baseline. It is preferable to express the light stripe by a 3D 
plane disregarding the inner structure of the projector. 
In this chapter, we present a new geometric model and calibration method for a structured 
light system to overcome the problems. The geometric model is defined such that the 
camera model is based on the pinhole model and the projector model is based on the 
equation of a plane model. If light stripes are projected in different directions, their 
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projections are expressed accurately. In addition, the coefficients of the equation of a plane 
are estimated by observing a planar object from three viewpoints. It facilitates the procedure 
of user’s tasks and provides a high degree of accuracy. Experimental results and 
comparisons demonstrate the effectiveness of our approach. 

 
2. Geometric Model 
 

A structured light system consists of a camera and a projector. The system captures a range 
data by the camera observing a target object illuminated from the projector. Fig. 1 is the 
geometric model of a structured light system. The camera model is based on the pinhole 
model and the projector model is based on the equation of a plane model. The geometric 
model is represented in the camera coordinate system and the reference plane is represented 
in the reference plane coordinate system. 
 

 
Fig. 1. Geometric model of a structured light system. 

 
2.1 Camera model 
Pinhole model is defined that light rays from an object pass through the optical center cO  

for imaging. The principal point c  at the intersection of the optical axis with the image 
plane is denoted by ],[ 00 vu . cX axis, cY axis, and cZ axis are parallel to horizontal axis, 
vertical axis, and optical axis of the image plane. Here, a 2D point, i.e. image coordinates, 

m  is denoted by ],[ vu  in the image plane, and a 3D point, camera coordinates, cM  is 

denoted by ],,[ ccc zyx  in the camera coordinate system )( cccc ZYXO −−− . In 

addition, pX axis, pY axis, pZ axis, and pO  are defined as horizontal axis, vertical axis, 

orthogonal axis, and the coordinate origin of the reference plane. Here, a 3D point, i.e. 
reference plane coordinates, pM  is denoted by ],,[ ppp zyx  in the reference plane 

coordinate system )( pppp ZYXO −−− . The perspective projection which maps the 

reference plane coordinates onto the image coordinates is given by 
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where A  is the camera intrinsic matrix with the scale factors, α , β , γ , and the principal 

point, 0u , 0v , i.e. the intrinsic parameters, and ][ tR  combines the rotation matrix and 
the translation vector, i.e. the extrinsic parameters. The tilde indicates the homogeneous 
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pppp zyx=M . The Euclidean transformation which transforms the 
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where 1r , 2r , 3r  correspond to unit vectors to indicate the directions of pX axis, pY axis, 

pZ axis, respectively. t  is the direction vector from pO  to cO . Therefore, camera 

parameters provide the perspective projection and the Euclidian transformation. For more 
detail on camera geometry, refer to computer vision literatures (Faugeras & Luong, 2001; 
Hartley & Zisserman, 2004). 
Let us consider camera lens distortion and its removal. The radial distortion causes the 
inward or outward displacement of the image coordinates from their ideal locations. This 
type of distortion is mainly caused by flawed radial curvature curve of the lens elements 
(Weng et al., 1992). Here, a distorted 2D point, i.e. real image coordinates, m  is denoted by 

],[ vu  . The discrepancy between the ideal image coordinates and the real image 
coordinates considering first two terms of radial distortion is given by 
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Therefore, camera lens distortion can be corrected from captured images. 
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2.2 Projector model 
The projector emits one to hundreds of light stripes for the measurement. We consider the 
case in which the light stripes are projected in different directions. It is difficult to assume 
that the projector model is based on the pinhole model, because they do not pass through 
the optical center. Therefore, we use the equation of a plane model to accurately represent 
the projector considering the projection of the light stripes which depend on the type of 
projector. In the camera coordinate system, the light stripe can be written as 

0=+++ icicici dzcybxa  (6) 

where i  is the light stripe number, and ia , ib , ic , id  are the coefficients of the equation. 
There are an equal number of the equations of planes and the light stripes. 
We define il  is the baseline, i.e. the distance between the optical center of the camera and 

the light stripe of the projector, iθ  is the projection angle, i.e. the angle between cZ axis and 

the light stripe, and iφ  is the tilt angle, i.e. the angle between cY axis and the light stripe. 
From the coefficients of the equation, these explicit parameters can be written as 

iii adl /=                                
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Projector parameters are expressed by both implicit and explicit representations. The 
coefficients are used for computation of range data, but their values do not exhibit distinct 
features. In contrast, the baselines, projection angles, and tilt angles provide characteristic 
distributions. 
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The coordinate cz  is computed by the relationship between the viewpoint of the camera 

and the equation of a plane of the projector. Then, the coordinate cx  and the coordinate cy  
are computed by the similar triangle related to the camera. Therefore, the camera 
coordinates can be recovered by the camera and projector parameters. 
The coordinate cz  which is expressed by the baseline, projection angle, and tilt angle 
instead of the coefficients can be written as 
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It indicates the triangulation principle based on one side and two angles of a triangle. 

 
3. Calibration Method 
 

In this section, we present a calibration method for a structured light system by observing a 
planar object from three viewpoints. Fig.2 is the calibration scene of a structure light system. 
The planar object, called reference plane, contains a checkered pattern, so that calibration 
points are detected as the intersection of line segments. To perform the calibration, the 
reference plane coordinates is assigned to the calibration points. Three sets of color images 
and slit light images, which include calibration points and light stripes on the reference 
planes respectively, are required. Our approach incorporates two separate stages: camera 
calibration and projector calibration. 
 

 
Fig. 2. Calibration scene. 
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3.1 Camera calibration 
In the camera calibration stage, camera parameters are obtained by Zhang’s method (Zhang, 
2000). Fig. 3 shows the relationship between the reference plane and the image plane. The 
camera parameters are estimated by the correspondence between the reference plane 
coordinates and the image coordinates. Here, three color images must be captured from 
different positions changing orientations. If the reference plane undergoes pure translation, 
the camera parameters cannot be estimated (Zhang, 1998). 
 

 
Fig. 3. Camera calibration. 

 
3.2 Projector calibration 
In the projector calibration stage, projector parameters are estimated by image-to-camera 
transformation matrix based on the perspective projection and the Euclidian transformation 
of the camera parameters which encapsulate the position and orientation of the reference 
planes. Fig. 4 shows the relationship among the reference plane, the image plane, and the 
light stripe. Here, the reference plane is on 0=pz  and the coupled matrix Q  is denoted 

by ][ 21 trr . From (1), the perspective projection which maps the reference plane 
coordinates onto the image coordinates can be written as 
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where T  indicates the transpose of a matrix. From (15), (16), and (17), the transformation 
matrix which maps the image coordinates into the camera coordinates is given by 
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where the matrix I  is denoted by )1,1,1(diag  and the vector k  is denoted by 

]1,0,0[ . The image-to-camera transformation matrix is directly estimated by camera 
parameters unlike other methods which necessitate recalculations. This matrix has eight 
degrees of freedom which is similar to the homography matrix in 2D. 

 
Fig. 4. Projector calibration. 
 
For each light stripe, the image coordinates is transformed to the camera coordinates, so that 
the coefficients of the equation of a plane can be computed by the least square method at 
least three image coordinates. If the image coordinates of the light stripe are obtained from 
one reference plane, the equation of a plane cannot be computed. This is how all the light 
stripes are estimated. 

 
3.3 Calibration procedure 
The following is the recommended calibration procedure. 
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where the matrix I  is denoted by )1,1,1(diag  and the vector k  is denoted by 

]1,0,0[ . The image-to-camera transformation matrix is directly estimated by camera 
parameters unlike other methods which necessitate recalculations. This matrix has eight 
degrees of freedom which is similar to the homography matrix in 2D. 

 
Fig. 4. Projector calibration. 
 
For each light stripe, the image coordinates is transformed to the camera coordinates, so that 
the coefficients of the equation of a plane can be computed by the least square method at 
least three image coordinates. If the image coordinates of the light stripe are obtained from 
one reference plane, the equation of a plane cannot be computed. This is how all the light 
stripes are estimated. 

 
3.3 Calibration procedure 
The following is the recommended calibration procedure. 
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(a) Print a checkered pattern and attach it to a planar object 
(b) Capture three sets of color images and slit light images from different position changing 

orientations by moving either the system or the plane 
(c) Detect calibration points and correspond the image coordinates to the reference plane 

coordinates 
(d) Estimate the camera parameters by Zhang’s method 
(e) Detect light stripes and correspond slit light numbers to the image coordinates 
(f) Estimate the projector parameters by fitting a 3D plane as described in Sec. 3.2 

 
4. Experimental Results 
 

The data is captured by a structured light system, Cartesia 3D Handy Scanner of 
SPACEVISION. This system obtains range data in 0.5 seconds with 8 mm focal length, 640 x 
480 pixels and 254 light stripes. The light stripes are scanned by a rotatable mirror (Hattori & 
Sato, 1996). The reference plane with the checkered pattern includes 48 calibration points 
with 20 mm horizontal and vertical intervals. 

 
4.1 Calibration 
Three sets of color images and slit light images are used for calibration as shown in Fig. 5. 
For the color images, one straight line is fitted to two horizontal line segments and the other 
straight line is fitted to two vertical segments. The calibration point is detected as the 
intersection of two straight lines. For slit light images, luminance values from 1 to 254 
correspond to the light stripe number. The light stripes are projected to the reference plane 
vertically. 

   
Color image 1 Color image 2 Color image 3 

   
Slit light image 1 Slit light image 2 Slit light image 3 

Fig. 5. Three sets of color images and slit light images. 
 
Table 1 shows the camera intrinsic matrix and the coefficients of the radial distortion of the 
camera parameters. Fig. 6 shows the baselines, projection angles, and tilt angles of the 
projector parameters. When the light stripe number increases, the baselines gradually 
reduce, the projection angles increase, and the tilt angles remain almost constant. The 
camera and projector parameters enable the system to recover the camera coordinates of a 
target object. 
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Table 1. Camera parameters. 
 

   
Baseline Projection angle Tilt angle 

Fig. 6. Projector parameters. 

 
4.2 Evaluation 
We evaluated the measurement accuracy using five spheres with 25 mm radius placed in 
front of the system. In our evaluation, the system captures range data, and then fit the ideal 
spheres to them. The measurement accuracy which is defined as the distance between the 
ideal radius r̂  and the real radius ir  is given by 
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where N is the number of measuring points. To show the effectiveness, we evaluated our 
approach by comparing with two conventional approaches. 
 (i) The pinhole model calibrated by slide stage 

The camera is modeled by the 3 x 4 projection matrix, and the projector is modeled by the 
2 x 4 projection matrix. The camera and projector parameters are estimated using the slide 
stage. 

(ii) The equation of a plane model calibrated by slide stage 
The camera model is based on the pinhole model, and the projector model is based on the 
equation of a plane model. The camera parameters are obtained by Tsai’s method (Tsai, 
1987), and the projector parameters are estimated using the reference plane. 

(iii) The equation of a plane model calibrated by reference plane: Our approach 
The camera model is based on the pinhole model, and the projector model is based on the 
equation of a plane model. The camera and projector parameters are estimated using the 
reference plane. 
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where N is the number of measuring points. To show the effectiveness, we evaluated our 
approach by comparing with two conventional approaches. 
 (i) The pinhole model calibrated by slide stage 

The camera is modeled by the 3 x 4 projection matrix, and the projector is modeled by the 
2 x 4 projection matrix. The camera and projector parameters are estimated using the slide 
stage. 

(ii) The equation of a plane model calibrated by slide stage 
The camera model is based on the pinhole model, and the projector model is based on the 
equation of a plane model. The camera parameters are obtained by Tsai’s method (Tsai, 
1987), and the projector parameters are estimated using the reference plane. 

(iii) The equation of a plane model calibrated by reference plane: Our approach 
The camera model is based on the pinhole model, and the projector model is based on the 
equation of a plane model. The camera and projector parameters are estimated using the 
reference plane. 
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Fig. 7 is the range data of five spheres. The spheres are numbered from top left to bottom 
right. In the approach (i), left two spheres, i.e. No. 1 and No. 4, and the ground are distorted 
in contrast to the approach (ii) and (iii). Table 2 shows the measurement accuracy of five 
spheres. In the approach (i), the measurement accuracy is higher than the approach (ii) and 
(iii). The approach (ii) and (iii) achieve similar performance. Therefore, the equation of a 
plane model is applicable to the structured light system. In addition, the reference plane as a 
planer object provides a high degree of accuracy and has a high degree of availability 
compared to the slide stage as a cubic object. The experimental results demonstrate the 
effectiveness and efficiency of our approach. 
 

   
Approach (i)  Approach (ii)  Approach (iii) 

Fig. 7. Range data of five spheres. 
 

Sphere number No. 1 No. 2 No. 3 No. 4 No. 5 
Measuring points 15,629 15,629 19,405 19,861 19,861 
Approach (i) 0.41 0.38 0.26 0.26 0.31 
Approach (ii) 0.22 0.31 0.19 0.13 0.20 
Approach (iii) 0.23 0.32 0.21 0.15 0.21 

Table 2. Measurement accuracy of five spheres. 

 
5. Future Work 
 

It has been challenging to capture range data of an entire body using multiple projector-
camera pairs. In our previous works, we have developed the system consisting of four pole 
units with sixteen projector-camera pairs (Yamauchi & Sato, 2006). Then, we have 
developed the system consisting of three pole units with twelve projector-camera pairs 
(Yamauchi et al., 2007). Fig. 8 is the human body measurement system. The system acquires 
range data in 2-3 seconds with 3 mm depth resolution and 2 mm measurement accuracy. 
The range data of a mannequin and a man are shown in Fig. 9 and Fig. 10, respectively. The 
numbers of measurement points are approximately 1/2 to one million. The projector-camera 
pairs are calibrated by our approach, and then their local coordinate systems are integrated 
into a single coordinate system by an automatic alignment approach (Fujiwara et al., 2008). 
Although Fujiwara’s method is performed in two stages, our approach allows fully 
automatic calibration for this type of system. In addition, it is possible to facilitate the 
calibration process and reduce the implementation time. 
 

 

 
Fig. 8. Human body measurement system. 

 
6. Conclusions 
 

We presented a novel geometric model and calibration method for a structured light system 
using a planar object. The geometric model is defined such that the camera model is based 
on the pinhole model and the projector is based on the equation of a plane model. Although 
the light stripes do not exactly pass through the optical center, our model can approximate 
the system geometry. In addition, the camera and projector parameters are estimated by 
observing a planar object from three viewpoints. The camera parameters are obtained by 
Zhang’s method and the projector parameters are estimated by using image-to-camera 
transformation matrix. Furthermore, we verify our approach provides a high degree of 
accuracy in the experiments. In the future we intend to apply for the human body 
measurement system using multiple projector-camera pairs. 

  
front back 

Fig. 9. Range data of a mannequin. 
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Fig. 10. Range data of a man. 
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In this chapter we introduce an algorithm aimed to create background models which 
associates a confidence value to the obtained model. Our algorithm creates the model based 
on motion criteria of the secene. The goal of this value is to quantify the quality of the model 
after a number of frames have been used to build it. The algorithm is first designed in gray 
tones and for unimodal background models and through the chapter is extended for colour 
scenarios and with the possibility of using several models per pixel. Quantitative and 
qualitative experimental results are obtained with a well-known benchmark. 

 
1.  Introduction 
 

 Visual analysis of human motion (Wang .et. al., 2003) is currently one of the most active 
research topics in computer vision. This strong interest is driven by a wide spectrum of 
promising applications in many areas such as virtual reality, smart surveillance and perceptual 
interface, just to mention the most representative. 
Visual analysis concerns the detection, tracking and recognition of objects in general, and 
particularly, people. Also the understanding of human behaviour in the case of image 
streams involving humans. Visual analysis of a scene starts from a segmentation of the scene 
in order to classify pixels as foreground or background; then, other steps may be taken 
depending on the application, such as motion analysis, object detection, object classification, 
tracking and activity understanding.  
Background subtraction is usually mentioned in the literature concerning smart 
surveillance, as one of the most popular methods to detect regions of interest in frames. This 
technique consists in subtracting the acquired frame from a background model and 
classifying as foreground all those pixels whose difference with the background is over a 
threshold. Thus, the importance of producing an accurate background model and choosing 
a precise threshold is obvious. 

 
1.1 Related work 
A large number of different methods have been proposed in recent years and many different 
features have been used to maintain the background model and perform the background 
subtraction. Most of the methods rely on describing the background model with pixel's 
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intensity or colour information (Sshoustarian & Bez, 2005), (Hu et. al., 2004), (Elgammal et. 
al. 2000). But some others rely on other kind of information, for instance, edge detection, 
optical flow or textures, (Mason and Duric, 2001), (Wixson, 2000), (Heikkilä & Pietikäinen, 
2006). 
One of the methods, which rely on the pixel's intensity, consists in modelling each pixel in a 
video frame with a Gaussian distribution. This is the underlying model for many 
background subtraction algorithms. A simple technique is to calculate an average image of 
the scene, to subtract each new video frame from it and to threshold the result. The adaptive 
version of this algorithm updates the model parameters recursively by using a simple 
adaptive filter. This single Gaussian model can be found in (Wren et. al., 2004). 
This model however, does not work well when the background is not static. For instance, 
waves, clouds or any movement which does also belong to the background cannot be 
properly described using one Gaussian distribution. A solution is using more than one 
Gaussian to model the background, as proposed in (Stauffer & Grimson, 1999]. In (Zang & 
Klette, 2004) methods for shadow detection and per-pixel adaptation of the parameters of 
the Gaussians are developed. 
Following with the methods based on mixture of Gaussians, in (Elgammal et. al. 2000), it is 
proposed to build a statistical representation of the background. This is done by estimating 
directly from data the probability density function, with no previous assumptions about the 
underlying distribution. 
Other approaches which do not rely on Gaussian distributions to model the background can 
be found, for instance, in (Mason and Duric, 2001). In this paper, the algorithm proposed 
computes a histogram of edges in a block basis. These histograms are constructed using 
pixel-specific edge directions. A fusion of this approach with intensity information may be 
found in (Jabri et. al., 2000). 
Motion may also be used to model the background. Authors of (Wixson, 2000) propose an 
algorithm that detects salient motion by integrating frame-to-frame optical flow over time. 
Salient motion is considered to be motion that tends to move in a consistent direction over 
time. 
Radically different is the approach introduced in (Heikkilä & Pietikäinen, 2006). These 
authors propose using features bases on textures to model the scene and to detect moving 
objects. The features used are LBP (local binary pattern) and the algorithm models the 
background using these features by assigning each pixel with a set of LBP histograms. As 
authors state, their algorithm has a lot of parameters to tune. 
Though the aforementioned approaches obtain good results in the tested scenarios, in 
general, all these approaches expect working in scenarios with low or null activity to build 
their first model.  One of aspects which we miss in these approaches is that there is no 
measure of when a suitable background is achieved. 
Besides the different approaches to background modelling, another issue related to this 
technique is the detection of corrupt models, that is, models which are not useful any more 
for surveillance purposes.  
Few papers in the literature address this issue, as far as authors of this chapter are 
concerned. In the literature it is generally assumed that changes in the background will 
occur smoothly and abrupt changes are not considered.  In (Toyama et.al., 1999), authors 
propose maintaining a database of models. In the case the background model is considered 

 

to be corrupt, by whichever the mean, a search in the database should be enough to find the 
most suitable model.  
In our opinion, this is a very time consuming process, and does not solve completely the 
problem.  We consider that recovering a corrupt background model is the same as creating a 
new one. In this chapter, we explore the possibility of giving a unique solution to both 
problems. Thus, only a method to detect corrupt models must be defined and the model 
recovery may just be considered as a restart of the system, building a new background 
model. 

 
1.2 Goals 
Our developments are constrained to concrete situations. We focus our attention specially 
on demanding scenarios, which are those in which there is always a significant activity 
level, making it difficult to obtain a clean model with traditional techniques, such as mean, 
mode...  These scenarios may be found in public buildings or outdoor areas, for instance, 
airports, subway or railway stations, entrance of buildings and so on, in which there are 
always people walking or standing. 
Scenarios such as airports or railway stations are on duty 24 hours a day with a constant 
activity. In this kind of scenario it is difficult obtaining images without people of the areas 
under surveillance, in the case it had to be done in a concrete moment. But it is also 
desirable to get as soon as possible a good model in the case of model corruption. 
Hardware is another of our constraints. Algorithms discussed in the following sections are 
designed to be implemented in a DSP-based hardware with a limited memory. Thus, storing 
a big amount of background models is not possible.  
Two questions arise when talking about corrupt background models. How can a model be 
considered to be corrupt? From the algorithmic point of view, a measure of the quality of a 
model is needed in order to be able to detect how the process of model recovery evolves and 
a mechanism to detect corrupt models is also needed. 
And, how may the quality of a model be measured? These questions are not yet given an 
answer in the literature. We propose measuring the quality by taking into account for how 
long a model has properly described a pixel.  
Our approach tries to obtain a background model which can provide the system with a 
suitable segmentation and a correct classification of objects in the scene. 
 The solution we propose tries to answer the two questions aforementioned and also, give a 
general technique for background reconstruction. We propose a mathematical definition of 
model corruption in terms of number of pixels classified as foreground with respect to total 
number of pixels contained in the scene. This definition may, of course, be tailored for any 
situation. 
The aims of the algorithm are: 

(1) Construct a background model by acquiring frames no matter how many objects 
appear in the scene. 

(2) Define a measure of the quality of the background model obtained and a confidence of 
the pixels classified as foreground.                                                                      

(3)  Avoid storing background models, in case of failure, the model will be recomputed on 
the fly.     
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Hardware is another of our constraints. Algorithms discussed in the following sections are 
designed to be implemented in a DSP-based hardware with a limited memory. Thus, storing 
a big amount of background models is not possible.  
Two questions arise when talking about corrupt background models. How can a model be 
considered to be corrupt? From the algorithmic point of view, a measure of the quality of a 
model is needed in order to be able to detect how the process of model recovery evolves and 
a mechanism to detect corrupt models is also needed. 
And, how may the quality of a model be measured? These questions are not yet given an 
answer in the literature. We propose measuring the quality by taking into account for how 
long a model has properly described a pixel.  
Our approach tries to obtain a background model which can provide the system with a 
suitable segmentation and a correct classification of objects in the scene. 
 The solution we propose tries to answer the two questions aforementioned and also, give a 
general technique for background reconstruction. We propose a mathematical definition of 
model corruption in terms of number of pixels classified as foreground with respect to total 
number of pixels contained in the scene. This definition may, of course, be tailored for any 
situation. 
The aims of the algorithm are: 

(1) Construct a background model by acquiring frames no matter how many objects 
appear in the scene. 

(2) Define a measure of the quality of the background model obtained and a confidence of 
the pixels classified as foreground.                                                                      

(3)  Avoid storing background models, in case of failure, the model will be recomputed on 
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(4)  Compute a confidence value associated to the model for each pixel  Bb  , in order 
to evaluate the security with which this pixel is classified as belonging to background. 
The higher the confidence of the model, the better the background model is. 

In the following sections we develop an algorithm which may quickly reconstruct a 
background model in the case it is corrupt. Our scope is being able to build it even if people 
are present in the scene, meeting the first four constraints. 
The fourth requirement is achieved by means of a definition for background model quality.  
One of the problems of the methods mentioned in the introduction is that they cannot 
determine whether a suitable background model is built or not. For instance, averaging 50 
images of a scene with no people present in any frames (or present in a little amount of 
them) will produce, more or less, the same result as taking the average of just a couple of 
images.   
Using simple statistical methods gives no hint of the quality of the model constructed. If 
moving objects are present in the frames used to construct the background, blurred areas 
may appear as a mixture of the values of the objects and the values of the background will 
be done.  The quality index we propose, is mainly used to give a quantitative measure of the 
background model's quality.  However, its use is not only limited to this, but also may be 
helpful when defining a segmentation quality using this model. 
This chapter is organized as follows, section 2 introduces BAC the background adaptive 
modelling algorithm (Rosell –Ortega et. al. 2008). This first version of the algorithm uses 
gray tones to describe the scene. In section 3, we explore the possibility of using the same 
segmentation schema of BAC with RGB coordinates. In section 4 we compare BAC with the 
Stauffer’s approach. Finally, section 5 is devoted to conclusions and future works. 

 
2. Background adaptive modelling algorithm (BAC) 
 

 Background models are traditionally generated using statistical measures. In this chapter, 
we propose not to use only statistical properties of pixels, but also their behaviour, to build 
the model. As stated in the introduction, the aim of the algorithm is reconstructing or 
creating a background model from the scratch, with no previous assumption about the 
scene activity. Similarity with the background and motion criteria are used to determine 
how the model must be updated. 
We propose an algorithm that considers consecutive gray scale frames F(0), F(1), ... F(n), in 
which any pixel    iFp yx,    must belong either to foreground or to background and 

builds a background model B starting from a frame    0i,iF   . In this first frame it is 
impossible to classify pixels as background or foreground, as no further information is 
given. To decide which pixels may be used to update the background model and which not, 
a new similarity and motion criteria is defined in next sections. 
Section 2.2 describes the notion of similarity with the background and motion of a pixel. We 
use the previous knowledge of how a background pixel should behave to discriminate 
which values in each incoming frame belong to background and which do not.  In section 
2.3 we explain the algorithm. Section 2.4 explains the experiments we made with different 
real videos, comparing the result of using our method with mean, mode and median to 
construct a background model and shows the results we obtained.  
 

 

2.1 Similarity criteria 
 Similarity between two pixels is usually tested by comparing the difference of their gray 
levels with a threshold. We propose to translate into a function the intuitive idea behind 
"very similar" or "similar" by using a continuous function defined as, 
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with ]1,0[: S , p  and q  are gray levels of two pixels,   is a constant determined 
experimentally. This way, a difference degree and not an absolute value is calculated for 
pixels similarity. Figure 1 shows the evolution of this function. 

 
2.2 Motion and similarity with the background 
 By using equation 1, it can be measured the similarity of each pixel with the background.  
Similarity between a pixel   iFq yx ,  with a background pixel is then given 

by  yxyx b,qS ,, , being  iBb yx , the pixel in the background model. 

 
Also, motion can be computed using equation 1. Motion of a pixel can be defined as its 
similarity with previous values of the pixel.   Being  tFq yx , a pixel in the current frame, 
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This way, motion in the scene is detected by considering similarities of three consecutive 
frames.  

 
2.3 Segmentation process 
  The background algorithm with confidence (BAC) starts by taking a frame F(i) to be the 
initial background model B(i) (the model in time i), and sets,  

                      0)(0)(,)( ,,,  iiciBb yxyxyx                                        (3) 

being  ic yx,   the confidence value of pixel   yx,b  and )(
,
iyx the filtered probability in 

time i. 
Next two frames, F(i+1) and F(i+2), are ignored and used only to detect motion in frame 
F(i+3). For all the next incoming frames F(i), motion and similarities with B(i-1) are sought 
for.  We define then the probability that any pixel  iFq belongs to foreground as, 

                             )),(1),(max()( bqSqMqPfore                                       (4) 

because pixels will belong to foreground if either their motion value is high or their 
difference with the background is high. This way, we can include in the foreground set all 
pixels which, even being similar to the background but show significant motion and vice 
versa. 
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(4)  Compute a confidence value associated to the model for each pixel  Bb  , in order 
to evaluate the security with which this pixel is classified as belonging to background. 
The higher the confidence of the model, the better the background model is. 
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determine whether a suitable background model is built or not. For instance, averaging 50 
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them) will produce, more or less, the same result as taking the average of just a couple of 
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Using simple statistical methods gives no hint of the quality of the model constructed. If 
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may appear as a mixture of the values of the objects and the values of the background will 
be done.  The quality index we propose, is mainly used to give a quantitative measure of the 
background model's quality.  However, its use is not only limited to this, but also may be 
helpful when defining a segmentation quality using this model. 
This chapter is organized as follows, section 2 introduces BAC the background adaptive 
modelling algorithm (Rosell –Ortega et. al. 2008). This first version of the algorithm uses 
gray tones to describe the scene. In section 3, we explore the possibility of using the same 
segmentation schema of BAC with RGB coordinates. In section 4 we compare BAC with the 
Stauffer’s approach. Finally, section 5 is devoted to conclusions and future works. 

 
2. Background adaptive modelling algorithm (BAC) 
 

 Background models are traditionally generated using statistical measures. In this chapter, 
we propose not to use only statistical properties of pixels, but also their behaviour, to build 
the model. As stated in the introduction, the aim of the algorithm is reconstructing or 
creating a background model from the scratch, with no previous assumption about the 
scene activity. Similarity with the background and motion criteria are used to determine 
how the model must be updated. 
We propose an algorithm that considers consecutive gray scale frames F(0), F(1), ... F(n), in 
which any pixel    iFp yx,    must belong either to foreground or to background and 

builds a background model B starting from a frame    0i,iF   . In this first frame it is 
impossible to classify pixels as background or foreground, as no further information is 
given. To decide which pixels may be used to update the background model and which not, 
a new similarity and motion criteria is defined in next sections. 
Section 2.2 describes the notion of similarity with the background and motion of a pixel. We 
use the previous knowledge of how a background pixel should behave to discriminate 
which values in each incoming frame belong to background and which do not.  In section 
2.3 we explain the algorithm. Section 2.4 explains the experiments we made with different 
real videos, comparing the result of using our method with mean, mode and median to 
construct a background model and shows the results we obtained.  
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 Similarity between two pixels is usually tested by comparing the difference of their gray 
levels with a threshold. We propose to translate into a function the intuitive idea behind 
"very similar" or "similar" by using a continuous function defined as, 
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with ]1,0[: S , p  and q  are gray levels of two pixels,   is a constant determined 
experimentally. This way, a difference degree and not an absolute value is calculated for 
pixels similarity. Figure 1 shows the evolution of this function. 

 
2.2 Motion and similarity with the background 
 By using equation 1, it can be measured the similarity of each pixel with the background.  
Similarity between a pixel   iFq yx ,  with a background pixel is then given 

by  yxyx b,qS ,, , being  iBb yx , the pixel in the background model. 

 
Also, motion can be computed using equation 1. Motion of a pixel can be defined as its 
similarity with previous values of the pixel.   Being  tFq yx , a pixel in the current frame, 

 1,  iFp yx and  2,  iFr yx ; we define the motion of yxq ,  as, 
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This way, motion in the scene is detected by considering similarities of three consecutive 
frames.  

 
2.3 Segmentation process 
  The background algorithm with confidence (BAC) starts by taking a frame F(i) to be the 
initial background model B(i) (the model in time i), and sets,  
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being  ic yx,   the confidence value of pixel   yx,b  and )(
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time i. 
Next two frames, F(i+1) and F(i+2), are ignored and used only to detect motion in frame 
F(i+3). For all the next incoming frames F(i), motion and similarities with B(i-1) are sought 
for.  We define then the probability that any pixel  iFq belongs to foreground as, 
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because pixels will belong to foreground if either their motion value is high or their 
difference with the background is high. This way, we can include in the foreground set all 
pixels which, even being similar to the background but show significant motion and vice 
versa. 
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On the other side, the following expression, 
                                         )),(),(1max()( bqSqMqPback                                                 (5) 
                           
defines the probability that a pixel  iFq  belongs to background if both its motion value 
is  low and its similarity to current background is high (as stated in the constraints described 
before).  It must be noted that the relationship,  
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 does necessary verify.  According to definitions of both probabilities, it is easy to see that 
the chosen value for each probability is complementary of the other one. 
 

Fig. 1. Plot of function similarity for different distances. 
 
 Once F(i) is segmented, we must update the model B(i-1) to obtain B(i), using pixels in F(i). 
Not all pixels  1 iBb yx, are updated in the same way, it depends on  yxback bP , , 

 1, ic yx  and   iσ yx, . The segmentation separates pixels in two different sets; the 

foreground set (fSet) and the background set (bSet). 
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We reduce the amount of pixels classified as foreground to only those whose foreground 
probability is high. This way, we get sure most of shadows will not be considered as 
foreground. On the other hand, anything which is not considered to be foreground, is 
classified as background. 
 
  The model probabilities are then updated, 
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 being  iσb  the filtered certainty of a pixel of belonging to background in time t. This 
probability is used, together with other measurements, to avoid that an object captured in 
the first model stays forever in the model. This filter accumulates the different background 
background probabilities obtained by a model pixel over time. 
After filtering background probabilities, it may be seen that there are pixels whose 
probabilities diminish over time. For instance, this may be due to the fact that these pixels 
were still at the beginning of the process, and started to move later. But it may be also the 
case, that objects are moving over these pixels but they recover their values again after few 
frames. 
In order to distinguish these two cases, two sets are added to the previous set definitions: 
pixels labelled as doubtful (dSet) and pixels in B(i) whose gray level will be replaced by the 
gray level of pixels in F(i) (cSet).  
Doubtful pixels are those whose filtered background probability is under a threshold but 
whose confidence is still over a minimum. Recalling that the algorithm starts with zero 
knowledge about the scene, special care must be taken with such behaviour, in order to 
quickly change pixels which do not describe the background properly. 
 On the other side, pixels in the cSet represent pixels, whose confidence is under a threshold, 
and will be replaced by values from the current frame. 
Equations 10 and 11 show how these sets are built. Doubtful pixels, dSet in equation 10, will 
be those which have a low filtered probability but still their confidence is high (at least, 
80%).  Equation 11 shows which are considered to be changed, those whose confidence is 
under 80% and also their filtered probability is low. 
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Values defining the previous sets were chosen to be very restrictive, this way, pixels which 
may yield low background similarity are quickly replaced. The regions of interest of frame 
F(i) are then defined by fSet. We define the following set for convenience, 
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 does necessary verify.  According to definitions of both probabilities, it is easy to see that 
the chosen value for each probability is complementary of the other one. 
 

Fig. 1. Plot of function similarity for different distances. 
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We reduce the amount of pixels classified as foreground to only those whose foreground 
probability is high. This way, we get sure most of shadows will not be considered as 
foreground. On the other hand, anything which is not considered to be foreground, is 
classified as background. 
 
  The model probabilities are then updated, 
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 being  iσb  the filtered certainty of a pixel of belonging to background in time t. This 
probability is used, together with other measurements, to avoid that an object captured in 
the first model stays forever in the model. This filter accumulates the different background 
background probabilities obtained by a model pixel over time. 
After filtering background probabilities, it may be seen that there are pixels whose 
probabilities diminish over time. For instance, this may be due to the fact that these pixels 
were still at the beginning of the process, and started to move later. But it may be also the 
case, that objects are moving over these pixels but they recover their values again after few 
frames. 
In order to distinguish these two cases, two sets are added to the previous set definitions: 
pixels labelled as doubtful (dSet) and pixels in B(i) whose gray level will be replaced by the 
gray level of pixels in F(i) (cSet).  
Doubtful pixels are those whose filtered background probability is under a threshold but 
whose confidence is still over a minimum. Recalling that the algorithm starts with zero 
knowledge about the scene, special care must be taken with such behaviour, in order to 
quickly change pixels which do not describe the background properly. 
 On the other side, pixels in the cSet represent pixels, whose confidence is under a threshold, 
and will be replaced by values from the current frame. 
Equations 10 and 11 show how these sets are built. Doubtful pixels, dSet in equation 10, will 
be those which have a low filtered probability but still their confidence is high (at least, 
80%).  Equation 11 shows which are considered to be changed, those whose confidence is 
under 80% and also their filtered probability is low. 
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Values defining the previous sets were chosen to be very restrictive, this way, pixels which 
may yield low background similarity are quickly replaced. The regions of interest of frame 
F(i) are then defined by fSet. We define the following set for convenience, 
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We update pixels in a different way, depending on their observed behaviour. Those which 
have a high confidence and high filtered probability or their confidence is over a threshold, 
i.e., those which do not belong to cSet, are updated using the incoming values to cope with 
light changes. 
Pixels which belong to the cSet are directly changed by values in the incoming frame. This 
way, regions which were labelled as foreground, become part of the background. 
 
Being  iFq yx , ,the model B(i) is updated as follows, 
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Confidences of pixels are also updated distinguishing the set to which each pixel belongs to. 
In this case, pixels which do describe the background increase their confidence. Pixels 
whose  iσ yx,  reduces over time, do also reduce their confidence. On the other side, pixels 

which are copied from the image, take a confidence equal to zero. 
As this operation is performed in a frame by frame basis, and pixels are reclassified after 
segmentation, any pixel whose confidence is reduced by a temporal occlusion by a 
foreground pixel will recover its previous confidence as soon as the occlusion finishes. 
 
 The confidence of pixels in B(i) is updated according to the following expressions, 
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A difference with respect to other algorithms, is that we propose using a different adaption 
coefficient   for each pixel depending on the confidence they show. This way, we expect 
pixels which strongly described the scenario to update smoothly. On the other side, pixels 
whose confidence diminishes, recalling this means their background probability is 
descending, take a lower adaptation coefficient. 
It is computed taking into account the confidence of the pixel in time i according to the 
following equations, 
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The adaptation coefficient takes values in the range [0,0.98). Being 0.98 the value which 
corresponds to pixels with a high confidence and 0 the value which corresponds to pixels 
which have been changed. 
As said before, together with its gray level value, each pixel  iBb yx ,  provides a 

confidence value which may be used to weight the quality of the segmentation. We define 
the segmentation confidence of the model B(i) as, 
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being nm   the number of pixels of the model. The segmentation confidence (sc) is 
calculated for a target iT with a size l in pixels of frame F(i), by particularizing this 
expression considering only the pixels segmented for this target. 
Finally, in order to test when the background model is stable the mean square quadratic 
difference (msqd) between two consecutive models is calculated; the algorithm finishes if 
the following condition verifies, 
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2.4 Experiments 
 We made experiments to test two different issues. First, several random frames from test 
videos were chosen as the base to reconstruct the background model. We then compared the 
background model obtained with the BAC algorithm, with the one obtained by using 
median, mean and mode with the same frames used by BAC. Next experiments were aimed 
to control how accurate the segmentation was, by using BAC to segment frames while the 
algorithm was under construction. 
Videos from different sources were used with the aim of reproducing different situations; 
videos recorded by ourselves, real videos from the airport and Wallflower benchmark. 
Videos had different lengths and were converted into grayscale when needed. 
We compared the BAC's segmentation with a supervised segmentation in order to quantify 
the true positives (TP), which are pixels classified as foreground in the control image and by 
the algorithm, and the true negatives (TN), which are are pixels classified as background in 
the control image and by the algorithm. False positives (FP) and false negatives (FN) are 
defined as the complementary of the previous ones. 
Good results were obtained with BAC, they may be found together with resulting models 
using mean aplied to test videos at www.vxc.upv.es/vision/proyectos/BAC. 
 A representative situation aim of our developments is analysed in this section. The video 
starts in F(0) with several people in a scene, simulating a surveillance system, in that 
moment B(0) is created with targets with sc=0, see figure 2 (a).  In order to evaluate 
quantitatively the evolution of BAC, we segmented manually 22 frames randomly selected. 
 In table 1, segmentation results for frames F(90) and F(390) obtained with BAC and mean 
are compared; sc of pixels found in each target's segmentation with BAC is shown under 
column "confidence", for pixels not correctly segmented, sc was under 0.001. The original 
frames, together with segmentation result and the background model used may be found in 
figures 2,3 and 4. 
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We update pixels in a different way, depending on their observed behaviour. Those which 
have a high confidence and high filtered probability or their confidence is over a threshold, 
i.e., those which do not belong to cSet, are updated using the incoming values to cope with 
light changes. 
Pixels which belong to the cSet are directly changed by values in the incoming frame. This 
way, regions which were labelled as foreground, become part of the background. 
 
Being  iFq yx , ,the model B(i) is updated as follows, 
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Confidences of pixels are also updated distinguishing the set to which each pixel belongs to. 
In this case, pixels which do describe the background increase their confidence. Pixels 
whose  iσ yx,  reduces over time, do also reduce their confidence. On the other side, pixels 

which are copied from the image, take a confidence equal to zero. 
As this operation is performed in a frame by frame basis, and pixels are reclassified after 
segmentation, any pixel whose confidence is reduced by a temporal occlusion by a 
foreground pixel will recover its previous confidence as soon as the occlusion finishes. 
 
 The confidence of pixels in B(i) is updated according to the following expressions, 
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A difference with respect to other algorithms, is that we propose using a different adaption 
coefficient   for each pixel depending on the confidence they show. This way, we expect 
pixels which strongly described the scenario to update smoothly. On the other side, pixels 
whose confidence diminishes, recalling this means their background probability is 
descending, take a lower adaptation coefficient. 
It is computed taking into account the confidence of the pixel in time i according to the 
following equations, 
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The adaptation coefficient takes values in the range [0,0.98). Being 0.98 the value which 
corresponds to pixels with a high confidence and 0 the value which corresponds to pixels 
which have been changed. 
As said before, together with its gray level value, each pixel  iBb yx ,  provides a 

confidence value which may be used to weight the quality of the segmentation. We define 
the segmentation confidence of the model B(i) as, 
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 Frame 90 Frame 390 

target BAC mean Model 
background 
confidence 

    BAC      mean confidence 

1 st  0.69 0.74 0.946 0.96 0.88 0.997 

2 nd 0.90 0.70 0.977 0.89 0.71 0.996 

3 rd 0.37 0.49 0.986 0.51 0.69 0.997 

4 th 0.47 0.49 0.933  -  - - 
Table. 1.  Percentage of pixels found for each hand-segmented target in control frames 90 
and 390. Targets are not the same in both frames. 
 
 In F(90), the four objects present in the scene are segmented with BAC and mean; only those 
dark objects which are far in the field of view of the camera are segmented more poorly 
(target 3); something similar happens with target 4, which is a group of two people moving 
still in the same area they occupied at the beginning of the movie. We consider that with at 
least 45% of the total size of pixels detected of a target is sufficient to continue with 
classification and tracking tasks, if they are grouped in an only blob. 
In figure 2 (a) and 2 (b) B(0) and B(89) are shown, it may be seen that in B(89), background 
model has achieved c = 0.982 and some targets have been removed.  Improvement over time 
is evident as B(389) contains no target. This improvement manifests in F(390) with a better 
segmentation and a model with sc = 0.997. 
Evolution of BAC's confidence, TP and TN, of BAC and mean are shown in figure 2. Objects 
standing still for long periods of time influence negatively the value of TP. The plot shows 
that BAC segments correctly more pixels than mean. In F(201)  several objects leave the 
scene and others start coming in and in F(680) some objects stand still; this explains some 
foreground pixels not found. On the other side, TN, easily reach a high level as area of quiet 
targets is small compared to the image. 
 
 
 
 
 
 
 
 
 

 

   
a) B(0)=0 b) B(90) = 0.982 c) B(390) = 0.997 

Fig. 2. Background evolution, first figure correspond to background model in F (1). Figure 
(b) corresponds to the background model updated until F (90). Figure (c ) corresponds to the 
background model in F (390). 
 

   
(a) (b) (c) 

Fig. 3. Different frames showing the evolution of people in the scenario. From left to right, 
images correspond to frames 1, 90 and 390. 
 

   
(a) (b) (c) 

Fig. 4. From left to right, result of background subtraction of frames 1, 90 and 390 using the 
background models computed so far. 
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(a) (b) (c) 

Fig. 5. From left to right, the expected result for background subtraction for frames 1, 90 and 
390. These images are segmented manually, labeling with white expected foreground and in 
black the background. 

Fig. 6. Evolution of confidence, true positives and true negatives for the discussed video 
 
Table 2 shows results for Wallflower benchmark. Values of true negatives are high, though 
videos were too short for BAC to converge. For sequence "wavingTree" sequence, fails due 
to the movement of the tree. In "lightSwitch", BAC was started in the moment lights were 
switched on.  
Finally, in "bootstrap", brightness makes BAC fail to find correctly the targets, though it find 
most of the pixels associated to them. 
Experiments show that BAC obtains background models equal to those obtained by using 
any statistical technique; with the added benefit of permitting segmentation from the very 
beginning of the process; as was the goal and together with a confidence measure of the 
obtained model. Also, the experiments performed with the Wallflower test set result 
promising. Our efforts should be address in near future to improve the response of the 
algorithm to shadows and brightness.  

 

In the following sections, we extend the algorithm to improve segmentation results. We start 
by adding colour to the segmentation schema. 
 

 bootstrap camouflage foregroun
d 

Light 
Switch 

Moved 
Object 

Time Of 
Day 

Waving 
Trees 

TP 0.48 0.73 0.51 0.44 ------ 0.36 0.73 

TN 0.96 0.86 0.95 0.98 0.99 0.99 0.74 

Table. 2. True positives and true negatives for the Wallflower benchmark. 

 
3. BAC with colour 
 

In order to improve results, one of the basic things that can be done is adding colour to the 
description of pixels. By doing this, better results for foreground and background are 
expected.  
Choosing the colour coordinates depends on several factors. On one side, usually, cameras 
can produce images in RGB or YUV coordinates. Though mathematical methods exist that 
can convert coordinates of one system to another, this conversion may be very time 
consuming and have a severe impact on the system performance. 
In the following sections, we develop BAC with colour by adding the use of RGB 
coordinates to the previous algorithm. Other systems exists, such as CIEL*a*b* or HSI which 
could be claimed to have better properties than RGB. We chose RGB system because it is a 
widely used system and it is easy to find cameras which reproduce images using this 
system.  

 
3.1 Colour coordinates 
There are different colour models that can be used in order to describe the colour of a pixel, 
RGB, HSI, CIEL*a*b*. CIEL*a*b*, for instance, has the advantage that is perceptually 
uniform. That means, that a change of the same amount in a colour value should produce a 
change of about the same visual importance. The distance between two colours represented 
in CIEL*a*b* coordinates is just the Euclidean difference of the two vectors representing 
them. 
RGB on the other side, is not perceptually uniform because it was designed from the 
perspective of devices and not from a human perspective and CIEL*a*b*. Methods exist to 
convert the RGB coordinates into CIEL*a*b* coordinates and vice versa. In fact, the most 
common coordinates may be converted into each other through mathematical conversions. 
In our case, we will use RGB coordinates. The similarity between two pixels, p and q is now 
given by a similar function as with gray tones. The only difference is that the distance 
between the pixels is extended to use the three RGB coordinates. 
  In this case, equation (1) is modified and the similarity function is given by, 
                                        
                                                                                                                                                             (22) 
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  where the colour distance is computed as the Euclidean distance of  two colours as in 
equation 23 and  is a constant determined experimentally. 
 
                                                                                                                                                             (23) 

 
 3.2 Experiments 
Experiments were performed with the same benchmark as with BAC in order to compare 
results. It is obvious that adding colour to the image processing will improve results, as 
more information is being used in the segmentation. 
Results for the Wallflower benchmark are shown in table 3.  In this case, the improvement is 
evident, a bigger rate of foreground pixels is obtained in all sequences. The chosen 
segmentation seems to be very sensitive and a lower rate of background pixel is achieved in 
the sequences. 
 

 Bootstrap Camouflage Foreground Light 
Switch 

Moved 
Object 

Time Of 
Day 

Waving 
Trees 

TP 0.67 0.78 0.58 0.46 - 0.53 0.93 

TN 0.85 0.70 0.87 0.97 0.99 0.98 0.59 

Table. 3. True positives and true negatives for the Wallflower benchmark using colour in the 
pixels' description. 

 
4. Comparison with other approaches 
 

We compared the performance of the original BAC algorithm with another approach 
introduced in the paper by Stauffer and Grimson (Stauffer & Grimson, 1999). We 
implemented their algorithm and executed it with different parameters in order to seek for 
best results.  
As in the other experiments, we used the Wallflower test for comparisons.  We found some 
difficulties when trying to deal with shadows with this algorithm. Also, we used the 
parameters which seemed to be the best, keeping them the same for all sequences, as we 
made with BAC. 
 

 Bootstrap  Camouflage Foreground Light Switch Moved 
Object 

Time Of 
Day 

Waving 
Trees 

TP 0.33 0.80 0.59 0.76 --- 0.24 0.66 

TN 0.97 0.62 0.55 0.08 1.00 0.99 0.85 

Table. 4. True positives and true negatives for the Wallflower benchmark using the Stauffer 
& Grimson algorithm with a maximum number of models equal to 5, and T= 0.8. 

 

Stauffer’s algorithm uses several models per pixel to model the scene, and that is a big 
difference when motion in the background appears as in camouflage sequence or 
wavingTree sequence. Results for these two sequences outperform clearly BAC. 
Despite results with Stauffer’s algorithm could be improved with another set of parameters 
or initialization, the sequence that better illustrates the performance of BAC is lightSwitch.  
In this sequence, a sudden change in light in the scenario is applied. The background 
rapidly changes from a dark room to an illuminated room.  
This sudden corruption of the scene is caught by BAC, which quickly restarts the model. 
Stauffer’s algorithm is slower when reducing the weights of the model to include the new 
model. 

 
5. Conclusions and future work 
A different approach to background modelling was introduced in this chapter. The aim of 
the algorithms developed is trying to give a quick response to two different problems with a 
common solution: building a background model and recovering a background model in 
demanding scenarios. 
These scenarios are characterized by having always a significant activity level, making it 
difficult to obtain a clean model with traditional techniques. Results for the Wallflower 
benchmark and for the test videos result promising.  
Several algorithms have been developed in order to meet the constraints we were facing. 
First algorithm, MBAC is the simplest of them. Its aim is building a background model and 
associates a confidence to it, in order to have a numerical description of how good the model 
is. This algorithm uses gray tone levels to describe the scene. 
By adding colour to the BAC algorithm, more accuracy in the background description and 
the segmentation process is achieved. Results show that, as it was expected, the version of 
BAC with colour improves results. Other colour systems exists, such as CIEL*a*b* or HSI 
which could be claimed to have better properties than RGB. We chose RGB system because 
it is a widely used system and it is easy to find cameras which reproduce images using this 
system.  
The reconstruction of background models on the fly proved to be useful for demanding 
scenarios, in which it may be difficult achieving good quality background models with 
traditional techniques.  We tested the algorithm in several situations with test videos from 
different sources, we set a web-site where videos showing algorithm evolution is illustrated.  
Further research should be done in improving the segmentation to include also shadows, 
which proved to be very difficult to classify with our method. Also, a review of the 
segmentation process should be done. Maybe the fact that RGB coordinates are not 
perceptual uniform affect the computation of distances and produces a high amount of 
missed background pixels 
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  where the colour distance is computed as the Euclidean distance of  two colours as in 
equation 23 and  is a constant determined experimentally. 
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1. Introduction  

Motion segmentation algorithms aim at decomposing a video in moving objects and 
background. In many computer vision tasks this decomposition is the first fundamental 
step. It is an essential building block for robotics, inspection, metrology, video surveillance, 
video indexing, traffic monitoring and many other applications. A great number of 
researchers has focused on the segmentation problem and this testifies the relevance of the 
topic. However, despite the vast literature, the performance of most of the algorithms still 
falls far behind human perception. In this chapter a review of the main motion segmentation 
approaches is presented, with the aim of pointing out their strengths and weaknesses and 
suggesting new research directions. The main features of motion segmentation algorithms 
are analysed and a classification of the recent and most important techniques is proposed. 
The conclusions summarise the review and present a vision on the future of motion 
segmentation algorithms. 

 
2. State of the art  

In this section a complete state of the art review on motion segmentation is presented. First 
the main problems and attributes of motion segmentation algorithms are analysed. 
Afterwards, a classification of the different techniques is proposed, describing the most 
significant works in this field. All the papers revised are summarised in table 1, which offers 
a compact at-a-glance overview with respect to the attributes presented in the next 
subsection.  

 
2.1 Problems and attributes  
In this subsection the common problems and the most important attributes of motion 
segmentation algorithms are analysed. Attributes describe in a compact way the 
assumptions made by an algorithms as well as its limitations and strengths.  
One of the first choice that has to be taken when developing a motion segmentation 
algorithm is the representation of the motions: there are feature-based and dense-based 
approaches. In feature-based methods, the objects are represented by a limited number of 
salient points. Most of these methods rely on computing a homography corresponding to 
the motion of a planar object (Kumar et al, 2008). Features represent only part of an object 
hence the object can be tracked even in case of partial occlusions. In opposition to feature-
based methods there are dense-based methods which do not use sparse points but compute 

3



Pattern Recognition32

 

a pixel-wise motion. The result is a more precise segmentation of the objects but the 
occlusion problem becomes harder to solve (Kumar et al, 2008). 
Motion segmentation algorithms usually exploit temporal continuity. However, using only 
temporal clues a rather big part of the available information is thrown away and this lack of 
information can easily lead to problems. This is the reason why some techniques exploit also 
spatial continuity. In these cases each pixel is not considered as a single point but the 
information provided by its neighbourhood (in terms of spatial proximity) is taken into 
account. For example, one of the problems that are caused by the use of temporal 
information only, is the ability to deal with temporary stopping. In fact, many techniques Fail 
to segment when the objects stop moving even for a limited amount of time. 
Another common problem of motion segmentation is the fact that objects that move are not 
always visible. The ability to deal with missing data is yet one of the most difficult problems. 
Missing data can be caused by many factors: presence of noise, occlusions, or feature points 
that are not in scene for the whole length of the sequence. The presence of noise is another 
cause of failure. Noise can affect the accuracy in the position of the tracked features, or the 
amount of outliers (erroneously tracked features). Hence, the Robustness of the algorithm 
against noise is an essential factor to take into account. For simplicity, in this chapter the 
term robustness“ groups together the ability to deal with all the problems caused by noise, 
as well as the robustness against initialization (when an initial solution is required). 
Another important attribute that has to be analysed is the ability to deal with different types 
of motion. There is a bit of confusion in the literature when it comes to “type of motion” as 
people tend to use different adjectives to describe the same property of the motion or the 
same adjective to describe different properties. Hence, it is important to clarify which is the 
exact meaning that is given to each adjective in this chapter. A motion can be described in 
terms of: dependency and kind.  
The first classification is between independent and dependent motions. This is an attribute 
that describe the relationship between a pair of motions and is not a feature of one single 
motion. Motions are independent if the pairwise intersection of the generated subspaces is the 
zero vector. On the other hand, motions are dependent if the pairwise intersection of the 
subspaces is not empty. In this case the two motions can be seen as “similar”, the 
dependency can be partial (which means that the subspaces intersect in some points) or 
complete (which means that one subspace is completely inside the other) (Rao et al, 2008). 
The kind of motion is an attribute of the single motion. A motion is rigid when the 
trajectories generated by the points of a rigid object form a linear subspace of dimensions no 
more than 4 (Tomasi and Kanade, 1992). It is non-rigid if the trajectories generated by the 
points of a non-rigid object can be approximated by a combination of k weighted key basis 
shapes, and they form a linear subspace of dimension no more than 3k + 1 (Koterba et al, 
2005; Llado et al, 2006). It has to be noted that the ability to deal with non-rigid motions is 
constrained to when the nonrigid structure has also a rigid motion component during its 
movement. And finally, a motion is articulated when is composed by two dependent motions 
M1 and M2 connected by a link. If the link is a joint, [R1|T1] and [R2|T2] must have T1 = T2 
under the same coordinate system. Therefore, M1 and M2 lie in different linear subspaces 
but have 1-dimensional intersection. If the link is an axis, [R1|T1] and [R2|T2] must have T1 
= T2 and exactly one column of R1 and R2 being the same under a proper coordinate 
system. So M1 and M2 lie in different linear subspaces but have 2-dimensional intersection 
(Yan and Pollefeys, 2006). 

 

These are all the attributes, related to the description of motion, that will be taken into 
account in table 1. However, not always the authors clearly state under which conditions the 
algorithm would work, therefore the table is filled to the best of our knowledge given the 
information provided in the cited papers. There would be two more Attributes that, for the 
sake of completeness, are described here but they are not considered in the table as very few 
authors clearly explain these aspects. The first is called in this article “degeneracy”. Many 
authors use it when they refer to dependent, non-rigid or articulated motions, but it is used 
here with a different meaning. Degeneracy is another aspect of a single motion. Non 
Degenerate Motion is a motion whose subspace dimension is the maximum (i.e. 4 for rigid 
motion, 3k + 1 for nonrigid motion, etc.). Whereas, Degenerate Motion is a motion whose 
subspace have a dimension which is lower than its theoretical maximum due to some 
degeneracies in the trajectories. The second attribute is the assumed camera model, which 
can be affine, perspective, para-perspective or projective  
Furthermore, if the aim is to develop a generic algorithm able to deal in many unpredictable 
situations there are some algorithm features that may be considered as a drawback. For 
instance, one important aspect is the amount of prior knowledge required. In particular: 
number of moving objects and dimension of the generated subspaces. A second aspect is the 
fact that some algorithm require a training step. Training is not a negative point itself, 
however a trained algorithm tends to lose generality and it requires extra effort and a 
relevant amount of data that is not always available. 

 
2.2 Strategies analysis  
As motion segmentation has been a hot topic for many years its literature is particularly 
wide. In order to make the overview easier to read and to create a bit of order, the 
approaches will be divided into categories which represent the main principle underlying 
the algorithm. For each category some articles, among the most representative and the 
newest proposals, are provided. The division is not meant to be tight, in fact some of the 
algorithms could be placed in more than one category. The groups identified are: Image 
Difference, Statistical, Optical Flow, Wavelets, Layers, and Manifolds Clustering. As the 
amount of literature is notable only the main idea of each group of techniques is described 
while details about each paper are presented in the table 1. 

 
2.2.1 Image difference  
Image difference is one of the simplest and most used techniques for detecting changes. It 
consists in thresholding the intensity difference of two consecutive frames pixel by pixel. 
The result is a coarse map of the temporal changes. An example of an image sequence and 
the image difference result is shown in figure 1. Despite its simplicity, this technique cannot 
be used in its basic version because it is really sensitive to noise. Moreover, when the camera 
is moving the whole image changes and, if the frame rate is not high enough, the result 
would not provide any useful information. Works based on image difference usually focus 
on these two problems. For example, in (Cavallaro et al, 2005) the authors reinforce the 
motion difference using a probability-based test in order to change the threshold locally. In 
(Cheng and Chen, 2006) they exploit the wavelet decomposition in order to reduce the noise. 
Other proposals, like (Li et al, Aug. 2007), try to use temporal and spatial information 
simultaneously to be able to deal with noise and to solve other typical  
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a pixel-wise motion. The result is a more precise segmentation of the objects but the 
occlusion problem becomes harder to solve (Kumar et al, 2008). 
Motion segmentation algorithms usually exploit temporal continuity. However, using only 
temporal clues a rather big part of the available information is thrown away and this lack of 
information can easily lead to problems. This is the reason why some techniques exploit also 
spatial continuity. In these cases each pixel is not considered as a single point but the 
information provided by its neighbourhood (in terms of spatial proximity) is taken into 
account. For example, one of the problems that are caused by the use of temporal 
information only, is the ability to deal with temporary stopping. In fact, many techniques Fail 
to segment when the objects stop moving even for a limited amount of time. 
Another common problem of motion segmentation is the fact that objects that move are not 
always visible. The ability to deal with missing data is yet one of the most difficult problems. 
Missing data can be caused by many factors: presence of noise, occlusions, or feature points 
that are not in scene for the whole length of the sequence. The presence of noise is another 
cause of failure. Noise can affect the accuracy in the position of the tracked features, or the 
amount of outliers (erroneously tracked features). Hence, the Robustness of the algorithm 
against noise is an essential factor to take into account. For simplicity, in this chapter the 
term robustness“ groups together the ability to deal with all the problems caused by noise, 
as well as the robustness against initialization (when an initial solution is required). 
Another important attribute that has to be analysed is the ability to deal with different types 
of motion. There is a bit of confusion in the literature when it comes to “type of motion” as 
people tend to use different adjectives to describe the same property of the motion or the 
same adjective to describe different properties. Hence, it is important to clarify which is the 
exact meaning that is given to each adjective in this chapter. A motion can be described in 
terms of: dependency and kind.  
The first classification is between independent and dependent motions. This is an attribute 
that describe the relationship between a pair of motions and is not a feature of one single 
motion. Motions are independent if the pairwise intersection of the generated subspaces is the 
zero vector. On the other hand, motions are dependent if the pairwise intersection of the 
subspaces is not empty. In this case the two motions can be seen as “similar”, the 
dependency can be partial (which means that the subspaces intersect in some points) or 
complete (which means that one subspace is completely inside the other) (Rao et al, 2008). 
The kind of motion is an attribute of the single motion. A motion is rigid when the 
trajectories generated by the points of a rigid object form a linear subspace of dimensions no 
more than 4 (Tomasi and Kanade, 1992). It is non-rigid if the trajectories generated by the 
points of a non-rigid object can be approximated by a combination of k weighted key basis 
shapes, and they form a linear subspace of dimension no more than 3k + 1 (Koterba et al, 
2005; Llado et al, 2006). It has to be noted that the ability to deal with non-rigid motions is 
constrained to when the nonrigid structure has also a rigid motion component during its 
movement. And finally, a motion is articulated when is composed by two dependent motions 
M1 and M2 connected by a link. If the link is a joint, [R1|T1] and [R2|T2] must have T1 = T2 
under the same coordinate system. Therefore, M1 and M2 lie in different linear subspaces 
but have 1-dimensional intersection. If the link is an axis, [R1|T1] and [R2|T2] must have T1 
= T2 and exactly one column of R1 and R2 being the same under a proper coordinate 
system. So M1 and M2 lie in different linear subspaces but have 2-dimensional intersection 
(Yan and Pollefeys, 2006). 

 

These are all the attributes, related to the description of motion, that will be taken into 
account in table 1. However, not always the authors clearly state under which conditions the 
algorithm would work, therefore the table is filled to the best of our knowledge given the 
information provided in the cited papers. There would be two more Attributes that, for the 
sake of completeness, are described here but they are not considered in the table as very few 
authors clearly explain these aspects. The first is called in this article “degeneracy”. Many 
authors use it when they refer to dependent, non-rigid or articulated motions, but it is used 
here with a different meaning. Degeneracy is another aspect of a single motion. Non 
Degenerate Motion is a motion whose subspace dimension is the maximum (i.e. 4 for rigid 
motion, 3k + 1 for nonrigid motion, etc.). Whereas, Degenerate Motion is a motion whose 
subspace have a dimension which is lower than its theoretical maximum due to some 
degeneracies in the trajectories. The second attribute is the assumed camera model, which 
can be affine, perspective, para-perspective or projective  
Furthermore, if the aim is to develop a generic algorithm able to deal in many unpredictable 
situations there are some algorithm features that may be considered as a drawback. For 
instance, one important aspect is the amount of prior knowledge required. In particular: 
number of moving objects and dimension of the generated subspaces. A second aspect is the 
fact that some algorithm require a training step. Training is not a negative point itself, 
however a trained algorithm tends to lose generality and it requires extra effort and a 
relevant amount of data that is not always available. 

 
2.2 Strategies analysis  
As motion segmentation has been a hot topic for many years its literature is particularly 
wide. In order to make the overview easier to read and to create a bit of order, the 
approaches will be divided into categories which represent the main principle underlying 
the algorithm. For each category some articles, among the most representative and the 
newest proposals, are provided. The division is not meant to be tight, in fact some of the 
algorithms could be placed in more than one category. The groups identified are: Image 
Difference, Statistical, Optical Flow, Wavelets, Layers, and Manifolds Clustering. As the 
amount of literature is notable only the main idea of each group of techniques is described 
while details about each paper are presented in the table 1. 

 
2.2.1 Image difference  
Image difference is one of the simplest and most used techniques for detecting changes. It 
consists in thresholding the intensity difference of two consecutive frames pixel by pixel. 
The result is a coarse map of the temporal changes. An example of an image sequence and 
the image difference result is shown in figure 1. Despite its simplicity, this technique cannot 
be used in its basic version because it is really sensitive to noise. Moreover, when the camera 
is moving the whole image changes and, if the frame rate is not high enough, the result 
would not provide any useful information. Works based on image difference usually focus 
on these two problems. For example, in (Cavallaro et al, 2005) the authors reinforce the 
motion difference using a probability-based test in order to change the threshold locally. In 
(Cheng and Chen, 2006) they exploit the wavelet decomposition in order to reduce the noise. 
Other proposals, like (Li et al, Aug. 2007), try to use temporal and spatial information 
simultaneously to be able to deal with noise and to solve other typical  
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Table 1. Summary of the examined techniques with respect to the most important attributes.

 

 
Fig. 1. Example of an image difference result (Bobick and Davis, 1996). 
 
problems of image difference techniques such as dealing with temporary stopping. Another 
example is (Colombari et al, 2007), where in order to deal with noise and very small camera 
movements the authors propose a robust statistic to model the background. 
As can be seen from the table 1, image difference is mainly based on dense representation of 
the objects. It combines simplicity and good overall results being able to deal with 
occlusions, multiple objects, independent motions, non-rigid and articulated objects. The 
main problem of these techniques is the difficulty to deal with temporary stopping and with 
moving cameras. In order to be successful in these situations a history model of the 
background needs to be built. Furthermore, image difference algorithms are still very 
sensitive to noise and to light changes, hence they cannot be considered an ideal choice in 
case of cluttered background. 

 
2.2.2 Statistical framework  
Statistical theory is widely used in the motion segmentation field. In fact, motion 
segmentation, in the simple case, can be seen as a classification problem where each pixel 
has to be classified as background or foreground. Statistical approaches can be further 
divided depending on the framework used. Common frameworks are Maximum A 
posteriori Probability (MAP), Particle Filter (PF) and Expectation Maximization (EM). 
Statistical approaches provide a general tool that can be used in very different ways 
depending on the specific technique. 
In (Rasmussen and Hager, 2001), a MAP framework is used, namely they use the Kalman 
Filter and the Probabilistic Data Association Filter, to predict the most likely location of a 
known target in order to initialize the segmentation process. Another technique based on 
MAP is (Cremers and Soatto, 2005), where level sets (Sethian, 1998) are used to incorporate 
motion information. In (Shen et al, 2007), MAP formulation is proposed to iteratively update 
the motion fields and the segmentation fields along with the high-resolution image. The 
formulation is solved by a cyclic coordinate descent process that treats motion, 
segmentation, and high-resolution image as unknowns, and estimates them jointly using the 
available data. Another widely used statistical framework is PF. The main aim of PF is to 
track the evolution of a variable over time. The basis of the method is to construct a sample-
based representation of the probability density function. Basically, a series of actions are 
taken, each of them modifying the state of the variable according to some model. Multiple 
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problems of image difference techniques such as dealing with temporary stopping. Another 
example is (Colombari et al, 2007), where in order to deal with noise and very small camera 
movements the authors propose a robust statistic to model the background. 
As can be seen from the table 1, image difference is mainly based on dense representation of 
the objects. It combines simplicity and good overall results being able to deal with 
occlusions, multiple objects, independent motions, non-rigid and articulated objects. The 
main problem of these techniques is the difficulty to deal with temporary stopping and with 
moving cameras. In order to be successful in these situations a history model of the 
background needs to be built. Furthermore, image difference algorithms are still very 
sensitive to noise and to light changes, hence they cannot be considered an ideal choice in 
case of cluttered background. 

 
2.2.2 Statistical framework  
Statistical theory is widely used in the motion segmentation field. In fact, motion 
segmentation, in the simple case, can be seen as a classification problem where each pixel 
has to be classified as background or foreground. Statistical approaches can be further 
divided depending on the framework used. Common frameworks are Maximum A 
posteriori Probability (MAP), Particle Filter (PF) and Expectation Maximization (EM). 
Statistical approaches provide a general tool that can be used in very different ways 
depending on the specific technique. 
In (Rasmussen and Hager, 2001), a MAP framework is used, namely they use the Kalman 
Filter and the Probabilistic Data Association Filter, to predict the most likely location of a 
known target in order to initialize the segmentation process. Another technique based on 
MAP is (Cremers and Soatto, 2005), where level sets (Sethian, 1998) are used to incorporate 
motion information. In (Shen et al, 2007), MAP formulation is proposed to iteratively update 
the motion fields and the segmentation fields along with the high-resolution image. The 
formulation is solved by a cyclic coordinate descent process that treats motion, 
segmentation, and high-resolution image as unknowns, and estimates them jointly using the 
available data. Another widely used statistical framework is PF. The main aim of PF is to 
track the evolution of a variable over time. The basis of the method is to construct a sample-
based representation of the probability density function. Basically, a series of actions are 
taken, each of them modifying the state of the variable according to some model. Multiple 
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copies of the variable state (particles) are kept, each one with a weight that signifies the 
quality of that specific particle. An estimation of the variable can be computed as a weighted 
sum of all the particles. The PF algorithm is iterative and each iteration is composed by 
prediction and update. After each action particles are modified according to the model 
(prediction), then each particle weight is re-evaluated according to the information extracted 
from an observation (update). At every iteration, particles with small weights are eliminated 
(Rekleitis, 2003). An example of PF applied to motion segmentation is (Vaswani et al, 2007), 
where some well known algorithms for object segmentation using spatial information, such 
as geometric active contours (Blake, 1999) and level sets (Sethian, 1998), are unified using a 
PF framework. 
EM is also a frequently exploited framework in motion segmentation. The EM algorithm is 
an efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in 
presence of missing or hidden data. In ML the aim is to estimate the model parameter(s) for 
which the observed data is most likely to belongs to. Each iteration of the EM algorithm 
consists of an E-step and an M-step. In the E-step, using the conditional expectation the 
missing data are estimated. Whereas, in the M-step the likelihood function is maximized. 
Convergence is assured since the algorithm is guaranteed to increase the likelihood at each 
iteration (Borman, 2004). An example of EM applied to motion segmentation is (Stolkin et al, 
2008), where the authors present an algorithm which uses EM and Extended-Markov 
Random Field (E-MRF). In order to track the camera trajectory (egomotion), the algorithm 
merges the observed data (the current image) with the prediction derived from prior 
knowledge of the object being viewed. The merging step is driven by the E-MRFs within 
a statistical framework.  
Statistical approaches use mainly dense based representation. They work well with multiple 
objects and can deal with occlusions and temporary stopping. In general they are robust as 
long as the model reflects the actual situation but they degrade quickly as the model fails to 
represent the reality. Moreover, most of the statistic approaches require some kind of a 
priori knowledge. 

 
2.2.3 Wavelets 
Another group of motion segmentation algorithms is based on wavelets analysis. These 
methods exploit the ability of wavelets to perform analysis of the different frequency 
components of the images, and then study each component with a resolution matched to its 
scale. Usually wavelet multi-scale decomposition is used in order to reduce the noise and in 
conjunction with other approaches, such as optical flow, applied at different scales. 
However, there are a few proposals where wavelet is the main segmentation algorithm. In 
(Wiskott, 1997) the author combines Gabor and Mallat wavelet transform to overcome the 
aperture problem and the correspondence problem. The former transform is used to 
estimate the motion field and roughly cluster the image, while the latter is used to refine the 
clustering. The main limitation of this model is that it assumes that the objects only translate 
in front of the camera. A different approach is presented in (Kong et al, 1998) where the 
motion segmentation algorithm is based on Galilean wavelets. These wavelets behave as 
matched filters and perform minimum mean-squared error estimations of velocity, 
orientation, scale and spatio-temporal positions. This information is finally used for tracking 
and segmenting the objects. 
 

 

 
Fig. 2. Example of OF, in red the vectors of the flow of the moving person 
 
Wavelets solutions seem to provide overall good results but limited to simple cases (such as 
translation in front of the camera). Wavelets were in fashion during the 90s, nowadays the 
research interest seems to be less active, at least in relation to motion segmentation. 

 
2.2.4 Optical flow  
Optical flow (OF) can be defined as the apparent motion of image brightness patterns in an 
image sequence. An example of OF can be seen in figure 2. Like image difference, OF is an 
old concept greatly exploited in computer vision. It was first formalized and computed for 
image sequences by Horn and Schunck in the 1980 (Horn and Schunck, 1980). However, the 
idea of using discontinuities in the optical flow in order to segment moving objects is even 
older, in (Horn and Schunck, 1980) there is a list of older methods based on this idea but 
they all assume the optical flow is already known. Since the work of Horn and Schunck, 
many other approaches have been proposed. In the past, the main limitation of such 
methods was the high sensitivity to noise and the high computational cost. Until recently, 
OF was more often used in hardware implementations in order to overcome the 
computational cost, as in (Jos et al, 2005). Nowadays, thanks to the high computational 
speed and to improvements made by research, OF is widely used also in software 
implementation. In (Xu et al, 2008) is presented a variational formulation of OF combined 
with color segmentation obtained by the Mean-shift algorithm. The authors of (Klappstein et 
al, 2009) exploit OF in order to built a robust obstacle detection for driver assistance 
purposes. The work is done both with monocular (exploiting some motion constraints) and 
stereo (using Extended Kalman Filter) vision. In (Bugeau and Pérez, 2009) the segmentation 
problem is addressed by combining motion information, spatial continuity and photometric 
information. In (Ommer et al, 2009) an algorithm for segmentation, tracking and object 
recognition is presented. The segmentation and tracking parts are done by OF (using salient 
features and KLT tracking). The algorithm is based on grouping together salient features 
following a proximity criteria. The features are tracked by KLT and the mean flow is 
computed. The position of the group of features is predicted using the previous mean flow 
in order to constrain the tracking area. At every iteration the mean flow is updated taking 
into account the old flows with an exponential decay over time. 
OF is, theoretically, a good clue in order to segment motion. However, alone it is not enough 
because it cannot deal with occlusions and temporal stopping. Statistical techniques or  
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copies of the variable state (particles) are kept, each one with a weight that signifies the 
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where some well known algorithms for object segmentation using spatial information, such 
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an efficient iterative procedure to compute the Maximum Likelihood (ML) estimate in 
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which the observed data is most likely to belongs to. Each iteration of the EM algorithm 
consists of an E-step and an M-step. In the E-step, using the conditional expectation the 
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Convergence is assured since the algorithm is guaranteed to increase the likelihood at each 
iteration (Borman, 2004). An example of EM applied to motion segmentation is (Stolkin et al, 
2008), where the authors present an algorithm which uses EM and Extended-Markov 
Random Field (E-MRF). In order to track the camera trajectory (egomotion), the algorithm 
merges the observed data (the current image) with the prediction derived from prior 
knowledge of the object being viewed. The merging step is driven by the E-MRFs within 
a statistical framework.  
Statistical approaches use mainly dense based representation. They work well with multiple 
objects and can deal with occlusions and temporary stopping. In general they are robust as 
long as the model reflects the actual situation but they degrade quickly as the model fails to 
represent the reality. Moreover, most of the statistic approaches require some kind of a 
priori knowledge. 

 
2.2.3 Wavelets 
Another group of motion segmentation algorithms is based on wavelets analysis. These 
methods exploit the ability of wavelets to perform analysis of the different frequency 
components of the images, and then study each component with a resolution matched to its 
scale. Usually wavelet multi-scale decomposition is used in order to reduce the noise and in 
conjunction with other approaches, such as optical flow, applied at different scales. 
However, there are a few proposals where wavelet is the main segmentation algorithm. In 
(Wiskott, 1997) the author combines Gabor and Mallat wavelet transform to overcome the 
aperture problem and the correspondence problem. The former transform is used to 
estimate the motion field and roughly cluster the image, while the latter is used to refine the 
clustering. The main limitation of this model is that it assumes that the objects only translate 
in front of the camera. A different approach is presented in (Kong et al, 1998) where the 
motion segmentation algorithm is based on Galilean wavelets. These wavelets behave as 
matched filters and perform minimum mean-squared error estimations of velocity, 
orientation, scale and spatio-temporal positions. This information is finally used for tracking 
and segmenting the objects. 
 

 

 
Fig. 2. Example of OF, in red the vectors of the flow of the moving person 
 
Wavelets solutions seem to provide overall good results but limited to simple cases (such as 
translation in front of the camera). Wavelets were in fashion during the 90s, nowadays the 
research interest seems to be less active, at least in relation to motion segmentation. 

 
2.2.4 Optical flow  
Optical flow (OF) can be defined as the apparent motion of image brightness patterns in an 
image sequence. An example of OF can be seen in figure 2. Like image difference, OF is an 
old concept greatly exploited in computer vision. It was first formalized and computed for 
image sequences by Horn and Schunck in the 1980 (Horn and Schunck, 1980). However, the 
idea of using discontinuities in the optical flow in order to segment moving objects is even 
older, in (Horn and Schunck, 1980) there is a list of older methods based on this idea but 
they all assume the optical flow is already known. Since the work of Horn and Schunck, 
many other approaches have been proposed. In the past, the main limitation of such 
methods was the high sensitivity to noise and the high computational cost. Until recently, 
OF was more often used in hardware implementations in order to overcome the 
computational cost, as in (Jos et al, 2005). Nowadays, thanks to the high computational 
speed and to improvements made by research, OF is widely used also in software 
implementation. In (Xu et al, 2008) is presented a variational formulation of OF combined 
with color segmentation obtained by the Mean-shift algorithm. The authors of (Klappstein et 
al, 2009) exploit OF in order to built a robust obstacle detection for driver assistance 
purposes. The work is done both with monocular (exploiting some motion constraints) and 
stereo (using Extended Kalman Filter) vision. In (Bugeau and Pérez, 2009) the segmentation 
problem is addressed by combining motion information, spatial continuity and photometric 
information. In (Ommer et al, 2009) an algorithm for segmentation, tracking and object 
recognition is presented. The segmentation and tracking parts are done by OF (using salient 
features and KLT tracking). The algorithm is based on grouping together salient features 
following a proximity criteria. The features are tracked by KLT and the mean flow is 
computed. The position of the group of features is predicted using the previous mean flow 
in order to constrain the tracking area. At every iteration the mean flow is updated taking 
into account the old flows with an exponential decay over time. 
OF is, theoretically, a good clue in order to segment motion. However, alone it is not enough 
because it cannot deal with occlusions and temporal stopping. Statistical techniques or  
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Fig. 3. Example of layers segmentation (Kumar at al, 2008) 
 
spatial analysis (like colour or texture) could help to increase the robustness as OF is still 
very sensitive to noise and light changes. 

 
2.2.5 Layers  
The first layers technique was proposed by J. Wang and E. Adelson in 1993 (Wang and 
Adelson, 1993). The key idea of layers based techniques is to divide the image into layers 
with uniform motion. Furthermore, each layer is associated with a depth level and a 
“transparency” level that determines the behaviour of the layers in case of overlapping. This 
approach is often used in stereo vision as the depth distance can be recovered easily. 
However, even without computing the depth it is possible to estimate which objects move 
on similar planes. This is extremely useful as it helps to solve the occlusion problem. 
Recently, new interest raised around this idea (Kumar et al, 2008; Min and Medioni, 2008). 
The authors of (Kumar et al, 2008) propose a method for learning a layered representation of 
the scene. They initialize the algorithm by first finding coarse moving components between 
every pair of frames. They divide the image in patches and find the rigid transformation 
that moved the patch from frame j to frame j + 1. The initial estimate is then refined using 
αβ-swap and α-expansion algorithms (Boykov et al, 1999). More recently, in (Min and 
Medioni, 2008), a new layer based technique was presented. This technique exploits a 5 
dimensional representation of each feature, the 5D token is composed by: position (x, y), 
time (t), and velocity (vx, vy). The layers are seen as 3D variety which can be extracted from 
the 5D tensor (using neighbours tokens) by tensor voting framework. In order to produce 
accurate results pre-segmented areas based on color segmentation (performed by Mean-
shift) are required. An example of a layer segmentation is shown in figure 3.  
Layers solutions are very interesting. It is probably the most natural solution for the 
occlusion problem: human beings also use depth perception to solve this issue. The main 
drawback is the level of complexity of these algorithms and the number of parameters that 
have to be tuned manually. Furthermore, a deeper evaluation should be carried out as none 
of the presented algorithms has exhaustive tests with more than two motions. 

 

 

2.2.6 Manifold clustering  
Manifold clustering techniques consist in projecting the original data into a smaller space (if 
necessary, otherwise the ambient space could be directly used) and trying to cluster together 
data that has common properties by, for example, fitting a set of hyperplanes to the data. 
Nowadays, manifold clustering is a “hot” topic and it is applied in many fields. 
Segmentation seems one of the most natural applications, particularly motion segmentation. 
This class of solutions is usually based on feature points. They provide not only the 
segmentation but they can be naturally extended to Structure from Motion (SfM) in order to 
recover the 3D structure of the objects and the motion of the camera. Furthermore, they do 
not have any problem with temporary stopping because features can be tracked even if the 
object is not moving (provided that this is a temporary situation). Most of these techniques 
assume an affine camera model, however, it is possible to extend them to the projective case 
by an iterative process as shown in (Li et al, 2007). A common drawback to all these 
techniques is that they can deal very well when the assumptions of rigid, independent and 
non degenerate motions, are respected, but if one of these assumptions fails, then problems 
start to arise as the properties of motions have to be taken into account explicitly. This group 
of techniques is rather big, hence, a further classification helps to give some order. Manifold 
clustering can be divided into, Iterative solutions, Statistical solutions (solutions that fall 
inside this category could be placed in the previous Statistical group, but in this case we 
refer to statistical frameworks specifically applied to manifold clustering), Agglomerate 
Lossy Compression (ALC), Factorization solutions and Subspace Estimation solutions. 
An iterative solution is presented in (Fischler and Bolles, 1981) where the RANdom SAmple 
Consensus (RANSAC) algorithm is used. RANSAC tries to fit a model to the data randomly 
sampling n points, then it computes the residual of each point to the model and those points 
whose residual is below a threshold are considered inliers. The procedure is repeated until 
the number of inliers is above a threshold, or enough samples have been drawn. Another 
iterative algorithm called “K-Subpsace Clustering” is presented in (Ho et al, 2003) for face 
clustering, however, the same idea could be adopted to solve the motion segmentation 
problem. K-Subpsace can be seen as a variant of K-means. K-Subspace iteratively assigns 
points to the nearest subspace, than that subspace is updated computing the new bases that 
minimize the sum of the square distances to all the points of that cluster. The algorithm ends 
after a predefined number of iterations. The authors of (da Silva and Costeira, 2008) propose 
a subspace segmentation algorithm based on a Grassmannian minimization approach. The 
technique consists in estimating the subspace with the maximum consensus (MCS): 
maximum number of data that are inside the subspace. Then, the algorithm is recursively 
applied to the data inside the subspace in order to look for smaller subspaces included in it.  
Iterative approaches are in general robust to noise and outliers, and they provide good 
solutions if the number of clusters and the dimension of the subspaces are known.  This 
prior knowledge can be clearly seen as their limitation as this information is not always 
available. Moreover, they require an initial estimation and they are not robust against bad 
initializations, so when the initialization is not close enough to the correct solution the 
algorithms are not guaranteed to converge. 
Another manifold clustering group is composed by statistical solutions. In (Kanatani and 
Matsunaga, 2002) the authors use a statistical framework for detecting degeneracies of a 
geometric model. They use the geometric information criterion (AIC) defined in (ichi 
Kanatani, 1997) in order to evaluate whether two clouds of points should be merged or not. 
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Fig. 3. Example of layers segmentation (Kumar at al, 2008) 
 
spatial analysis (like colour or texture) could help to increase the robustness as OF is still 
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have to be tuned manually. Furthermore, a deeper evaluation should be carried out as none 
of the presented algorithms has exhaustive tests with more than two motions. 
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sampling n points, then it computes the residual of each point to the model and those points 
whose residual is below a threshold are considered inliers. The procedure is repeated until 
the number of inliers is above a threshold, or enough samples have been drawn. Another 
iterative algorithm called “K-Subpsace Clustering” is presented in (Ho et al, 2003) for face 
clustering, however, the same idea could be adopted to solve the motion segmentation 
problem. K-Subpsace can be seen as a variant of K-means. K-Subspace iteratively assigns 
points to the nearest subspace, than that subspace is updated computing the new bases that 
minimize the sum of the square distances to all the points of that cluster. The algorithm ends 
after a predefined number of iterations. The authors of (da Silva and Costeira, 2008) propose 
a subspace segmentation algorithm based on a Grassmannian minimization approach. The 
technique consists in estimating the subspace with the maximum consensus (MCS): 
maximum number of data that are inside the subspace. Then, the algorithm is recursively 
applied to the data inside the subspace in order to look for smaller subspaces included in it.  
Iterative approaches are in general robust to noise and outliers, and they provide good 
solutions if the number of clusters and the dimension of the subspaces are known.  This 
prior knowledge can be clearly seen as their limitation as this information is not always 
available. Moreover, they require an initial estimation and they are not robust against bad 
initializations, so when the initialization is not close enough to the correct solution the 
algorithms are not guaranteed to converge. 
Another manifold clustering group is composed by statistical solutions. In (Kanatani and 
Matsunaga, 2002) the authors use a statistical framework for detecting degeneracies of a 
geometric model. They use the geometric information criterion (AIC) defined in (ichi 
Kanatani, 1997) in order to evaluate whether two clouds of points should be merged or not. 
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Another statistical based technique is (Sugaya and Kanatani, 2004). This paper analyses the 
geometric structure of the degeneracy of the motion model, and suggests a multi-stage 
unsupervised learning scheme first using the degenerate motion model and then using the 
general 3-D motion model. The authors of (Gruber and Weiss, 2004b) extend the EM 
algorithm already proposed in (Gruber and Weiss, 2004a) for the single object case in order 
to deal with multiple objects and missing data. In (Gruber and Weiss, 2006) the same 
authors further extend the method incorporating non-motion cues (such as spatial 
coherence) into the M step of the algorithm. 
Statistical solutions have more or less the same strengths and weaknesses of iterative 
techniques. They can be robust against noise whenever the statistical model is built taking 
the noise explicitly into account. However, when noise is not considered or is not modeled 
properly their performances degenerate rapidly. As previously said for general statistical 
approaches: they are robust as long as the model reflects the actual situation. 
A completely different idea is the basis of (Rao et al, 2008) which uses the Agglomerative 
Lossy Compression (ALC) algorithm (Ma et al, 2007). This technique consists in minimizing 
a cost function by grouping together trajectories. Roughly speaking, the cost function is 
given by the amount of information required to represent each manifold given a particular 
segmentation. 
ALC provides a connection between coding theory and space representation. It performs 
extremely well with a variety of motions. However, it has some problems to deal with a lot 
of data (curse of dimensionality). Furthermore, the algorithm depends on a parameter that 
has to be tuned per each sequence depending on the number of motions and the amount of 
noise. Although the tuning can be automated trying many different values and choosing at 
the end the solution with the lowest cost, this process is highly time-consuming. 
Factorization techniques are based on the approach introduced by Tomasi and Kanade in 
1992 (Tomasi and Kanade, 1992) to recover structure and motion using features tracked 
through a sequence of images. In (Costeira and Kanade, 1998) the framework of Tomasi and 
Kanade is first used in order to factorize the trajectory matrix W by Singular Value 
Decomposition into the matrices U, D, and V. Then a matrix called “shape interaction 
matrix” Q = VVT is built. The shape interaction matrix has, among other properties, zero 
entries if the two indexes represent features belonging to different objects, non-zero 
otherwise. Hence, the algorithm focuses on finding the permutation of the interaction matrix 
that gives a block diagonal matrix structure as shown in figure 4. In (Ichimura and Tomita, 
2000), once the rank r of the trajectory matrix is estimated they perform the QR 
decomposition of the shape interaction matrix and select the r bases of the shape space 
which gives the segmentation among those features. Finally, the remaining features are 
segmented by using the orthogonal projection matrix. The two previous factorization 
techniques assume that the objects have independent motions. In (Zelnik-Manor and Irani, 
2003) the authors study the degeneracy in case of dependent motion. They propose a 
factorization method that consists in building an affinity matrix by using only the dominant 
eigenvector and estimating the rank of the trajectory matrix by studying the ratio between 
the eigenvalues. In (Zhou and Huang, 2003) a hierarchical factorization method for 
recovering articulated hand motion under weak perspective projection is presented. They 
consider each part of the articulated object as independent and they use any of the 
techniques able to deal with missing data to fill the gaps. In the second step, they guarantee 
that the end of the consecutive objects are linked in the recovered motion. 

 

 
Fig. 4. (Costeira and Kanade, 1998) computes the interaction matrix Q and finds the 
permutation of rows and columns that gives a block diagonal matrix. 
 
Factorization techniques are based on a very simple and elegant framework. However, 
factorization methods are particularly sensitive to noise and cannot deal very well with 
outliers. Moreover, most of these techniques assume rigid and independent motions.  
The last category of manifold clustering is the subspace estimation techniques.  
The work presented in (Vidal and Hartley, 2004) belongs to this group. First, exploiting the 
fact that trajectories of rigid and independent motion generate subspaces at most of 
dimension four, they project the trajectories onto a five dimensional space using 
PowerFactorization. Then, the Generalized Principal Component Analysis (GPCA) is used 
to fit a polynomial of degree n, where n is the number of subspaces (i.e. the number of 
motions), through the data and estimate the bases of the subspaces using the derivatives of 
the polynomial. More recently, the same authors in (Vidal et al, 2008) extended the previous 
explained framework using RANSAC to perform the space projection in order to be able to 
deal with outliers. Another well known technique is the Local Subspace Affinty (LSA) (Yan 
and Pollefeys, 2006, 2008). LSA is able to deal with different types of motion: independent, 
articulated, rigid, non-rigid, degenerate and non-degenerate. The key idea is that different 
motion trajectories lie in subspaces of different dimension. Thus, the subspaces are 
estimated and an affinity matrix is built using principal angles. The final segmentation is 
obtained by clustering the affinity matrix. The main limitations of LSA are the difficulty of 
estimating the size of the global and local subspaces without manual tuning, and the fact 
that a full trajectory matrix without missing data is assumed. In (Julia et al, 2008) a technique 
similar to LSA is presented in order to deal with missing data. The idea is to fill the missing 
data using a frequency spectra representation for the matrix estimation. When a full 
trajectory matrix is obtained an affinity matrix is built and a cluster algorithm based on 
normalized cuts is applied in order to provide the segmentation. In (Chen and Lerman, 
2009) the authors propose a generalization 
of LSA called Spectral Curvature Clustering (SCC). SCC differs from LSA for two main 
reasons. The first reason is related to the affinity measure, SCC uses polar curvature while 
LSA uses principal angles. In SCC the affinity between a point i and the other points is given 
by the polar curvature of the space generated by i and some combination of other d + 1 
points (where d is the size of the generated subspace). The second reason is how they select 



 New Trends in Motion Segmentation 41

 

Another statistical based technique is (Sugaya and Kanatani, 2004). This paper analyses the 
geometric structure of the degeneracy of the motion model, and suggests a multi-stage 
unsupervised learning scheme first using the degenerate motion model and then using the 
general 3-D motion model. The authors of (Gruber and Weiss, 2004b) extend the EM 
algorithm already proposed in (Gruber and Weiss, 2004a) for the single object case in order 
to deal with multiple objects and missing data. In (Gruber and Weiss, 2006) the same 
authors further extend the method incorporating non-motion cues (such as spatial 
coherence) into the M step of the algorithm. 
Statistical solutions have more or less the same strengths and weaknesses of iterative 
techniques. They can be robust against noise whenever the statistical model is built taking 
the noise explicitly into account. However, when noise is not considered or is not modeled 
properly their performances degenerate rapidly. As previously said for general statistical 
approaches: they are robust as long as the model reflects the actual situation. 
A completely different idea is the basis of (Rao et al, 2008) which uses the Agglomerative 
Lossy Compression (ALC) algorithm (Ma et al, 2007). This technique consists in minimizing 
a cost function by grouping together trajectories. Roughly speaking, the cost function is 
given by the amount of information required to represent each manifold given a particular 
segmentation. 
ALC provides a connection between coding theory and space representation. It performs 
extremely well with a variety of motions. However, it has some problems to deal with a lot 
of data (curse of dimensionality). Furthermore, the algorithm depends on a parameter that 
has to be tuned per each sequence depending on the number of motions and the amount of 
noise. Although the tuning can be automated trying many different values and choosing at 
the end the solution with the lowest cost, this process is highly time-consuming. 
Factorization techniques are based on the approach introduced by Tomasi and Kanade in 
1992 (Tomasi and Kanade, 1992) to recover structure and motion using features tracked 
through a sequence of images. In (Costeira and Kanade, 1998) the framework of Tomasi and 
Kanade is first used in order to factorize the trajectory matrix W by Singular Value 
Decomposition into the matrices U, D, and V. Then a matrix called “shape interaction 
matrix” Q = VVT is built. The shape interaction matrix has, among other properties, zero 
entries if the two indexes represent features belonging to different objects, non-zero 
otherwise. Hence, the algorithm focuses on finding the permutation of the interaction matrix 
that gives a block diagonal matrix structure as shown in figure 4. In (Ichimura and Tomita, 
2000), once the rank r of the trajectory matrix is estimated they perform the QR 
decomposition of the shape interaction matrix and select the r bases of the shape space 
which gives the segmentation among those features. Finally, the remaining features are 
segmented by using the orthogonal projection matrix. The two previous factorization 
techniques assume that the objects have independent motions. In (Zelnik-Manor and Irani, 
2003) the authors study the degeneracy in case of dependent motion. They propose a 
factorization method that consists in building an affinity matrix by using only the dominant 
eigenvector and estimating the rank of the trajectory matrix by studying the ratio between 
the eigenvalues. In (Zhou and Huang, 2003) a hierarchical factorization method for 
recovering articulated hand motion under weak perspective projection is presented. They 
consider each part of the articulated object as independent and they use any of the 
techniques able to deal with missing data to fill the gaps. In the second step, they guarantee 
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similar to LSA is presented in order to deal with missing data. The idea is to fill the missing 
data using a frequency spectra representation for the matrix estimation. When a full 
trajectory matrix is obtained an affinity matrix is built and a cluster algorithm based on 
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2009) the authors propose a generalization 
of LSA called Spectral Curvature Clustering (SCC). SCC differs from LSA for two main 
reasons. The first reason is related to the affinity measure, SCC uses polar curvature while 
LSA uses principal angles. In SCC the affinity between a point i and the other points is given 
by the polar curvature of the space generated by i and some combination of other d + 1 
points (where d is the size of the generated subspace). The second reason is how they select 
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which points have to be combined with I: SCC uses an iterative solution while LSA uses a 
nearest neighbour solution. Theoretically, in SCC all the possible combination of points 
should be tried but this may not be computationally feasible, instead, only one combination 
of d + 1 points is randomly selected among the points that belong to the same cluster of i. Of 
course, the first time this selection is done, there is no information about which point belong 
to which cluster, hence at the first iteration the points are randomly selected among all of 
them. At the second iteration, the clustering result of the first iteration is used to constrain 
the selection among the points that were clustered with i. A completely different strategy is 
presented in (Goh and Vidal, 2007) where, starting from the Locally Linear Embedding 
algorithm (Saul and Roweis, 2003), they propose the Locally Linear Manifold Clustering 
Algorithm (LLMC). With LLMC the authors try to deal with linear and non-linear 
manifolds. The same authors extended this idea to Riemannian manifolds (Goh and Vidal, 
2008). They project the data from the Euclidean space to a Riemannian space and reduce the 
clustering to a central clustering problem. Finally, in (Zappella et al, 2009) the authors 
enforce the LSA algorithm proposing a new Enhanced Model Selection (EMS) technique. 
EMS is a generic rank estimation tool, in this case it is used in order to estimate the size of 
the global and local subspaces in an automatic fashion, auto-tuning the parameters in order 
to deal with different noise conditions and different number of motions.  
Subspace estimation techniques can deal with intersection of the subspaces and generally 
they do not need any initialization. However, all these techniques suffer from common 
problems: curse of dimensionality, weak estimations of number of motions and subspaces 
dimension. The curse of dimensionality is mainly solved in two ways: projection into 
smaller subspaces or random sampling. Whereas the number of motions and the subspace 
dimension estimations are commonly two open issues.  

 
3. Discussions and conclusions  

Table 2 summarises and generalises the advantages and disadvantages of each group of 
techniques. This review should have given an idea of how vast the motion segmentation 
literature is, and the fact that research in this field is still active (most of the papers 
presented here were published after 2005) is a sign of the importance of this problem. On the 
other hand, effervescent research activity signifies also that many problems have still to be 
solved and there is not an outstanding solution yet. From the analysis it is possible to state 
that manifold clustering algorithms seems one of the most natural solutions for motion 
segmentation. Recently manifold clustering has been studied and exploited deeply in order 
to solve the motion segmentation problem. This class of techniques have already good 
performances, nevertheless there is space for further improvements. A quick glance at table 
1 may catch the attention on the fact that for manifold clustering techniques, the price to pay 
in order to be able to deal with different kind of motions and with dependent motions is a 
higher amount of prior knowledge (in particular about the dimension of the generated 
subspaces). The amount of prior knowledge is another limitation that in future should be 
overcome. In order to obtain more robust results it would be interesting to study different 
ways of merging spatial information, and to exploit the ability of statistical frameworks to 
find hidden information and outliers. 

 

 
Table 2. Summary and generalisation of pros and cons of each group of techniques.  
 
Nowadays the misclassification rates knowing the number of motions are already quite 
good. Despite the fact that the misclassification rates could be further improved, it is the 
opinion of the authors that future works should focus on the ability to estimate the number 
of clusters in a more efficient way. In general feature based techniques are preferred over 
dense based  approaches as  the amount of computation required  by dense approaches is 
very large. However, feature based techniques have to rely on the ability of the tracker to 
find salient points and track them successfully through the video sequence. Today, such an 
assumption is not too constraining but it is important to develop algorithms able to deal 
only with few points (from four to six) per motion instead of requiring lots of them. 
Moreover, in order to have a useful system for real time applications, future motion 
segmentation algorithms should be able to work incrementally. An ideal incremental 
algorithm should be able to refine the segmentation at every new frame (or every group of 
few frames) without recomputing the whole solution from the beginning. 
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should be tried but this may not be computationally feasible, instead, only one combination 
of d + 1 points is randomly selected among the points that belong to the same cluster of i. Of 
course, the first time this selection is done, there is no information about which point belong 
to which cluster, hence at the first iteration the points are randomly selected among all of 
them. At the second iteration, the clustering result of the first iteration is used to constrain 
the selection among the points that were clustered with i. A completely different strategy is 
presented in (Goh and Vidal, 2007) where, starting from the Locally Linear Embedding 
algorithm (Saul and Roweis, 2003), they propose the Locally Linear Manifold Clustering 
Algorithm (LLMC). With LLMC the authors try to deal with linear and non-linear 
manifolds. The same authors extended this idea to Riemannian manifolds (Goh and Vidal, 
2008). They project the data from the Euclidean space to a Riemannian space and reduce the 
clustering to a central clustering problem. Finally, in (Zappella et al, 2009) the authors 
enforce the LSA algorithm proposing a new Enhanced Model Selection (EMS) technique. 
EMS is a generic rank estimation tool, in this case it is used in order to estimate the size of 
the global and local subspaces in an automatic fashion, auto-tuning the parameters in order 
to deal with different noise conditions and different number of motions.  
Subspace estimation techniques can deal with intersection of the subspaces and generally 
they do not need any initialization. However, all these techniques suffer from common 
problems: curse of dimensionality, weak estimations of number of motions and subspaces 
dimension. The curse of dimensionality is mainly solved in two ways: projection into 
smaller subspaces or random sampling. Whereas the number of motions and the subspace 
dimension estimations are commonly two open issues.  

 
3. Discussions and conclusions  

Table 2 summarises and generalises the advantages and disadvantages of each group of 
techniques. This review should have given an idea of how vast the motion segmentation 
literature is, and the fact that research in this field is still active (most of the papers 
presented here were published after 2005) is a sign of the importance of this problem. On the 
other hand, effervescent research activity signifies also that many problems have still to be 
solved and there is not an outstanding solution yet. From the analysis it is possible to state 
that manifold clustering algorithms seems one of the most natural solutions for motion 
segmentation. Recently manifold clustering has been studied and exploited deeply in order 
to solve the motion segmentation problem. This class of techniques have already good 
performances, nevertheless there is space for further improvements. A quick glance at table 
1 may catch the attention on the fact that for manifold clustering techniques, the price to pay 
in order to be able to deal with different kind of motions and with dependent motions is a 
higher amount of prior knowledge (in particular about the dimension of the generated 
subspaces). The amount of prior knowledge is another limitation that in future should be 
overcome. In order to obtain more robust results it would be interesting to study different 
ways of merging spatial information, and to exploit the ability of statistical frameworks to 
find hidden information and outliers. 

 

 
Table 2. Summary and generalisation of pros and cons of each group of techniques.  
 
Nowadays the misclassification rates knowing the number of motions are already quite 
good. Despite the fact that the misclassification rates could be further improved, it is the 
opinion of the authors that future works should focus on the ability to estimate the number 
of clusters in a more efficient way. In general feature based techniques are preferred over 
dense based  approaches as  the amount of computation required  by dense approaches is 
very large. However, feature based techniques have to rely on the ability of the tracker to 
find salient points and track them successfully through the video sequence. Today, such an 
assumption is not too constraining but it is important to develop algorithms able to deal 
only with few points (from four to six) per motion instead of requiring lots of them. 
Moreover, in order to have a useful system for real time applications, future motion 
segmentation algorithms should be able to work incrementally. An ideal incremental 
algorithm should be able to refine the segmentation at every new frame (or every group of 
few frames) without recomputing the whole solution from the beginning. 
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1. Introduction 
 

Volume is one of the important shape types in our world, from daily tools to complex and 
precise equipments, and even to life phenomena. Shape analysis techniques help 
understanding and using shape information for various applications. With the development 
of shape data acquisition and digitalisation techniques, more and more high-resolution 
shape data sets are available. Increasing demand for their compact shape description in 
applications inspires the need to reduce the data to a description of more concise remnant. 
Skeletonization and volume decomposition are fundamental tools for shape information 
processing and understanding, being widely used in many applications, such as character 
animation, measurement and navigation planning in virtual colonoscopy. 
A skeleton is an ideal shape representation with significant data compression while 
highlighting topological structures. The skeleton of a solid object, accompanied with radius 
information, exhibits its shape variation and spatial expansion. Skeletonization is a process 
of data abstraction to extract skeletons of an object, being promising and efficient due to 
linearity and simplicity of skeletons. There is an extensive body of scientific literature on 2D 
Skeletonization. 3D skeletonization is widely cared about in recent years. It has been linked 
to different shape-related techniques, like shape manipulation (Katz & Tal, 2003), shape 
matching (Funkhouser et al., 2004), shape retrieval (Tung & Schmitt, 2004) and collision 
detection (Li et al., 2001). 
Shape decomposition is a practical process of dividing complex structures of an object into 
simple components. It has been indicated that good shape decomposition can result in 
skeleton extraction of high quality (Katz & Tal, 2003), and that a high quality skeletonization 
may lead to a meaningful decomposition (Li et al., 2001). But we will have much work to do 
yet in specifying the relationship between shape decomposition and skeletonization of 3D 
shapes (Lien & Amato, 2007). The definition of shape decomposition of a volume is still 
challenging since it is hard to specify the cut-surface. 
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2. Related Work 

Volume elements, usually known as voxels in literature, are evenly distributed in three axis 
directions, constituting the space occupation of the volume. Skeletons and shape 
components are typical shape features. The skeleton of a volume is 1D thinning structure to 
represent its shape and topology (Brostow et al., 2004), and it is a concise representation of 
the volume shape. Shape decomposition is a basic technique to describe its complex 
structure. Related work on 3D skeletonization, shape decomposition and their applications 
are briefly discussed in this section. 

 
2.1 Distance based volume skeletons 
Distance transformation of a volume converts voxels into layers in terms of a feature point 
or the boundary surface. A skilful concept was proposed in (Zhou & Toga, 1999) to find a 
shortest path skeleton through the combination of DFS-distance (Distance From a Starting 
point) transformation with DFB-distance (Distance From Boundary) transformation. Fig. 
1(a) shows a DFS-distance map and Fig. 1(b) shows a DFB-distance map. A global minimum 
cost path-searching algorithm was provided in (Bitter et al., 2000) with penalty distance 
through a heuristic combination of DFS-distance and DFB-distance. It was extended in (Sato 
et al., 2000) to branched skeletons with an adaptive sphere. The penalty distance algorithm 
was further improved in (Bitter et al., 2001) to correct mistakes cased in (Bitter et al., 2000) 
and (Sato et al., 2000). 
A thinness parameter was adopted in (Gagvani & Silver, 1999) to control the candidacy of a 
voxel on a skeleton using DFB-distance transformation. A set of underlying skeleton points 
is defined by maximum central point map (MCP) (Fig. 1(c)). 
The corner-cutting problem of volume skeletonization was solved in (Wan et al., 2002) by 
delivering a centred path rather than a shortest one with exact Euclidean distance and using 
minimum-spanning tree (Fig. 1(d)). But the influences of side-branches on the main ones are 
not considered. 
 

               
                (a)                      (b)                            (c)                                  (d) 

Fig. 1.  Distance based volume skeletons. (a) DFS-distance; (b) DFB-distance; (c) MCP; (d) 
Centreline of a colon 

 
2.2 Thinning based volume skeletons 
Parallel volume thinning is an efficient way to find the centreline by deleting outer voxels 
iteratively if the deletion does not destroy the original topology of the object. 
Ma & Sonka (1996) proposed a fully parallel and connectivity-preserving thinning algorithm 
to reduce computational cost. 3D thinning erodes a 3D binary image layer by layer through 
templates to extract the skeletons. Expensive testing of feature points is avoided by 

 

matching the 26-neighborhood of the points with predefined templates (Fig. 2(a)). However, 
the final centreline may be disconnected and many spurious branches may be generated in 
the resultant skeleton too. The connectivity of the skeleton is kept in (Liu et al., 2005) by 
adjusting a point deletion with its neighbour points in different iterations and a length 
parameter is also applied to removing the creation of spurious branches. However, these 
methods are ineffective if the length of a spurious branch is longer than that of a real one. 
Ma’s Templates was modified to preserve connectivity in (Wang & Basu, 2007), as shown in 
Fig. 2(b), where the left is the original object, the middle is the skeleton with the approach of 
(Ma & Sonka, 1996) and the right is with that of (Wang & Basu, 2007). 
 

 
 

  
(a) (b) 

Fig. 2.  Thinning based skeletons. (a) Ma’s templates. (b) Modified Ma’s Templates 

 
2.3 Shape decomposition and skeleton hierarchy 
Shape decomposition and skeleton hierarchy are significant topics of many shape 
information processing, such as shape analysis and understanding of 2D models (Rom & 
Medioni, 1993; Simmons & Sequin, 1998), 2D images (Siddiqi & Kimia, 1995; Telea et al., 
2004), boundary represented models (Au et al., 2008) and volumes data (Cornea et al., 2005). 
Lien & Amato (2004) used approximate convex decomposition (ACD) to partition the mesh 
into nearly convex components and skeletons are then extracted from their convex hulls, 
respectively. Au et al. (2008) presented a simple and robust skeleton extraction method 
based on mesh contraction. As shown in Fig. 3(a), the 1D skeleton shape is achieved by 
performing geometric contraction using constrained Laplacian smoothing. 
A framework was presented in (Reniers & Telea, 2007) to segment a 3D shape into 
meaningful components using curve skeletons. Critical points, or ramification point, are 
used to construct a partition of the object surface with geodesics, and the segments have 
minimally-twisting smooth borders. The resultant segmentation of the shape reflects the 
hierarchical structure of the curve skeleton, as illustrated with Fig. 3(b). But the application 
of volume decomposition to hierarchical skeletons is not considered. The work of (Reniers & 
Telea, 2007) is based on an assumption that all skeletons compete equally around each 
ramification while our work proposed here un-equally. 
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templates to extract the skeletons. Expensive testing of feature points is avoided by 

 

matching the 26-neighborhood of the points with predefined templates (Fig. 2(a)). However, 
the final centreline may be disconnected and many spurious branches may be generated in 
the resultant skeleton too. The connectivity of the skeleton is kept in (Liu et al., 2005) by 
adjusting a point deletion with its neighbour points in different iterations and a length 
parameter is also applied to removing the creation of spurious branches. However, these 
methods are ineffective if the length of a spurious branch is longer than that of a real one. 
Ma’s Templates was modified to preserve connectivity in (Wang & Basu, 2007), as shown in 
Fig. 2(b), where the left is the original object, the middle is the skeleton with the approach of 
(Ma & Sonka, 1996) and the right is with that of (Wang & Basu, 2007). 
 

 
 

  
(a) (b) 

Fig. 2.  Thinning based skeletons. (a) Ma’s templates. (b) Modified Ma’s Templates 

 
2.3 Shape decomposition and skeleton hierarchy 
Shape decomposition and skeleton hierarchy are significant topics of many shape 
information processing, such as shape analysis and understanding of 2D models (Rom & 
Medioni, 1993; Simmons & Sequin, 1998), 2D images (Siddiqi & Kimia, 1995; Telea et al., 
2004), boundary represented models (Au et al., 2008) and volumes data (Cornea et al., 2005). 
Lien & Amato (2004) used approximate convex decomposition (ACD) to partition the mesh 
into nearly convex components and skeletons are then extracted from their convex hulls, 
respectively. Au et al. (2008) presented a simple and robust skeleton extraction method 
based on mesh contraction. As shown in Fig. 3(a), the 1D skeleton shape is achieved by 
performing geometric contraction using constrained Laplacian smoothing. 
A framework was presented in (Reniers & Telea, 2007) to segment a 3D shape into 
meaningful components using curve skeletons. Critical points, or ramification point, are 
used to construct a partition of the object surface with geodesics, and the segments have 
minimally-twisting smooth borders. The resultant segmentation of the shape reflects the 
hierarchical structure of the curve skeleton, as illustrated with Fig. 3(b). But the application 
of volume decomposition to hierarchical skeletons is not considered. The work of (Reniers & 
Telea, 2007) is based on an assumption that all skeletons compete equally around each 
ramification while our work proposed here un-equally. 



Pattern Recognition50

 

   
                                           (a)                                                                            (b)          
Fig. 3. Shape decomposition and skeleton hierarchy; (b) Skeleton by Mesh Contraction; (a) 
Segmentations through curve skeletons 
 
The concept of hierarchical curve-skeleton was proposed in (Cornea et al., 2005) and 
(Cornea & Min, 2007). A family of hierarchical curve-skeletons is extracted robustly for 
varied 3D objects, e.g. volumetric shapes, polygonal models or scattered point sets. These 
algorithms are based upon computing a repulsive force field over a discretization of the 3D 
object. Topological characteristics of the resulting vector field, such as critical points and 
critical curves, are used to extract the curve-skeletons. 

 
2.4 Applications of shape features 
2D shape decomposition was concerned for shape recognition before 3D case. In the work of 
(Siddiqi & Kimia, 1995), a partition scheme was proposed and used to segment a variety of 
2D shapes. Different scales of partitions are intuitive by relating segmented parts to 
semantic portions of the original object, which are rather useful to shape recognition (Fig. 
4(a)). 
 

     
                                           (a)                                                                         (b)               
Fig. 4.  Applications of shape features to shape retrieval and analysis; (a) Recognition of 2D 
shape through decomposition; (b) Mesh reconstruction through medial axis 
 
Shape decomposition and skeleton hierarchy provide shape features of a volume for various 
applications. Ju et al. (2007) proposed a new method by alternating thinning and a novel 
skeleton pruning routine to extract skeletons of volumetric models for shape description. 
This technique is simple and meaningful, but cannot be used to segmentation, matching and 
recognition. 

 

Hierarchical skeletons can be used for solid reconstruction. Local differential geometry of 
different kinds of points forming 3D symmetry sets was analysed in (Giblin & Kimia, 2004). 
With this approach, the extracted skeletons can be used to reconstruct the original surface 
with full geometrical information. Linked with a real-time simulation of stroke therapy, a 
mechanism was proposed in (Luboz et al., 2005) to segment and to reconstruct 3D human 
vasculature models with a balance of smoothness, number of triangles and distance error. 
The idea of power crust presented in (Amenta et al., 2001) was used to approximate the 
medial axis transform (MAT) of an object. An inverse transform was then applied to 
producing mesh representation of the surface from MAT. Examples in Fig. 4(b) suggest the 
capability of surface reconstruction from laser range data. 
Skeletonization of a range image from a real tree is a very new development. Xu et al. (2007) 
and Cheng et al. (2007) used range images to reconstruct the geometric model of a tree. The 
former is for producing full a polygonal model of a range scanned tree through 
skeletonization of the trunk and main branches of the tree (Fig. 5(a)), while the latter is 
through 2D skeletonization, cylinder fitting and generalized surface (Fig. 5(b)). 
 

  
(a)      (b) 

Fig. 5. Applications to tree reconstruction; (a) Knowledge and heuristic-based modelling of 
laser-scanned trees; (b) Tree Branch Reconstruction through cylinder fitting 

 
2.5 Contributions of our work 
A new approach of volume decomposition and efficient extraction of hierarchical skeletons 
are systematically described in this chapter based on our work as in (Zhang et al., 2008, 
2009).  
Five aspects are discussed: computing multiple distance transformations to find the 
hierarchical structure of the object volume; decomposing the volume into simple 
components; extracting compact and smooth skeletal segments corresponding to each 
independent components; efficient skeleton extraction from noise data of laser scan; and an 
application of this technique to plant reconstruction. Technical contributions are fourfolds: 
(1). The influence of side branches to the main one is avoided via volume decomposition; (2). 
The extracted hierarchical skeletons keep well the topology of the original object; (3). 
Skeleton nodes sampling is adjusted to smooth the skeletons; (4). The new approach is 
applied to handling the shape of more complex topology, e.g. with a loop. 
The deviation problem in skeletonization is solved with volume decomposition, compact 
skeletonization and hierarchical skeletons. The relationship between shape decomposition 
and skeletonization is emphasized and specified with technical details. The construction of 
volume decomposition surfaces, or cut-surfaces, and skeleton point sampling are extended 
so that curve-skeletons become smoother and keeps well the shape of the branched volume 
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Fig. 3. Shape decomposition and skeleton hierarchy; (b) Skeleton by Mesh Contraction; (a) 
Segmentations through curve skeletons 
 
The concept of hierarchical curve-skeleton was proposed in (Cornea et al., 2005) and 
(Cornea & Min, 2007). A family of hierarchical curve-skeletons is extracted robustly for 
varied 3D objects, e.g. volumetric shapes, polygonal models or scattered point sets. These 
algorithms are based upon computing a repulsive force field over a discretization of the 3D 
object. Topological characteristics of the resulting vector field, such as critical points and 
critical curves, are used to extract the curve-skeletons. 

 
2.4 Applications of shape features 
2D shape decomposition was concerned for shape recognition before 3D case. In the work of 
(Siddiqi & Kimia, 1995), a partition scheme was proposed and used to segment a variety of 
2D shapes. Different scales of partitions are intuitive by relating segmented parts to 
semantic portions of the original object, which are rather useful to shape recognition (Fig. 
4(a)). 
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Fig. 4.  Applications of shape features to shape retrieval and analysis; (a) Recognition of 2D 
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Shape decomposition and skeleton hierarchy provide shape features of a volume for various 
applications. Ju et al. (2007) proposed a new method by alternating thinning and a novel 
skeleton pruning routine to extract skeletons of volumetric models for shape description. 
This technique is simple and meaningful, but cannot be used to segmentation, matching and 
recognition. 

 

Hierarchical skeletons can be used for solid reconstruction. Local differential geometry of 
different kinds of points forming 3D symmetry sets was analysed in (Giblin & Kimia, 2004). 
With this approach, the extracted skeletons can be used to reconstruct the original surface 
with full geometrical information. Linked with a real-time simulation of stroke therapy, a 
mechanism was proposed in (Luboz et al., 2005) to segment and to reconstruct 3D human 
vasculature models with a balance of smoothness, number of triangles and distance error. 
The idea of power crust presented in (Amenta et al., 2001) was used to approximate the 
medial axis transform (MAT) of an object. An inverse transform was then applied to 
producing mesh representation of the surface from MAT. Examples in Fig. 4(b) suggest the 
capability of surface reconstruction from laser range data. 
Skeletonization of a range image from a real tree is a very new development. Xu et al. (2007) 
and Cheng et al. (2007) used range images to reconstruct the geometric model of a tree. The 
former is for producing full a polygonal model of a range scanned tree through 
skeletonization of the trunk and main branches of the tree (Fig. 5(a)), while the latter is 
through 2D skeletonization, cylinder fitting and generalized surface (Fig. 5(b)). 
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Fig. 5. Applications to tree reconstruction; (a) Knowledge and heuristic-based modelling of 
laser-scanned trees; (b) Tree Branch Reconstruction through cylinder fitting 

 
2.5 Contributions of our work 
A new approach of volume decomposition and efficient extraction of hierarchical skeletons 
are systematically described in this chapter based on our work as in (Zhang et al., 2008, 
2009).  
Five aspects are discussed: computing multiple distance transformations to find the 
hierarchical structure of the object volume; decomposing the volume into simple 
components; extracting compact and smooth skeletal segments corresponding to each 
independent components; efficient skeleton extraction from noise data of laser scan; and an 
application of this technique to plant reconstruction. Technical contributions are fourfolds: 
(1). The influence of side branches to the main one is avoided via volume decomposition; (2). 
The extracted hierarchical skeletons keep well the topology of the original object; (3). 
Skeleton nodes sampling is adjusted to smooth the skeletons; (4). The new approach is 
applied to handling the shape of more complex topology, e.g. with a loop. 
The deviation problem in skeletonization is solved with volume decomposition, compact 
skeletonization and hierarchical skeletons. The relationship between shape decomposition 
and skeletonization is emphasized and specified with technical details. The construction of 
volume decomposition surfaces, or cut-surfaces, and skeleton point sampling are extended 
so that curve-skeletons become smoother and keeps well the shape of the branched volume 
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than our early work. The extraction is fully automatic and much faster, even to a shape with 
complex topology like a ring volume. 

 
3. System Overview 

In this chapter we process tree-like object volumes possibly with some loop structures. The 
main technical line is to decompose the volume into components, based on which 
hierarchical skeletons are extracted. 
Volume decomposition is to separate a complex branched volume into a series of simple 
components around its ramification points, each of which is topologically equivalent to a 
single column. The term hierarchical in this chapter does not mean a hierarchical process for 
skeleton extraction but a hierarchical decomposition of a volume into components. Skeletons 
are extracted from all components and then are connected to form a hierarchical structure. 
The object data should have an evident root point, i.e. the centre at the bottom of the trunk. 
Three main concepts are concerned as classification-skeleton for volume decomposition, 
decomposition for hierarchical connection of skeletons and path growing for efficient 
skeletonization. Classification-skeleton shows the hierarchical structure of the object volume, 
so it is chosen as the key criterion for volume decomposition. Hierarchical connection means a 
connection of skeletons into a tree-like structure in the same topology with the original 
volume after decomposition. Classification-skeleton is the standard for connection. Path 
growing means voxel propagation from a seed point in one direction until some conditions 
are satisfied. 
The classification-skeleton is extracted through distance transformation from the boundary 
or a seed point and through central cluster graphing. With the help of classification-skeleton, 
volume decomposition is performed by cross-section surfaces, called cut-surfaces; each 
decomposition component should be close to the ramification points so that the deviating 
affect of side branches is greatly reduced. 
Finally, the hierarchical branched skeleton is organized by connecting all compact skeleton 
segments according to the classification-skeleton so that the final hierarchical skeleton 
reflects the shape of the original volume. 
In order to extract skeletons efficiently, distance transformations from multiple source 
points are made from all tip points so that all components of the object can compete to reach 
the root through ramifications. They are used for both decomposition and skeletonization. A 
cluster interval is adopted to generate equivalent skeleton point range for each component 
so that the skeleton becomes smoother and more concise. 
The system includes four main aspects: (1) Voxel classification into a hierarchical structure 
through integer seed point distance transformation and boundary distance transformation, 
then classification-skeletons for branched structure; (2) Volume decomposition at 
ramification points through real-valued distance transformation based on classification-
skeletons; (3) Compact skeletonization of each decomposed component through real-valued 
distance transformation and connection of hierarchical skeleton on reference of 
classification-skeletons; (4) Path competition for decomposition and efficient  extraction of 
smooth skeletons. Fig. 6 details the contents and the structure of the system. 
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Fig. 6.  Overview of the system 

 
4. Voxel Classification 

Classification of voxels according volume topological structure consists of five steps. 

 
4.1 Distance transformation 
Distance transformation is a tool for voxel classification. It is a propagation process of voxel 
values from a voxel sub-set S to the whole set V. At the beginning, the value of each voxel in 
V is initialized, usually as 0 or 1. We take W as the work set, and S as the initial values of W. 
In each step of propagation, all voxels in the n-neighbourhood of a voxel in W are set as 
mn+m if its initial value is smaller than it, where m is the distance of its n-neighbourhood 
voxel in W and mn is the scheme for distance transmission between two n-neighbouring 
voxels. Often the evaluation rule is represented as m6-m18-m26, where m6, m18 and m26 are the 
evaluation transmissions to 6-neighborhoods, 18-neighborhoods and 26-neighborhoods 
respectively. They are selected according to desired transformation precision, such as 1-2-3, 
4-5-6 and 1- 2 - 3 . 
mn can be an integer, or more precisely, a real. Integer number is good for concise 
classification and real number is good for precise shape acquisition. In this section integer is 
adapted before volume decomposition,, such as 1-2-3 or 3-4-5, so that distance can be used 
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than our early work. The extraction is fully automatic and much faster, even to a shape with 
complex topology like a ring volume. 

 
3. System Overview 

In this chapter we process tree-like object volumes possibly with some loop structures. The 
main technical line is to decompose the volume into components, based on which 
hierarchical skeletons are extracted. 
Volume decomposition is to separate a complex branched volume into a series of simple 
components around its ramification points, each of which is topologically equivalent to a 
single column. The term hierarchical in this chapter does not mean a hierarchical process for 
skeleton extraction but a hierarchical decomposition of a volume into components. Skeletons 
are extracted from all components and then are connected to form a hierarchical structure. 
The object data should have an evident root point, i.e. the centre at the bottom of the trunk. 
Three main concepts are concerned as classification-skeleton for volume decomposition, 
decomposition for hierarchical connection of skeletons and path growing for efficient 
skeletonization. Classification-skeleton shows the hierarchical structure of the object volume, 
so it is chosen as the key criterion for volume decomposition. Hierarchical connection means a 
connection of skeletons into a tree-like structure in the same topology with the original 
volume after decomposition. Classification-skeleton is the standard for connection. Path 
growing means voxel propagation from a seed point in one direction until some conditions 
are satisfied. 
The classification-skeleton is extracted through distance transformation from the boundary 
or a seed point and through central cluster graphing. With the help of classification-skeleton, 
volume decomposition is performed by cross-section surfaces, called cut-surfaces; each 
decomposition component should be close to the ramification points so that the deviating 
affect of side branches is greatly reduced. 
Finally, the hierarchical branched skeleton is organized by connecting all compact skeleton 
segments according to the classification-skeleton so that the final hierarchical skeleton 
reflects the shape of the original volume. 
In order to extract skeletons efficiently, distance transformations from multiple source 
points are made from all tip points so that all components of the object can compete to reach 
the root through ramifications. They are used for both decomposition and skeletonization. A 
cluster interval is adopted to generate equivalent skeleton point range for each component 
so that the skeleton becomes smoother and more concise. 
The system includes four main aspects: (1) Voxel classification into a hierarchical structure 
through integer seed point distance transformation and boundary distance transformation, 
then classification-skeletons for branched structure; (2) Volume decomposition at 
ramification points through real-valued distance transformation based on classification-
skeletons; (3) Compact skeletonization of each decomposed component through real-valued 
distance transformation and connection of hierarchical skeleton on reference of 
classification-skeletons; (4) Path competition for decomposition and efficient  extraction of 
smooth skeletons. Fig. 6 details the contents and the structure of the system. 
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4. Voxel Classification 

Classification of voxels according volume topological structure consists of five steps. 

 
4.1 Distance transformation 
Distance transformation is a tool for voxel classification. It is a propagation process of voxel 
values from a voxel sub-set S to the whole set V. At the beginning, the value of each voxel in 
V is initialized, usually as 0 or 1. We take W as the work set, and S as the initial values of W. 
In each step of propagation, all voxels in the n-neighbourhood of a voxel in W are set as 
mn+m if its initial value is smaller than it, where m is the distance of its n-neighbourhood 
voxel in W and mn is the scheme for distance transmission between two n-neighbouring 
voxels. Often the evaluation rule is represented as m6-m18-m26, where m6, m18 and m26 are the 
evaluation transmissions to 6-neighborhoods, 18-neighborhoods and 26-neighborhoods 
respectively. They are selected according to desired transformation precision, such as 1-2-3, 
4-5-6 and 1- 2 - 3 . 
mn can be an integer, or more precisely, a real. Integer number is good for concise 
classification and real number is good for precise shape acquisition. In this section integer is 
adapted before volume decomposition,, such as 1-2-3 or 3-4-5, so that distance can be used 
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as a criterion to distinguish voxels according to branch structures. After volume 
decomposition, real is adapted instead for a precise skeleton. 
Voxel points can be organized after integer distance transformation. A cluster is defined as a 
set of consecutive points with the same integer distance. Classification skeleton is a structure 
of skeletons linking the volume root to each branch tip, which shows the hierarchical 
structure of the object volume. Volume decomposition is the separation of a complex branched 
volume around its ramification points into a series of simple components, each of which is 
topologically equivalent to a single column. Hierarchical connection means a connection of 
skeletons into a branched structure of the same topology with the original volume. 
Classification skeleton is a direct application of integer distance transformation. It is used to 
find out tip points, ramification points, hierarchical structure and a rough central skeleton. 
The skeleton obtained this way is not well central and not 26-neighboring either, but it can 
be used as a criterion for voxel classification due to its integer value. 

 
4.2 Central clustering 
Integer seed point transformation is performed with the evaluation scheme 1-2-3 and 6-
neighborhood propagation, where the seed point is the volume root specified by the user or 
by the system. The main purpose of the transformation is to search all tip points of branches 
and all ramification points so that decomposition could be properly performed at each 
ramification point. 
 

                    
                    (a) S-cluster                      (b) Structure of clusters                  (c) Branch graph 
Fig. 7.  Central clustering on root distance 
 
An S-cluster is the set of all the points having the same S-distance value, which is similar in 
part to sphere waves from the seed point as its centre (Fig. 7(a)). S-cluster is often 
abbreviated as a cluster here. All clusters constitute a graph according to their neighbouring 
relation. The positive direction of this graph is defined as from the root to one tip. 
A tip cluster is composed of points with local maximum S-distance, which corresponds to a 
volume tip. A ramification cluster is one whose oneness breaks up at the next neighbour 
clusters in the positive direction of the cluster graph. Seeing locally from a ramification 
cluster in the positive direction, the S-distance of the next neighbouring clusters will 
increase by one. A ramification cluster corresponds to a volume ramification. The tip cluster 
and ramification cluster represent the topological structure of the cluster graph. 
 

 

A transition cluster is one that is not a seed cluster, not a tip cluster or not a ramification 
cluster. A transition cluster has only one preceding cluster and only one succeeding cluster. 
Fig. 7(b) shows the structure of all clusters, where circles represent tip points, and triangle 
represents the root point. After omitting all transition clusters, the cluster graph becomes a 
directed graph with each cluster as a node of the graph (Fig. 7(c)). This graph is referred to 
as a cluster graph. 

 
4.3 Construction of the branch-link path 
A branch-link path is a sequence of points with two ends, i.e. the root point and one tip point. 
All branches are correctly connected with branch-link paths. A branch-link path is 
unnecessarily the centreline of the volume, but it is the basic for finding a central path of the 
volume. It is calculated as follows.  
All tip clusters are found first. For each tip cluster, the maximum B-distance point, or the 
barycentric point of all the maximum B-distance points if they are more than one, is chosen 
as the initial current point. For each current point, we search for the point in its 6-
neighborhood with least S-distance as the next point, which is either in the same cluster or 
in its neighbour cluster. This process is repeated until the root seed point is reached; then a 
sequence of points is obtained, starting from a tip point to the root point with decreasing S-
distances in turn.  
Because the distance between two neighbour clusters is no more than 1, a branch-link path 
is guaranteed to converge to the root point in the decreasing order.  
Since 6-neighborhood is used, on the other hand, there is always a point in the path with the 
distance of any integer number between 1 and the distance number from the tip point to the 
seed one. Therefore, this sequence contains all the clusters between the tip and the seed. 
Only one representative of a cluster is reserved and the connection of all representatives 
from the root to the tips will become a bundle graph or a divergent graph. This graph is 
called the branch-link path. It is not a medial axis of the volume yet. 

 
4.4 Centralization of the branch-link path 
Centralization of a branch-link path means moving this path to the centreline or replacing 
each point of the path with another one in the same cluster closer to the cluster centre, so 
that the entire path approaches the medial axis of the object volume. Two concepts are 
useful for centralization. One is Maximum central point set C of all points in the maximum 
central point map. Boundary-distance maximum point set B is the point set with maximum 
boundary distance. 
The centralization begins from the tip point of each branch in the direction of decreasing S-
distance. If C in this cluster is not empty, its barycentre is accepted as a representative of the 
cluster; or else, the barycentre of B is selected; and the boundary distance is recorded as the 
corresponding radius. If both C and B are empty, the one with smallest distance to the 
immediately preceding point is chosen, and the boundary distance is the corresponding 
radius. 
In the method of (Shahrokni et al., 2001), either the point with the maximum B-distance is 
chosen, or, if they are multiple, their barycentric point is chosen. However, since the 
connection relationship of neighbouring clusters is not well considered, the resultant central 
point may destroy the original topology of the volume. The green circle in Fig. 8(a) shows 
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as a criterion to distinguish voxels according to branch structures. After volume 
decomposition, real is adapted instead for a precise skeleton. 
Voxel points can be organized after integer distance transformation. A cluster is defined as a 
set of consecutive points with the same integer distance. Classification skeleton is a structure 
of skeletons linking the volume root to each branch tip, which shows the hierarchical 
structure of the object volume. Volume decomposition is the separation of a complex branched 
volume around its ramification points into a series of simple components, each of which is 
topologically equivalent to a single column. Hierarchical connection means a connection of 
skeletons into a branched structure of the same topology with the original volume. 
Classification skeleton is a direct application of integer distance transformation. It is used to 
find out tip points, ramification points, hierarchical structure and a rough central skeleton. 
The skeleton obtained this way is not well central and not 26-neighboring either, but it can 
be used as a criterion for voxel classification due to its integer value. 

 
4.2 Central clustering 
Integer seed point transformation is performed with the evaluation scheme 1-2-3 and 6-
neighborhood propagation, where the seed point is the volume root specified by the user or 
by the system. The main purpose of the transformation is to search all tip points of branches 
and all ramification points so that decomposition could be properly performed at each 
ramification point. 
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Fig. 7.  Central clustering on root distance 
 
An S-cluster is the set of all the points having the same S-distance value, which is similar in 
part to sphere waves from the seed point as its centre (Fig. 7(a)). S-cluster is often 
abbreviated as a cluster here. All clusters constitute a graph according to their neighbouring 
relation. The positive direction of this graph is defined as from the root to one tip. 
A tip cluster is composed of points with local maximum S-distance, which corresponds to a 
volume tip. A ramification cluster is one whose oneness breaks up at the next neighbour 
clusters in the positive direction of the cluster graph. Seeing locally from a ramification 
cluster in the positive direction, the S-distance of the next neighbouring clusters will 
increase by one. A ramification cluster corresponds to a volume ramification. The tip cluster 
and ramification cluster represent the topological structure of the cluster graph. 
 

 

A transition cluster is one that is not a seed cluster, not a tip cluster or not a ramification 
cluster. A transition cluster has only one preceding cluster and only one succeeding cluster. 
Fig. 7(b) shows the structure of all clusters, where circles represent tip points, and triangle 
represents the root point. After omitting all transition clusters, the cluster graph becomes a 
directed graph with each cluster as a node of the graph (Fig. 7(c)). This graph is referred to 
as a cluster graph. 

 
4.3 Construction of the branch-link path 
A branch-link path is a sequence of points with two ends, i.e. the root point and one tip point. 
All branches are correctly connected with branch-link paths. A branch-link path is 
unnecessarily the centreline of the volume, but it is the basic for finding a central path of the 
volume. It is calculated as follows.  
All tip clusters are found first. For each tip cluster, the maximum B-distance point, or the 
barycentric point of all the maximum B-distance points if they are more than one, is chosen 
as the initial current point. For each current point, we search for the point in its 6-
neighborhood with least S-distance as the next point, which is either in the same cluster or 
in its neighbour cluster. This process is repeated until the root seed point is reached; then a 
sequence of points is obtained, starting from a tip point to the root point with decreasing S-
distances in turn.  
Because the distance between two neighbour clusters is no more than 1, a branch-link path 
is guaranteed to converge to the root point in the decreasing order.  
Since 6-neighborhood is used, on the other hand, there is always a point in the path with the 
distance of any integer number between 1 and the distance number from the tip point to the 
seed one. Therefore, this sequence contains all the clusters between the tip and the seed. 
Only one representative of a cluster is reserved and the connection of all representatives 
from the root to the tips will become a bundle graph or a divergent graph. This graph is 
called the branch-link path. It is not a medial axis of the volume yet. 

 
4.4 Centralization of the branch-link path 
Centralization of a branch-link path means moving this path to the centreline or replacing 
each point of the path with another one in the same cluster closer to the cluster centre, so 
that the entire path approaches the medial axis of the object volume. Two concepts are 
useful for centralization. One is Maximum central point set C of all points in the maximum 
central point map. Boundary-distance maximum point set B is the point set with maximum 
boundary distance. 
The centralization begins from the tip point of each branch in the direction of decreasing S-
distance. If C in this cluster is not empty, its barycentre is accepted as a representative of the 
cluster; or else, the barycentre of B is selected; and the boundary distance is recorded as the 
corresponding radius. If both C and B are empty, the one with smallest distance to the 
immediately preceding point is chosen, and the boundary distance is the corresponding 
radius. 
In the method of (Shahrokni et al., 2001), either the point with the maximum B-distance is 
chosen, or, if they are multiple, their barycentric point is chosen. However, since the 
connection relationship of neighbouring clusters is not well considered, the resultant central 
point may destroy the original topology of the volume. The green circle in Fig. 8(a) shows 
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this wrong node location and wrong topology. We exploit both C and B to centralize the 
branch-link path so that the final path is correct in centrality and topology (Fig. 8 (b)). 

 
4.5 Main branch and branched structure 
Fixing the main branch is to find a primary and secondary order of all branches around each 
node, then to select the principal path and to unite all of them around the node according to 
their mutual distances. The determination of filiation and brotherhood depends on the 
radius of each branch at the node. A simple way is to judge by the length, but it sometimes 
fails since the main branch is not always the longest, but more often the thickest. 
After the determination of all paths and all ramification points, all filiations are recorded 
and all these relationships constitute the branched structure. Considering the computation 
errors due to integer distance transformation and the influence of side branches on the 
parent branch, this hierarchical skeleton is not ideal, but can be used to find the ramification 
location and volume decomposition at the ramification. It contains the information of 
hierarchical classification, centrality and connectivity, so it is called the classification skeleton. 

 
5. Volume Decomposition and Compact Skeletons 

5.1 Volume Decomposition 
Volume decomposition means the separation of a branched volume around ramification points 
into a hierarchy of components, each of which is topologically equivalent to a single column. 
The crucial technique for decomposition is how to position cut-surfaces to divide the 
volume into parts. 
The object volume is regarded as of clear hierarchical structure of parent-child relation at 
each ramification point. After separation, the main branch is called a parent branch or a 
principal branch, and the others are called a subordinate branch. All cut-surfaces are cross 
sections almost orthogonal to the skeleton direction. The basic consideration in constructing 
a cut-surface is to find a surface on each branch and to avoid any two cut-surfaces 
intersecting with each other. Additionally, a cut-surface is as close to a ramification as 
possible so that as many voxels as possible will be assigned to the branch from its parent. 
The search for cut-surfaces starts from tips to the root. 
The general topology of the volume and hierarchical connection relationship of components 
can be deduced through the classification-skeleton obtained above. 
For clarity, we only describe the construction algorithm for a bifurcating point. We take any 
skeleton node location as a seed point and perform an integer seed point transformation in 
the entire volume. This is the first stage of transformation for volume decomposition. For 
each integer distance value, there must be a cut-surface or some disconnected cross-section 
surfaces associated with this distance. The branched structure of the volume around a 
ramification is responsible for these surfaces, called wave-pairs. Each surface is similar to a 
part of a sphere, and it is almost orthogonal to the classification-skeleton. Each wave pair is 
chosen to be as far as possible from the ramification position. Then a pair of surface 
transformations is performed backward from the wave-surface-patch pair surfaces to the 
ramification location until these pair surfaces intersect with each other. This is the second 
stage of volume decomposition. The reason for the progress from farthest to nearest is to 
make the cut-surface as orthogonal to the skeleton as possible. Also, cut-surfaces too far 
from the ramification location will leave more voxels in the parent branch. 

 

   
               (a)                            (b)                           (c)                           (d)                           (e) 
Fig. 8.  Cluster graph and segmentation; (a) Improper cluster graph; (b) Proper cluster 
graph; (c) the seed point transformation with the ramification as the seed point; (d) a pair of 
wave clusters are selected from the seed point transformation; (e) the cut-surface 
 
We set the cut-surface into the child branch, and it is called the root-surface of the child 
branch. It centre is called the main source point of the child branch. The corresponding 
surface consists of voxels in the parent branch but 26-neighboring to some voxels of the 
root-surface of the child branch. It is called the side-surface of the parent branch. 
Fig. 8 (c)-(e) depicts an example of volume decomposition at a ramification. Fig. 8 (c) is the 
seed point transformation of a trachea at the ramification. Fig. 8 (d) displays two separate 
cut-surfaces with the same distance from the seed to the ramification in two different 
branches. Fig. 8(e) illustrates the final result of the volume decomposition, green 
corresponding to the parent branch, blue corresponding to the filial branch, and red 
representing the cut-surface. 
After decomposition, the shape of each component has several mouths, as shown in Fig. 
9(a). The barycentric voxel of the main tip mouth of this branch component is called the 
main tip. The barycentric voxel of the mouth corresponding to its child volume is called a 
side tip. The barycentric voxel of the mouth cut from its parent branch or the root mouth is 
called a main source, which is the seed point for this component. 

 
5.2 Compact Skeletons 
The results of volume decomposition are used to extract skeleton segments of component V, 
to record the connection relation and to connect them with more skeleton segments into the 
hierarchical topology equivalent to that of the volume. 
Our method of hierarchical skeleton extraction takes three steps: (a) generation of a 3-D 
directed weighted graph from each component data; (b) using a minimum spanning tree 
(MST-tree) to get a skeleton segment for each component; (c) connection of all skeleton 
segments. For each component, the main source point is chosen as the seed for point 
distance transformation. The evaluation scheme is real value 1- 2 - 3  with 26-
neighborhood propagation for better precision. Then, C-Cost function C(p) , i.e. a Compact 
Centrality Cost Function, is constructed. Finally, a branched structure is constructed of 
minimum central cost connecting the main source point and the main tip point, and this 
topological structure is equivalent to that of the volume before volume decomposition. 

 
5.2.1 Compact centrality cost 
The central line is the feature inverse to the boundary, so the distance to the boundary is 
chosen as the basic opposing element of Centrality. In order to have centrality and 
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this wrong node location and wrong topology. We exploit both C and B to centralize the 
branch-link path so that the final path is correct in centrality and topology (Fig. 8 (b)). 

 
4.5 Main branch and branched structure 
Fixing the main branch is to find a primary and secondary order of all branches around each 
node, then to select the principal path and to unite all of them around the node according to 
their mutual distances. The determination of filiation and brotherhood depends on the 
radius of each branch at the node. A simple way is to judge by the length, but it sometimes 
fails since the main branch is not always the longest, but more often the thickest. 
After the determination of all paths and all ramification points, all filiations are recorded 
and all these relationships constitute the branched structure. Considering the computation 
errors due to integer distance transformation and the influence of side branches on the 
parent branch, this hierarchical skeleton is not ideal, but can be used to find the ramification 
location and volume decomposition at the ramification. It contains the information of 
hierarchical classification, centrality and connectivity, so it is called the classification skeleton. 

 
5. Volume Decomposition and Compact Skeletons 

5.1 Volume Decomposition 
Volume decomposition means the separation of a branched volume around ramification points 
into a hierarchy of components, each of which is topologically equivalent to a single column. 
The crucial technique for decomposition is how to position cut-surfaces to divide the 
volume into parts. 
The object volume is regarded as of clear hierarchical structure of parent-child relation at 
each ramification point. After separation, the main branch is called a parent branch or a 
principal branch, and the others are called a subordinate branch. All cut-surfaces are cross 
sections almost orthogonal to the skeleton direction. The basic consideration in constructing 
a cut-surface is to find a surface on each branch and to avoid any two cut-surfaces 
intersecting with each other. Additionally, a cut-surface is as close to a ramification as 
possible so that as many voxels as possible will be assigned to the branch from its parent. 
The search for cut-surfaces starts from tips to the root. 
The general topology of the volume and hierarchical connection relationship of components 
can be deduced through the classification-skeleton obtained above. 
For clarity, we only describe the construction algorithm for a bifurcating point. We take any 
skeleton node location as a seed point and perform an integer seed point transformation in 
the entire volume. This is the first stage of transformation for volume decomposition. For 
each integer distance value, there must be a cut-surface or some disconnected cross-section 
surfaces associated with this distance. The branched structure of the volume around a 
ramification is responsible for these surfaces, called wave-pairs. Each surface is similar to a 
part of a sphere, and it is almost orthogonal to the classification-skeleton. Each wave pair is 
chosen to be as far as possible from the ramification position. Then a pair of surface 
transformations is performed backward from the wave-surface-patch pair surfaces to the 
ramification location until these pair surfaces intersect with each other. This is the second 
stage of volume decomposition. The reason for the progress from farthest to nearest is to 
make the cut-surface as orthogonal to the skeleton as possible. Also, cut-surfaces too far 
from the ramification location will leave more voxels in the parent branch. 

 

   
               (a)                            (b)                           (c)                           (d)                           (e) 
Fig. 8.  Cluster graph and segmentation; (a) Improper cluster graph; (b) Proper cluster 
graph; (c) the seed point transformation with the ramification as the seed point; (d) a pair of 
wave clusters are selected from the seed point transformation; (e) the cut-surface 
 
We set the cut-surface into the child branch, and it is called the root-surface of the child 
branch. It centre is called the main source point of the child branch. The corresponding 
surface consists of voxels in the parent branch but 26-neighboring to some voxels of the 
root-surface of the child branch. It is called the side-surface of the parent branch. 
Fig. 8 (c)-(e) depicts an example of volume decomposition at a ramification. Fig. 8 (c) is the 
seed point transformation of a trachea at the ramification. Fig. 8 (d) displays two separate 
cut-surfaces with the same distance from the seed to the ramification in two different 
branches. Fig. 8(e) illustrates the final result of the volume decomposition, green 
corresponding to the parent branch, blue corresponding to the filial branch, and red 
representing the cut-surface. 
After decomposition, the shape of each component has several mouths, as shown in Fig. 
9(a). The barycentric voxel of the main tip mouth of this branch component is called the 
main tip. The barycentric voxel of the mouth corresponding to its child volume is called a 
side tip. The barycentric voxel of the mouth cut from its parent branch or the root mouth is 
called a main source, which is the seed point for this component. 

 
5.2 Compact Skeletons 
The results of volume decomposition are used to extract skeleton segments of component V, 
to record the connection relation and to connect them with more skeleton segments into the 
hierarchical topology equivalent to that of the volume. 
Our method of hierarchical skeleton extraction takes three steps: (a) generation of a 3-D 
directed weighted graph from each component data; (b) using a minimum spanning tree 
(MST-tree) to get a skeleton segment for each component; (c) connection of all skeleton 
segments. For each component, the main source point is chosen as the seed for point 
distance transformation. The evaluation scheme is real value 1- 2 - 3  with 26-
neighborhood propagation for better precision. Then, C-Cost function C(p) , i.e. a Compact 
Centrality Cost Function, is constructed. Finally, a branched structure is constructed of 
minimum central cost connecting the main source point and the main tip point, and this 
topological structure is equivalent to that of the volume before volume decomposition. 

 
5.2.1 Compact centrality cost 
The central line is the feature inverse to the boundary, so the distance to the boundary is 
chosen as the basic opposing element of Centrality. In order to have centrality and 



Pattern Recognition58

 

compactness connection of the skeleton both be considered, C(p) is defined as an addition of 
two parts in (1): boundary cost, B-cost B(p),and compactness cost, Q-cost Q(p). 
 

C(p)=B(p)+Q(p) (1) 
where B(p) is defined as 1/b(p), and Q(p) as a scaled accumulated seed distance cost T(p) in 
(2). 
 

Q(p)=k(V) ξ(V) T(p) (2) 
where k(V), ξ(V), T(p) are calculated by (3), (4) and (5) respectively. 
 
T(p) is defined in a recursive manner starting from the main source point in Fig. 9(a), where 
the main source point is chosen as the seed point for transformation, and its T(p) is set as 0 at 
this point. Then the T(p) is evaluated recursively in (3), like a seed distance cost expansion 
from the seed point. 
 

)}(|),())(1()(min{)( * pNqqpEpbMqSpT n∈∗−+=  (3) 

where }|)(min{ VppBM ∈=  
 
is the minimum cost in current component V. The effect of b(p) 

is to make p closer to the centre and  [ ]1,0)(*1 ∈− pbM . E(p,q) is defined as d(p,q)-0.75, 
( )(* pNq n∈ ), where d(p,q) is the Euclidean distance. The effect of -0.75 is to make the 
influence of the distance between neighbouring voxels lesser. For any two neighbour voxels 
p and q, d(p,q) is in [1, 3 ], so E(p,q) is in [0.25,0.919]. 
 
ξ(V) in (2) is defined as the minimum absolute difference of any two B-distances of two 
voxel points in volume V in (4). 
 

},;|)()(||:)()(min{|)( VqpqbpbqbpbV ∈≥−−= νξ  (4) 
Thus the Q-cost at any point must be smaller than difference between any two points in the 
volume. Considering that real-valued B-distance could make ξ(V) very small, a double 
precision real number is used to represent this cost. On the other hand, we perform a simple 
transformation on all of the B-costs and they will be treated as equal when the difference of 
two B-costs is smaller than a small value ν,. Therefore, the effect of ξ(V) is that Q-cost will 
differentiate two points of the same B-cost; a voxel closer to the centre has a bigger Q-cost. 
For voxels of different B-cost, Q-cost will have no effect since they have no impact on the 
two different B-costs. Therefore, the selected point will be closer to the centre and closer to 
the seed point simultaneously so that centrality and compactness are both satisfied. 
 
The coefficient k(V) in (2) is a constant for component V and it is defined as (5). 
 

Tk /1= , }|)(min{ VppTT ∈=  (5) 
The centrality cost is the global cost of non-centrality and non-compactness. 

 

 

5.2.2 Construction of a minimum spanning tree 
After the determination of the compact centrality cost for each voxel, the volumetric dataset 
is converted into a 3D directed weighted graph. This graph includes all the links of any two 
26-neighboring voxels. The connection directions of any two voxels are bi-directional, with 
different values for different directions. The weight is determined by the C-cost 
Similar to (Wan et al., 2002), all component data are transformed to 3D directed weighted 
graphs at first, and then a minimum-spanning tree is constructed for each component. This 
is expressed in the following procedure: 

Step 1) Mark source point S as the seed point for C-cost. Mark S, set its parent pointer 
parent-link to NULL. 

Step 2) Select the seed point as the beginning current point T. 
Step 3) For each current point T, push each of its unmarked 26-neighborhood Bi into a 

sorted heap in increasing order of C-cost, so that the one with the smallest C-cost 
is always at the top. If the C-cost of the parent-link of the node Bi is larger than 
that at T, set the parent-link of Bi to T. 

Step 4) Pop the top node of the heap, mark it, and set it as the current node. 
Step 5) Repeat Step 3) and Step 4) until the heap is empty. 

This is a little similar to the algorithm described in (Wan et al., 2002), but they did not 
consider ramifications. Our method addresses this issue, more concisely, compactly and 
robustly due to formula (3). The resultant skeleton always stays away from the boundary 
and the tendency to go roundabout is avoided. 

 
5.2.3 Skeleton extraction and hierarchical connection 
Skeleton extraction is in two steps. The main tip and side tips are calculated at first for the 
minimum-spanning tree of the current component (Fig. 9(a)). The skeleton segments with 
two ends of these two tips are called the main-skeleton and side-skeleton, respectively. The 
main-skeleton connects the main source and the main tip, whereas the side skeleton 
connects one side tip to the main-skeleton, so that the centrality of the skeleton, hierarchy, 
and topological connection are maintained. 
 

  
(a) Volume structure             (b);                   (c) ;                     (d);                     (e)  

Fig. 9.  Hierarchical volume decomposition; (a) Volume structure after decomposition; (b) 
Airway 1, (c) Airway 2, (d) Larch tree, (e) Willow tree 
 
Then the main-skeleton is extracted by tracing along the MST backward from the main tip 
point until the main source is met. The radius values of the skeleton segment are the 
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compactness connection of the skeleton both be considered, C(p) is defined as an addition of 
two parts in (1): boundary cost, B-cost B(p),and compactness cost, Q-cost Q(p). 
 

C(p)=B(p)+Q(p) (1) 
where B(p) is defined as 1/b(p), and Q(p) as a scaled accumulated seed distance cost T(p) in 
(2). 
 

Q(p)=k(V) ξ(V) T(p) (2) 
where k(V), ξ(V), T(p) are calculated by (3), (4) and (5) respectively. 
 
T(p) is defined in a recursive manner starting from the main source point in Fig. 9(a), where 
the main source point is chosen as the seed point for transformation, and its T(p) is set as 0 at 
this point. Then the T(p) is evaluated recursively in (3), like a seed distance cost expansion 
from the seed point. 
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is the minimum cost in current component V. The effect of b(p) 

is to make p closer to the centre and  [ ]1,0)(*1 ∈− pbM . E(p,q) is defined as d(p,q)-0.75, 
( )(* pNq n∈ ), where d(p,q) is the Euclidean distance. The effect of -0.75 is to make the 
influence of the distance between neighbouring voxels lesser. For any two neighbour voxels 
p and q, d(p,q) is in [1, 3 ], so E(p,q) is in [0.25,0.919]. 
 
ξ(V) in (2) is defined as the minimum absolute difference of any two B-distances of two 
voxel points in volume V in (4). 
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Thus the Q-cost at any point must be smaller than difference between any two points in the 
volume. Considering that real-valued B-distance could make ξ(V) very small, a double 
precision real number is used to represent this cost. On the other hand, we perform a simple 
transformation on all of the B-costs and they will be treated as equal when the difference of 
two B-costs is smaller than a small value ν,. Therefore, the effect of ξ(V) is that Q-cost will 
differentiate two points of the same B-cost; a voxel closer to the centre has a bigger Q-cost. 
For voxels of different B-cost, Q-cost will have no effect since they have no impact on the 
two different B-costs. Therefore, the selected point will be closer to the centre and closer to 
the seed point simultaneously so that centrality and compactness are both satisfied. 
 
The coefficient k(V) in (2) is a constant for component V and it is defined as (5). 
 

Tk /1= , }|)(min{ VppTT ∈=  (5) 
The centrality cost is the global cost of non-centrality and non-compactness. 

 

 

5.2.2 Construction of a minimum spanning tree 
After the determination of the compact centrality cost for each voxel, the volumetric dataset 
is converted into a 3D directed weighted graph. This graph includes all the links of any two 
26-neighboring voxels. The connection directions of any two voxels are bi-directional, with 
different values for different directions. The weight is determined by the C-cost 
Similar to (Wan et al., 2002), all component data are transformed to 3D directed weighted 
graphs at first, and then a minimum-spanning tree is constructed for each component. This 
is expressed in the following procedure: 

Step 1) Mark source point S as the seed point for C-cost. Mark S, set its parent pointer 
parent-link to NULL. 

Step 2) Select the seed point as the beginning current point T. 
Step 3) For each current point T, push each of its unmarked 26-neighborhood Bi into a 

sorted heap in increasing order of C-cost, so that the one with the smallest C-cost 
is always at the top. If the C-cost of the parent-link of the node Bi is larger than 
that at T, set the parent-link of Bi to T. 

Step 4) Pop the top node of the heap, mark it, and set it as the current node. 
Step 5) Repeat Step 3) and Step 4) until the heap is empty. 

This is a little similar to the algorithm described in (Wan et al., 2002), but they did not 
consider ramifications. Our method addresses this issue, more concisely, compactly and 
robustly due to formula (3). The resultant skeleton always stays away from the boundary 
and the tendency to go roundabout is avoided. 

 
5.2.3 Skeleton extraction and hierarchical connection 
Skeleton extraction is in two steps. The main tip and side tips are calculated at first for the 
minimum-spanning tree of the current component (Fig. 9(a)). The skeleton segments with 
two ends of these two tips are called the main-skeleton and side-skeleton, respectively. The 
main-skeleton connects the main source and the main tip, whereas the side skeleton 
connects one side tip to the main-skeleton, so that the centrality of the skeleton, hierarchy, 
and topological connection are maintained. 
 

  
(a) Volume structure             (b);                   (c) ;                     (d);                     (e)  

Fig. 9.  Hierarchical volume decomposition; (a) Volume structure after decomposition; (b) 
Airway 1, (c) Airway 2, (d) Larch tree, (e) Willow tree 
 
Then the main-skeleton is extracted by tracing along the MST backward from the main tip 
point until the main source is met. The radius values of the skeleton segment are the 
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distances of the path points to corresponding boundary points. Skeleton extraction is 
finished after recording this path along with the associated radii. For the link-skeleton, the 
process is similar, except that the beginning point is chosen as the side tip point until one 
voxel in the main-skeleton is reached. From the definition of C-cost, the link-skeleton will 
converge to the main-skeleton since the latter is the skeleton of this component. 
After the extraction of skeleton segments, i.e. main skeletons and link skeletons, they will be 
connected together according to their original topological relations, including all paths from 
each tip to root passing all nodes. This is where the hierarchical skeleton can help, with its 
excellent centrality and classification. 
Main skeleton can be used for pattern recognition of 3D objects. 

 
5.2.4 Experiments on volume decomposition and hierarchical skeletons 
Table 1 lists the details about the data with compact skeletonization, including the number 
of voxels in the volume, the number of voxels in the skeleton, and the number of branches. 
Fig. 9 (b)-(e) shows the results of volume decomposition, where green, blue, yellow, pink 
and cyan represent the levels of branches in increasing order. Objects here are two human 
airways, above year-old larch tree and a four year-old willow tree. It can be seen that each 
component has a single-column shape and their borders are kept well.  Fig. 9 (b)-(e) also 
demonstrates that our volume decomposition technique is valid for multiple furcations. 
 

Name Volume Voxel No Skeleton Voxel Number Branch Number 

Airway 1 552595 408 3 

Airway 2 581539 1229 14 

Larch 29657 910 12 
Willow 49883 1622 18 

Table 1: Volume and skeleton specifications with compact skeletonization 
 

 
 

 
 

 
Fig. 10.  Effect comparison among three approaches on three samples 
 
The results of skeleton extraction by Ma's algorithm (Ma & Sonka, 1996), Wan's approach 
(Wan et al., 2002) and our algorithm are compared in Fig. 10. The skeletons of Ma's are 
shown in the first row, those of Wan's in the second row and those of our algorithm in the 

 

third. The first column displays the results of the three algorithms at the ramification of an 
airway. It can be seen that spurious branches are pruned in our algorithm while they still 
exist in the other two. The second column illustrates their results with a simple ramification 
of a willow tree. Here we find that our algorithm can be used to eliminate the influence of 
deviation, but the other two fail. The third column is the skeleton of a willow branch. Ma's 
method generates some spurious branches in the ramification; Wan's generates a 
"roundabout" shape in the skeleton, but all these mistakes are removed in our algorithm. 
The fourth column illustrates the skeletons in a multi-ramification of the willow tree; our 
algorithm keeps the skeleton in the centre while the skeletons generated by the others do not 
follow the medial axis. 
Overlaying of the final skeletons over the objects is illustrated in Fig. 11 from all four models 
in Fig. 9, where they are viewed from three angles. Non-boundary voxels are displayed with 
a non-transparent single colour model, and boundary voxels are with a semi-transparent 
and lighting model. The frontward boundary voxels are set semi-transparent, and rearward 
voxels are set to be non-transparent. The results demonstrate that skeletons extracted with 
our algorithm are more centred and more compact, and the deviation is also eliminated in 
the ramification part through compact centrality cost when there exist many candidate 
points with the same distance from the boundary. 
 

 

 

 
Fig. 11.  Overlaying skeletons on 3D models 

 
6. Efficient Extraction of Skeletons 

The work here on efficient extraction of skeletons is based on all the techniques described 
above. The extended work in (Xiang et al., 2008; Ma et al., 2008; Ma et al., 2009) makes 
skeleton extraction more efficient and more robust. The skeleton extraction method supports 
shapes with loop structures because each voxel in the volume, including those in the loop, 
can be reached in the path growing and labelled to a component of the volume, while it is 
not considered in (Zhang et al., 2008) with the minimum spanning tree. 
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distances of the path points to corresponding boundary points. Skeleton extraction is 
finished after recording this path along with the associated radii. For the link-skeleton, the 
process is similar, except that the beginning point is chosen as the side tip point until one 
voxel in the main-skeleton is reached. From the definition of C-cost, the link-skeleton will 
converge to the main-skeleton since the latter is the skeleton of this component. 
After the extraction of skeleton segments, i.e. main skeletons and link skeletons, they will be 
connected together according to their original topological relations, including all paths from 
each tip to root passing all nodes. This is where the hierarchical skeleton can help, with its 
excellent centrality and classification. 
Main skeleton can be used for pattern recognition of 3D objects. 

 
5.2.4 Experiments on volume decomposition and hierarchical skeletons 
Table 1 lists the details about the data with compact skeletonization, including the number 
of voxels in the volume, the number of voxels in the skeleton, and the number of branches. 
Fig. 9 (b)-(e) shows the results of volume decomposition, where green, blue, yellow, pink 
and cyan represent the levels of branches in increasing order. Objects here are two human 
airways, above year-old larch tree and a four year-old willow tree. It can be seen that each 
component has a single-column shape and their borders are kept well.  Fig. 9 (b)-(e) also 
demonstrates that our volume decomposition technique is valid for multiple furcations. 
 

Name Volume Voxel No Skeleton Voxel Number Branch Number 

Airway 1 552595 408 3 

Airway 2 581539 1229 14 

Larch 29657 910 12 
Willow 49883 1622 18 

Table 1: Volume and skeleton specifications with compact skeletonization 
 

 
 

 
 

 
Fig. 10.  Effect comparison among three approaches on three samples 
 
The results of skeleton extraction by Ma's algorithm (Ma & Sonka, 1996), Wan's approach 
(Wan et al., 2002) and our algorithm are compared in Fig. 10. The skeletons of Ma's are 
shown in the first row, those of Wan's in the second row and those of our algorithm in the 

 

third. The first column displays the results of the three algorithms at the ramification of an 
airway. It can be seen that spurious branches are pruned in our algorithm while they still 
exist in the other two. The second column illustrates their results with a simple ramification 
of a willow tree. Here we find that our algorithm can be used to eliminate the influence of 
deviation, but the other two fail. The third column is the skeleton of a willow branch. Ma's 
method generates some spurious branches in the ramification; Wan's generates a 
"roundabout" shape in the skeleton, but all these mistakes are removed in our algorithm. 
The fourth column illustrates the skeletons in a multi-ramification of the willow tree; our 
algorithm keeps the skeleton in the centre while the skeletons generated by the others do not 
follow the medial axis. 
Overlaying of the final skeletons over the objects is illustrated in Fig. 11 from all four models 
in Fig. 9, where they are viewed from three angles. Non-boundary voxels are displayed with 
a non-transparent single colour model, and boundary voxels are with a semi-transparent 
and lighting model. The frontward boundary voxels are set semi-transparent, and rearward 
voxels are set to be non-transparent. The results demonstrate that skeletons extracted with 
our algorithm are more centred and more compact, and the deviation is also eliminated in 
the ramification part through compact centrality cost when there exist many candidate 
points with the same distance from the boundary. 
 

 

 

 
Fig. 11.  Overlaying skeletons on 3D models 

 
6. Efficient Extraction of Skeletons 

The work here on efficient extraction of skeletons is based on all the techniques described 
above. The extended work in (Xiang et al., 2008; Ma et al., 2008; Ma et al., 2009) makes 
skeleton extraction more efficient and more robust. The skeleton extraction method supports 
shapes with loop structures because each voxel in the volume, including those in the loop, 
can be reached in the path growing and labelled to a component of the volume, while it is 
not considered in (Zhang et al., 2008) with the minimum spanning tree. 
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DFS-distance transformation is applied to the volume data once. No skeleton refinement 
and connection are needed after the skeleton extraction so that make the method efficient. 

 
6.1 Automatic detection of feature points 
All feature features of the object volume are thought of as tip points,. The most important is 
the root point. Instead of specifying it by user as an input in (Zhou & Toga, 1999) and (Xiang 
et al., 2008), feature points are detected automatically in our work here. 
A voxel v is chosen randomly in the volume as the seed to perform the DFS-distance 
transformation. A new feature point s is chosen as the centre of those voxels with the largest 
distance away from v. Point s is called the opposite feature point to v. s can be thought of as 
a potential root point related to v, but it is not if v is too close to the actual root position. The 
DFS-distance transformation is applied then again with s as the seed, and its opposite 
feature point p is obtained. p is set as the root point if its radius is bigger; or else s is. 
Concurrently with the specification of the root point, all tip features are detected also based 
on the DFS-distance transformation to the root point. The tip feature of each branch of the 
volume is detected from the local maximum cluster on the root point distance map. The 
number of all tip points is noted as N in this subsection. 

 
6.2 Distance transformation from multiple source points 
The DFMS transformation (distance from multiple source points) proposed in (Xiang et al., 
2008) takes multiple DFS transformations regarding each seed point as a tip; the distance 
evaluation scheme is 1-2-3. 
Ramification points are calculated with the method in Subsection 4.2. In the process of 
DFMS transformation, a DFS-distance transformation stops once a ramification point r is 
met. Then, all the DFS-distance transformations at the ramification node compete against 
each other to propagate toward the root point. The losers stop while the winner continues 
until another ramification or the root point is met. 
 

 
(a) (b) (c) (d) 

Fig. 12. Decomposition based on path competition; (a) three paths compete for growing; (b) 
Path 1 and Path 3 meet at the ramification A; (c) Path 1 wins and continues to compete with 
Path 2; (d) Path 1 wins all and become the trunk 
 
The number of DFS-distance transformations corresponds to that of components passing the 
ramification point r. This number, denoted as m(r), is saved as an index of r. All these DFS-
distance transformations will be reused for efficient skeletonization. 
Fig. 12 demonstrates the procedure of DFMS transformations for decomposition on a 
volume model with three branches. Fig. 12 (a) shows that three paths start from three tips, 
respectively. Fig. 12 (b) shows that a path stops growing when it reaches a ramification. Path 

 

1 and Path 3 meet at the ramification A and only one branch is left, along which  both paths 
compete for growing. Path 2 grows until meeting the ramification B, waiting other path to 
meet with. In Fig. 12 (c), Path 1 wins over Path 2 and it continues growing until reaching B. 
In Fig. 12 (d), Path 1 wins over Path 2 and it continues growing until all voxels in the volume 
are traversed. In fact, volume decomposition finishes when Path 1 meets the root. 

 
6.3 Optimisation of segmentation surface 
Segmentation at ramifications plays an important role in volumetric decomposition to 
obtain smooth and appropriate cutting boundaries for different components. Our 
segmentation method is based on the DFMS transformation above, and it is an extension of 
the approach in Subsection 5.1. 
 

   
(a) (b) (c) 

Fig. 13. Segmentation at a ramification; (a) direction vector; (b) Segmentation without 
optimisation; (c) Segmentation with optimisation 
 
For simplicity, we only describe the cut-surface for a sub-branch corresponding to a tip 
point s. The ramification cluster found by a DFS-distance transformation with tip s as the 
seed can be divided into some self-connected groups, shown as two sets in green in Fig. 
13(a). In Fig. 13 (a), the green regions stand for the neighbour clusters at the ramification, 
whose DFS-distance value is larger by 1 than that of the ramification cluster. We connect 
their centres and obtain a direction vector as the black arrow between them. Along this 
direction, we search for all the voxels on the shortest path linking the two sets. After cutting 
off these voxels, we mark the left in the clusters as parts belonging to the sub-branch 
indicated by the starting tip feature. This is the process of the optimisation of a cut-surface. 
The segmentation result around a ramification before using optimisation is demonstrated in 
Fig. 13(b) and the one after optimisation is in Fig. 13(c). The optimisation gives a better 
segmentation in Fig. 13 (c) than without the optimisation in Fig. 13 (b). The above algorithm 
is based on an assumption that components are approximately cylindrical. 

 
6.4 Path growing for shape segmentation 
From N tip features, we have N paths corresponding to N components, respectively. When a 
voxel is reached by a certain path, we mark the voxel with the feature component 
corresponding to this path. Those paths growing from tips to the root point will stop when a 
ramification appears. Growing here does not mean the development of plant architecture, 
but the voxel propagation from a tip point toward the root point until the specified 
conditions are satisfied. Rules for path growing are as follows: 
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DFS-distance transformation is applied to the volume data once. No skeleton refinement 
and connection are needed after the skeleton extraction so that make the method efficient. 

 
6.1 Automatic detection of feature points 
All feature features of the object volume are thought of as tip points,. The most important is 
the root point. Instead of specifying it by user as an input in (Zhou & Toga, 1999) and (Xiang 
et al., 2008), feature points are detected automatically in our work here. 
A voxel v is chosen randomly in the volume as the seed to perform the DFS-distance 
transformation. A new feature point s is chosen as the centre of those voxels with the largest 
distance away from v. Point s is called the opposite feature point to v. s can be thought of as 
a potential root point related to v, but it is not if v is too close to the actual root position. The 
DFS-distance transformation is applied then again with s as the seed, and its opposite 
feature point p is obtained. p is set as the root point if its radius is bigger; or else s is. 
Concurrently with the specification of the root point, all tip features are detected also based 
on the DFS-distance transformation to the root point. The tip feature of each branch of the 
volume is detected from the local maximum cluster on the root point distance map. The 
number of all tip points is noted as N in this subsection. 

 
6.2 Distance transformation from multiple source points 
The DFMS transformation (distance from multiple source points) proposed in (Xiang et al., 
2008) takes multiple DFS transformations regarding each seed point as a tip; the distance 
evaluation scheme is 1-2-3. 
Ramification points are calculated with the method in Subsection 4.2. In the process of 
DFMS transformation, a DFS-distance transformation stops once a ramification point r is 
met. Then, all the DFS-distance transformations at the ramification node compete against 
each other to propagate toward the root point. The losers stop while the winner continues 
until another ramification or the root point is met. 
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Fig. 12. Decomposition based on path competition; (a) three paths compete for growing; (b) 
Path 1 and Path 3 meet at the ramification A; (c) Path 1 wins and continues to compete with 
Path 2; (d) Path 1 wins all and become the trunk 
 
The number of DFS-distance transformations corresponds to that of components passing the 
ramification point r. This number, denoted as m(r), is saved as an index of r. All these DFS-
distance transformations will be reused for efficient skeletonization. 
Fig. 12 demonstrates the procedure of DFMS transformations for decomposition on a 
volume model with three branches. Fig. 12 (a) shows that three paths start from three tips, 
respectively. Fig. 12 (b) shows that a path stops growing when it reaches a ramification. Path 

 

1 and Path 3 meet at the ramification A and only one branch is left, along which  both paths 
compete for growing. Path 2 grows until meeting the ramification B, waiting other path to 
meet with. In Fig. 12 (c), Path 1 wins over Path 2 and it continues growing until reaching B. 
In Fig. 12 (d), Path 1 wins over Path 2 and it continues growing until all voxels in the volume 
are traversed. In fact, volume decomposition finishes when Path 1 meets the root. 

 
6.3 Optimisation of segmentation surface 
Segmentation at ramifications plays an important role in volumetric decomposition to 
obtain smooth and appropriate cutting boundaries for different components. Our 
segmentation method is based on the DFMS transformation above, and it is an extension of 
the approach in Subsection 5.1. 
 

   
(a) (b) (c) 

Fig. 13. Segmentation at a ramification; (a) direction vector; (b) Segmentation without 
optimisation; (c) Segmentation with optimisation 
 
For simplicity, we only describe the cut-surface for a sub-branch corresponding to a tip 
point s. The ramification cluster found by a DFS-distance transformation with tip s as the 
seed can be divided into some self-connected groups, shown as two sets in green in Fig. 
13(a). In Fig. 13 (a), the green regions stand for the neighbour clusters at the ramification, 
whose DFS-distance value is larger by 1 than that of the ramification cluster. We connect 
their centres and obtain a direction vector as the black arrow between them. Along this 
direction, we search for all the voxels on the shortest path linking the two sets. After cutting 
off these voxels, we mark the left in the clusters as parts belonging to the sub-branch 
indicated by the starting tip feature. This is the process of the optimisation of a cut-surface. 
The segmentation result around a ramification before using optimisation is demonstrated in 
Fig. 13(b) and the one after optimisation is in Fig. 13(c). The optimisation gives a better 
segmentation in Fig. 13 (c) than without the optimisation in Fig. 13 (b). The above algorithm 
is based on an assumption that components are approximately cylindrical. 

 
6.4 Path growing for shape segmentation 
From N tip features, we have N paths corresponding to N components, respectively. When a 
voxel is reached by a certain path, we mark the voxel with the feature component 
corresponding to this path. Those paths growing from tips to the root point will stop when a 
ramification appears. Growing here does not mean the development of plant architecture, 
but the voxel propagation from a tip point toward the root point until the specified 
conditions are satisfied. Rules for path growing are as follows: 



Pattern Recognition64

 

Step 1) A path grows from its tip point of each component. Growing stops when the 
path meets a ramification. The state of a growing is either continuing, waiting 
or stopping; all voxels on the path are labelled with the index of the tip point; 

Step 2) For each ramification point r, all paths reaching it are checked. Let m=m(r). If 
at least two paths are not indexed, they are waiting here. If only one path is 
not, all the other m-1 paths will compete. The winner will continue to grow, 
but the others fail. The winning criterion is that the distance to a tip point is 
the biggest than those to other tips. 

Step 3) All pathes continue to grow until a new ramification is met, and return to 
Step 2; 

Step 4) If only one path can grow currently, the path will expand in the direction of 
increasing distance. If all voxels are indexed, decomposition finishes. If there 
are un-indexed voxels left and no paths can grow, a loop appears in the 
shape. They are classified as new components according to connectivity; 

Step 5) All cutting boundaries are optimised. 
The result of volume segmentation based on path growing is a hierarchical structure too. It 
represents the topological structure of the shape and it will be used to construct the skeleton 
hierarchy. 

 
6.5 Efficient extraction of smooth skeletons 
So far, the branched volume has been decomposed into N components, each of which 
corresponds to a tip feature. Here, we proceed to extract skeletons for each sub-branch 
component.  
In voxel space of each component, DFS transformation with respective to its tip point is 
useful. Since DFS transformations have been calculated in decomposition, however, they 
can be reused here for efficient computation. 
The distance value of each cluster will increase when path growing. The barycentre of each 
cluster is calculated and considered as a skeleton node since the topology of each 
component is simple. Each node has the distance value one larger or smaller than its 
neighbour nodes; hence all skeleton nodes are connected in distance-increasing order. Each 
skeleton is from a tip point to a ramification or the root point. 
Because the connection of neighbour nodes may produce a large number of skeleton points. 
An appropriate cluster interval, as the distance sampling in (Xu et al., 2007), is adopted to 
generate equivalent skeleton point range for each sub-branch, in order for both less skeleton 
points and higher data compression rate. A cluster interval is a group of consecutive clusters 
in a component. A skeleton node is the barycentre of all the points in a cluster interval. The 
application of interval is a filtering of skeleton shape.  
In order to deal with noisy data robustly, we compute a skeleton point tX
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where tC


 is the barycentre of the cluster interval, 1−tX


 and 2−tX


 denote the skeleton nodes 
in the last two cluster intervals respectively, and 1w  and 2w  are two weighting coefficients. 

 

The first term in (6) is a smoothness constraint. For each skeleton node, its radius is 
evaluated based upon the projections of voxels of the cluster on the plane, through the 
cluster centre and  perpendicular to the skeleton. 
For robustness to noises, we re-compute the radii along the skeleton varying too seriously. 
In our following experiments, w1 and w2 are set as 0.4 and 0.6 respectively. 
Finally, skeletons of components are connected according to the hierarchical structure 
obtained in volume decomposition in Subsection 6.4. 

 
6.6 Application to Tree Branch Reconstruction 
To reconstruct real plants based on skeletonization, the point cloud data of two real bonsai 
trees are acquired by laser scanning from six angles (Fig. 19 and Fig. 20). They are then 
registered in a single coordinate system. The volume data of a tree is obtained from the 
resultant point cloud using an octree space subdivision. All skeletons of the volume data are 
extracted, where each skeleton node is accompanied with a radius representing its distance 
to the boundary. A generalized cylinder is then constructed based on each skeleton. Thus a 
mesh model is available when each cylinder is converted to polygons. 

 
6.7 Experiments on efficient skeletonization 
We make experiments upon the proposed algorithms of volume decomposition, efficient 
skeletonization and surface reconstruction using virtual volume models and those 
converted from laser scan data. Virtual plant models without leaves are generated by the 
software AMAP GensisTM. Other virtual models are generated from mathematical formula. 
 

   
  

(a) (b) (c) (d) (e) 
Fig. 14. Synthetic Sunflower branched volume; (a) the volume data; (b) volume 
decomposition; (c) extracted skeletons; (d) a zoom-in to (b); (e) a zoom-in to (c) 
 

     
(a) (b) (c) (d) (e) 

Fig. 15. Synthetic sweep willow branched volume; (a) the volume data; (b) volume 
decomposition; (c) extracted skeletons; (d) a zoom-in to (b); (e) a zoom-in to (c) 
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Step 1) A path grows from its tip point of each component. Growing stops when the 
path meets a ramification. The state of a growing is either continuing, waiting 
or stopping; all voxels on the path are labelled with the index of the tip point; 

Step 2) For each ramification point r, all paths reaching it are checked. Let m=m(r). If 
at least two paths are not indexed, they are waiting here. If only one path is 
not, all the other m-1 paths will compete. The winner will continue to grow, 
but the others fail. The winning criterion is that the distance to a tip point is 
the biggest than those to other tips. 

Step 3) All pathes continue to grow until a new ramification is met, and return to 
Step 2; 

Step 4) If only one path can grow currently, the path will expand in the direction of 
increasing distance. If all voxels are indexed, decomposition finishes. If there 
are un-indexed voxels left and no paths can grow, a loop appears in the 
shape. They are classified as new components according to connectivity; 

Step 5) All cutting boundaries are optimised. 
The result of volume segmentation based on path growing is a hierarchical structure too. It 
represents the topological structure of the shape and it will be used to construct the skeleton 
hierarchy. 

 
6.5 Efficient extraction of smooth skeletons 
So far, the branched volume has been decomposed into N components, each of which 
corresponds to a tip feature. Here, we proceed to extract skeletons for each sub-branch 
component.  
In voxel space of each component, DFS transformation with respective to its tip point is 
useful. Since DFS transformations have been calculated in decomposition, however, they 
can be reused here for efficient computation. 
The distance value of each cluster will increase when path growing. The barycentre of each 
cluster is calculated and considered as a skeleton node since the topology of each 
component is simple. Each node has the distance value one larger or smaller than its 
neighbour nodes; hence all skeleton nodes are connected in distance-increasing order. Each 
skeleton is from a tip point to a ramification or the root point. 
Because the connection of neighbour nodes may produce a large number of skeleton points. 
An appropriate cluster interval, as the distance sampling in (Xu et al., 2007), is adopted to 
generate equivalent skeleton point range for each sub-branch, in order for both less skeleton 
points and higher data compression rate. A cluster interval is a group of consecutive clusters 
in a component. A skeleton node is the barycentre of all the points in a cluster interval. The 
application of interval is a filtering of skeleton shape.  
In order to deal with noisy data robustly, we compute a skeleton point tX
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where tC


 is the barycentre of the cluster interval, 1−tX


 and 2−tX


 denote the skeleton nodes 
in the last two cluster intervals respectively, and 1w  and 2w  are two weighting coefficients. 

 

The first term in (6) is a smoothness constraint. For each skeleton node, its radius is 
evaluated based upon the projections of voxels of the cluster on the plane, through the 
cluster centre and  perpendicular to the skeleton. 
For robustness to noises, we re-compute the radii along the skeleton varying too seriously. 
In our following experiments, w1 and w2 are set as 0.4 and 0.6 respectively. 
Finally, skeletons of components are connected according to the hierarchical structure 
obtained in volume decomposition in Subsection 6.4. 

 
6.6 Application to Tree Branch Reconstruction 
To reconstruct real plants based on skeletonization, the point cloud data of two real bonsai 
trees are acquired by laser scanning from six angles (Fig. 19 and Fig. 20). They are then 
registered in a single coordinate system. The volume data of a tree is obtained from the 
resultant point cloud using an octree space subdivision. All skeletons of the volume data are 
extracted, where each skeleton node is accompanied with a radius representing its distance 
to the boundary. A generalized cylinder is then constructed based on each skeleton. Thus a 
mesh model is available when each cylinder is converted to polygons. 

 
6.7 Experiments on efficient skeletonization 
We make experiments upon the proposed algorithms of volume decomposition, efficient 
skeletonization and surface reconstruction using virtual volume models and those 
converted from laser scan data. Virtual plant models without leaves are generated by the 
software AMAP GensisTM. Other virtual models are generated from mathematical formula. 
 

   
  

(a) (b) (c) (d) (e) 
Fig. 14. Synthetic Sunflower branched volume; (a) the volume data; (b) volume 
decomposition; (c) extracted skeletons; (d) a zoom-in to (b); (e) a zoom-in to (c) 
 

     
(a) (b) (c) (d) (e) 

Fig. 15. Synthetic sweep willow branched volume; (a) the volume data; (b) volume 
decomposition; (c) extracted skeletons; (d) a zoom-in to (b); (e) a zoom-in to (c) 
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Fig. 14 and Fig. 15 present the results about two synthetic data sets: a virtual sunflower 
branched volume model and a virtual sweep willow branched volume model. Different 
colours are adopted to distinguish distinct components. It can be seen that the algorithms 
decompose the branches into components with appropriate boundaries and the extracted 
skeletons preserve the volume shape. 
 
Fig. 16 shows the result of skeletons of a virtual colon shell volume data generated by a 
generalized cylinder spanned from an interpolation curve. The black curve is the extracted 
skeleton while the blue one is interpolation curve defining the volume surface. It can be seen 
that the extracted skeleton is very similar to the mathematical skeleton of the cylinder, and 
its centricity is well kept if the shape curves sharply. 
 

  
(a) (b) 

Fig. 16. Synthetic volume data in two views: a virtual colon; (a) the volume and its skeleton 
curves; (b) a new view of (a) 
 

     
(a) (b) (c) (d) (e) 

Fig. 17 Synthetic volume data: a mechanical part with a loop; (a) the volume; (b) the 
extracted skeleton with voxel points as the background; (c) a new view of (a); (d) a new view 
of (b); (e) a close view of (d). 
 
Fig. 17 shows the results of volume decomposition and skeletons of a synthetic data 
generated by straight lines and circles. It can be seen that the new approach works robustly 
on such a shape with a loop, and the volume decomposition is consistent to human 
perception. The extracted skeletons reflect the topology of the volume and they are smooth. perception. The extracted skeletons topology the volume and they are smooth.

 
(a) (b) 

Fig. 18. Comparison on the results of skeletonization; (a) The result of (Zhang et al., 2008); (b) 
The result of (Xiang et al., 2008) 

 

A comparison is made in Fig. 18 on the qualities between by volume decomposition and 
skeleton extraction of (Zhang et al., 2008) and by those of (Xiang et al., 2008). It displays that 
the skeletons in Fig. 18(a) are smoother and more centred than those in Fig. 18(b). In their 
zoom-in figures, the skeletons extracted by (Xiang et al., 2008) is connected more properly 
and better centred in the volume than those by (Zhang et al., 2008). 
Fig. 19 and Fig. 20 demonstrate the experimental results of the reconstruction of real bonsai 
trees with high fidelity. Fig. 19 (a) and Fig. 20 (a) are the raw volume data from laser scan 
and those of (b) are decomposition volume data. Their (c) and (d) are extracted skeletons 
and final reconstructed mesh models of the branches, respectively. It can be seen that the 
reconstruction keeps well the tree shape noise-robustly. 
 

    
(a) (b) (c) (d) 

Fig. 19. Reconstruction of a bonsai tree murraya; (a) raw data after the detection of tip 
features; (b) decomposition results; (c) extracted skeletons; (d) final reconstructed models; 
 

    
(a) (b) (c) (d) 

Fig. 20.  Reconstruction of a bonsai tree asclepiadaceae; (a) raw data after the detection of tip 
features; (b) decomposition results; (c) extracted skeletons; (d) final reconstructed models; 
 
Table 2 lists the details about the data with our efficient skeletonization algorithm of the six 
examples, which are the number of voxels in the volume, the number of branches of the data, 
the skeleton sample steps, and the number of skeleton nodes. 
 

Name of volume model Number of 
Voxels 

Number of 
Branches 

Number of Clusters 
in an Interval 

Number of 
Skeleton 

Nodes 
Sunflower (Fig. 14) 12,367 13 10 203 
Willow (Fig. 15) 49,883 18 10 297 
Virtual Colon (Fig. 16) 15,392 1 10 40 
Part with a loop (Fig. 17) 3,361 5 5 71 
Tree murraya (Fig. 18) 3,788 12 5 181 
Tree asclepiadaceae (Fig. 19) 2,746 13 10 99 

Table 2: Volume and skeleton specifications with efficient skeletonization algorithm 
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Fig. 14 and Fig. 15 present the results about two synthetic data sets: a virtual sunflower 
branched volume model and a virtual sweep willow branched volume model. Different 
colours are adopted to distinguish distinct components. It can be seen that the algorithms 
decompose the branches into components with appropriate boundaries and the extracted 
skeletons preserve the volume shape. 
 
Fig. 16 shows the result of skeletons of a virtual colon shell volume data generated by a 
generalized cylinder spanned from an interpolation curve. The black curve is the extracted 
skeleton while the blue one is interpolation curve defining the volume surface. It can be seen 
that the extracted skeleton is very similar to the mathematical skeleton of the cylinder, and 
its centricity is well kept if the shape curves sharply. 
 

  
(a) (b) 

Fig. 16. Synthetic volume data in two views: a virtual colon; (a) the volume and its skeleton 
curves; (b) a new view of (a) 
 

     
(a) (b) (c) (d) (e) 

Fig. 17 Synthetic volume data: a mechanical part with a loop; (a) the volume; (b) the 
extracted skeleton with voxel points as the background; (c) a new view of (a); (d) a new view 
of (b); (e) a close view of (d). 
 
Fig. 17 shows the results of volume decomposition and skeletons of a synthetic data 
generated by straight lines and circles. It can be seen that the new approach works robustly 
on such a shape with a loop, and the volume decomposition is consistent to human 
perception. The extracted skeletons reflect the topology of the volume and they are smooth. 

 
(a) (b) 

Fig. 18. Comparison on the results of skeletonization; (a) The result of (Zhang et al., 2008); (b) 
The result of (Xiang et al., 2008) 

 

A comparison is made in Fig. 18 on the qualities between by volume decomposition and 
skeleton extraction of (Zhang et al., 2008) and by those of (Xiang et al., 2008). It displays that 
the skeletons in Fig. 18(a) are smoother and more centred than those in Fig. 18(b). In their 
zoom-in figures, the skeletons extracted by (Xiang et al., 2008) is connected more properly 
and better centred in the volume than those by (Zhang et al., 2008). 
Fig. 19 and Fig. 20 demonstrate the experimental results of the reconstruction of real bonsai 
trees with high fidelity. Fig. 19 (a) and Fig. 20 (a) are the raw volume data from laser scan 
and those of (b) are decomposition volume data. Their (c) and (d) are extracted skeletons 
and final reconstructed mesh models of the branches, respectively. It can be seen that the 
reconstruction keeps well the tree shape noise-robustly. 
 

    
(a) (b) (c) (d) 

Fig. 19. Reconstruction of a bonsai tree murraya; (a) raw data after the detection of tip 
features; (b) decomposition results; (c) extracted skeletons; (d) final reconstructed models; 
 

    
(a) (b) (c) (d) 

Fig. 20.  Reconstruction of a bonsai tree asclepiadaceae; (a) raw data after the detection of tip 
features; (b) decomposition results; (c) extracted skeletons; (d) final reconstructed models; 
 
Table 2 lists the details about the data with our efficient skeletonization algorithm of the six 
examples, which are the number of voxels in the volume, the number of branches of the data, 
the skeleton sample steps, and the number of skeleton nodes. 
 

Name of volume model Number of 
Voxels 

Number of 
Branches 

Number of Clusters 
in an Interval 

Number of 
Skeleton 

Nodes 
Sunflower (Fig. 14) 12,367 13 10 203 
Willow (Fig. 15) 49,883 18 10 297 
Virtual Colon (Fig. 16) 15,392 1 10 40 
Part with a loop (Fig. 17) 3,361 5 5 71 
Tree murraya (Fig. 18) 3,788 12 5 181 
Tree asclepiadaceae (Fig. 19) 2,746 13 10 99 

Table 2: Volume and skeleton specifications with efficient skeletonization algorithm 
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(a) (b) (c) (d) 

Fig. 21 Volume decomposition of four synthetic tree volume when segmentation surfaces 
are optimized; (a) a prone willow tree; (b) a holly tree; (c) a poplar tree; (d) a will tree 
 
Fig. 21 and Fig. 22 show the results of volume decomposition and skeleton nodes of the 
volume data of four virtual trees with more complex topology. We can see that our methods 
still work well. 
 

    
(a) (b) (c) (d) 

Fig. 22 skeleton nodes of the four synthetic tree volumes in Fig. 17; (a) a prone willow tree; 
(b) a holly tree; (c) a poplar tree; (d) a will tree 

 
7. Conclusion and Future Work 

We proposed algorithms on volume decomposition and hierarchical skeletonization for 
branched objects in (Zhang et al., 2008). The extracted skeletons are highly centred. One 
important advantage of our work is the help of volume decomposition to hierarchical 
skeletons, so that the final extracted skeletons keep the structure of the volume data well. 
This work of (Zhang et al., 2008) is extended in (Xiang et al., 2008; Ma et al., 2008; Ma et al., 
2009) with the following contributions: segmentations are optimised at ramifications; 
extracted skeletons are smoother and more robust; the new method is applicable to shapes 
with a loop and shell volume models; it is more efficient since skeleton reconnection is 
unnecessary. The experiments are of high fidelity on reconstruction of real bonsai trees 
We plan to continue our work in three aspects: internal navigation, segmentation of mesh 
models based on skeletons and the reconstruction of big trees. We would like to guide 
internal navigation hierarchically inside human organs with a complex topological structure 
(Bartz, 2005). The work of reconstructing real big trees from laser scan data in (Xu et al., 2007) 
and (Cheng et al., 2007) could be improved with shape decomposition. To avoid occlusion of 
laser scan data for the reconstruction of big real trees, the technique of particle flow can be 
applied. Like the work of (Reniers & Telea, 2007), this approach can also be applied to shape 
animation in our future work. 
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Fig. 21 Volume decomposition of four synthetic tree volume when segmentation surfaces 
are optimized; (a) a prone willow tree; (b) a holly tree; (c) a poplar tree; (d) a will tree 
 
Fig. 21 and Fig. 22 show the results of volume decomposition and skeleton nodes of the 
volume data of four virtual trees with more complex topology. We can see that our methods 
still work well. 
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Fig. 22 skeleton nodes of the four synthetic tree volumes in Fig. 17; (a) a prone willow tree; 
(b) a holly tree; (c) a poplar tree; (d) a will tree 

 
7. Conclusion and Future Work 

We proposed algorithms on volume decomposition and hierarchical skeletonization for 
branched objects in (Zhang et al., 2008). The extracted skeletons are highly centred. One 
important advantage of our work is the help of volume decomposition to hierarchical 
skeletons, so that the final extracted skeletons keep the structure of the volume data well. 
This work of (Zhang et al., 2008) is extended in (Xiang et al., 2008; Ma et al., 2008; Ma et al., 
2009) with the following contributions: segmentations are optimised at ramifications; 
extracted skeletons are smoother and more robust; the new method is applicable to shapes 
with a loop and shell volume models; it is more efficient since skeleton reconnection is 
unnecessary. The experiments are of high fidelity on reconstruction of real bonsai trees 
We plan to continue our work in three aspects: internal navigation, segmentation of mesh 
models based on skeletons and the reconstruction of big trees. We would like to guide 
internal navigation hierarchically inside human organs with a complex topological structure 
(Bartz, 2005). The work of reconstructing real big trees from laser scan data in (Xu et al., 2007) 
and (Cheng et al., 2007) could be improved with shape decomposition. To avoid occlusion of 
laser scan data for the reconstruction of big real trees, the technique of particle flow can be 
applied. Like the work of (Reniers & Telea, 2007), this approach can also be applied to shape 
animation in our future work. 

 

8. Acknowledgement 

This work is supported in part by National Natural Science Foundation of China with 
projects No. 60672148 and No. 60872120; in part by the National High Technology 
Development 863 Program of China under Grant No. 2008AA01Z301, No. 2006AA01Z301, 
and 2008AA10Z218; in part by Science and Technology Commission of Shanghai 
Municipality under Grant No. 08511501002; in part by the project; and in part by the Project 
Arcus 2006 Languedoc-Roussillon/Chine. 

 
9. References 

Au, O.; Tai, C.; Chu, H.; Cohen-Or, D. & Lee, T. (2008). Skeleton extraction by mesh 
contraction. ACM Transactions on Graphics, Vol.27, No 3, pp. 1-10, ISSN: 0730-0301. 

Amenta, N.; Choi, S.; Kolluri R. (2001) The power crust. in Proceedings of the sixth ACM 
symposium on Solid modeling and applications, pp. 249 - 266; ISBN:1-58113-366-9; Ann 
Arbor, Michigan, United States; June , 2001; ACM  New York, NY, USA 

Bartz, D. (2005). Virtual Endoscopy in Research and Clinical Practice, Computer Graphics 
Forum , Vol.24, No.1, pp.  111-126, ISSN: 0167-7055. 

Bitter, I.; Sato, M.; Bender, M.; Mcdonnell, K.; Kaufman, A. & Wan, M. (2000). Ceasar, A 
smooth, accurate and robust centerline extraction algorithm. In Proc. Visualization 
2000, pp. 45-52, ISBN: 0-7803-6478-3; Salt Lake City, Utah, United States; October 
2000; IEEE Computer Society Press  Los Alamitos, CA, USA. 

Bitter, I.; Kaufman, A. & Sato, M. (2001). Penalized-distance volumetric skeleton algorithm. 
IEEE Transactions on Visualization and Computer Graphics , Vol.7, No.3, pp. 195-206, 
ISSN: 1077-2626. 

Brostow, G. J. ; Essa, I. ; Steedly, D. & Kwatra, V. (2004). Novel skeletal representation for 
articulated creatures. In Proceedings of the European Conference on Computer Vision 
(ECCV04), vol. III, pp.66-78, ISBN: 3-540-21984-6, Prague, Czech Republic; May, 
2004; Springer-Verlag, Berlin Heidelberg. 

Cheng, C.; Zhang, X. & Chen, B. (2007). Simple reconstruction of tree branches from a single 
range image. Journal of Computer Science and Technology , Vol.22, No.6, pp.  846-858, 
ISSN: 1000-9000 (print version) ISSN: 1860-4749 (electronic version). 

Cornea, N.; Silver, D., Yuan, X. & Balasubrama-Nian, R. (2005). Computing hierarchical 
curve-skeletons of 3d objects. The Visual Computer , Vol.21, no.11, pp.  945-955, 
ISSN: 0178-2789 (print version), ISSN: 1432-2315 (electronic version). 

Cornea, D. & Min, P. (2007). Curve-skeleton properties, applications, and algorithms. IEEE 
Transactions on Visualization and Computer Graphics , Vol.13, No.3, pp.  530-548, 
ISSN: 1077-2626. 

Funkhouser, T.; Kazhdan, M.; Shilane, P.; Min, P., Kiefer, W.; Tal, A.; Rusinkiewicz, S. & 
Dobkin, D. (2004). Modeling by example, ACM Transactions on Graphics, Vol. 23, No. 
3, 652-663, ISSN: 0730-0301. 

Gagvani, N. & Silver, D. (1999). Parameter controlled volume thinning. Graphical Models and 
Image Processing , Vol.61, no.3, pp.149-164, ISSN: 1049-9652. 

Giblin, P. & Kimia, B. (2004). A formal classification of 3d medial axis points and their local 
geometry IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, 
No.2, pp.  238-251, ISSN: 0162-8828. 



Pattern Recognition70

 

Ju, T.; M. Baker, L. & Chiu, W. (2007). Computing a family of skeletons of volumetric models 
for shape description. Comput. Aided Des, Vol.39, No.5, pp.  352-360, ISSN: 0010-
4485. 

Katz S. & Tal A. (2003). Hierarchical mesh decomposition using fuzzy clustering and cuts. 
ACM Computer Graphics (Proc. of SIGGRAPH 2003) , Vol. 22, No. 3, 954–961, ISSN: 
0730-0301. 

Li, X.; T. Woon, W.; Tan, T. S. & Huang, Z. (2001), Decomposing polygon meshes for 
interactive applications. In I3D ’01: Proceedings of the 2001 symposium on Interactive 
3D graphics, pp.35-42, ISBN:1-58113-292-1, Research Triangle Park, North Carolina, 
USA, March 2001, ACM Press, New York, NY, USA. 

Lien, J. -M. & Amato, N. M. (2004). Approximate convex decomposition of polyhedra. In 
SIGGRAPH ’04: ACM SIGGRAPH 2004 Posters, pp. 2, ISBN: 1-58113-896-2, Los 
Angeles, California, August 2004, ACM Press, New York, NY, USA. 

Lien, J. & Amato, N. (2005). Simultaneous shape decomposition and skeletonization using 
approximate convex decomposition. In Technical Report, TR05-004, pp. 44-47, 
Parasol Laboratory, Department of Computer Science, Texas A M University; 
College Station, Texas, USA; Dec 2005. 

Lien, J. -M. & Amato, N. M. (2007). Approximate convex de-composition of polyhedra. In 
Symposium on Solid and Physical Modeling, pp.121-131, ISBN:1-59593-358-1, Cardiff, 
Wales, UK; Jun 2006; ACM Press, New York, NY, USA. 

Liu, J.; Zhang, X. & Blaise, F. (2004). Distance contained centerline for virtual endoscopy. In 
IEEE International Symp. Biomedical Imaging Macro to Nano (ISBI), pp. 261-264, ISBN: 
0-7803-8388-5, Arlington, VA, USA, April 2004, IEEE Press, New Jersey, USA. 

Luboz, V.; Wu, X., Krissian, K.; Westin, C. -F.; Kikinis, R.; Cotin, S. & Dawson, S. (2005). A 
segmentation and reconstruction technique for 3d vascular structures, In 
Proceedings Medical Image Computing and Computer-Assisted Intervention - MICCAI 
2005, pp. 43-50, ISSN: 0938-7994 (Print) 1432-1084 (Online); Palm Springs, CA, USA; 
October 26-29, 2005; Springer-Verlag, Berlin, Heidelberg. 

Ma, C. M. & Sonka, M. (1996). A fully parallel 3D thinning algorithm and its applications. 
Computer Vision and Image Understanding,  Vol.64, No.3, pp. 420-433, ISSN: 1077-
3142. 

Ma, W.; Xiang, B.; Zhang, X. & Zha H. (2008), Decomposition of Branching Volume Data by 
Tip Detection. In ICIP08: IEEE International Conference on Image Processing(ICIP). pp. 
1948-1951. ISBN: 978-1-4244-1765-0; San Diego, California, U.S.A; October, 2008; 
IEEE Press, New Jersey, USA. 

Ma, W.; Xiang, B.; Zha, H.; Liu, J. & Zhang, X. (2009). Modeling Plants with Sensor Data, 
Science in China Series F: Information Sciences, Vol. 52, No. 3, pp. 500-510, ISSN: 1009-
2757 (Print) 1862-2836 (Online). 

Reniers, D. & Telea, A. (2007), Skeleton-based Hierarchical Shape Segmentation, in: 
Proceedings of IEEE International Conference on Shape Modeling and Applications, 2007. 
SMI '07. pp. 179-188; ISBN: 0-7695-2815-5; Lyon, France; 13-15 June 2007, IEEE 
Computer Society  Washington, DC, USA 

Rom, H. & Medioni, G. (1993). Hierarchical decomposition and axial shape description. IEEE 
Transactions on Pattern Analysis and Machine Intelligence , Vol.15, No.10, pp.  973-98, 
ISSN: 0162-8828. 

 

Sato, M.; Bitter, I.; Bender, M. & Kaufman, A. (2000). Teasar. Tree-structure extraction 
algorithm for accurate and robust skeletons. In Proc. 8th Pacific conf. Computer 
Graphics and Applications, pp. 281-289, ISBN: 0-7695-0868-5; Hong Kong, China, 
October 2000; IEEE Computer Society  Washington, DC, USA. 

Shahrokni, A.; Zoroofi, R. & Soltanian-Zadeh, H. (2001). Fast skeletonization algorithm for 
3d elongated objects, In Proc. SPIE 4322, Vol. 4322, Medical Imaging 2001, pp. 323-
330, ISBN: 0-8194-4008-6, February 2001, San Diego, CA, USA, SPIE Press, 
Bellingham, USA. 

Siddiqi, K. and Kimia, B.(1995), Parts of visual form: Computational aspects, , IEEE 
Transactions on Pattern Analysis and Machine Intelligence., vol. 17, No. 3, pp. 239-251,. 
ISSN: 0162-8828 

Simmons, M. & Sequin, C. H. (1998). 2D shape decomposition and the automatic generation 
of hierarchical representations. International Journal of Shape Modeling, Vol., No.4, 
pp. 63-78. ISSN: 0218-6543. 

Telea A.; Sminchisescu C. & Dickinson S. (2004). Optimal inference for hierarchical skeleton 
abstraction. In ICPR 2004, pp.  19-22; ISBN:1051-4651; Cambridge, UK; August, 
2004; IEEE Computer Society  Washington, DC, USA. 

Tung, T. & Schmitt, F. (2004). Augmented reeb graphs for content-based retrieval of 3d mesh 
models. In: Proceedings of Shape Modeling Applications 2004., pp.157-166, ISBN: 0-
7695-2075-8; Genoa, Italy; June 2004; IEEE Computer Society, Los Alamitos, 
California, USA. 

Wan, M.; Liang, Z.; Ke, Q.; Hong, L.; Bitter, I. & Kaufman, A. (2002). Automatic centerline 
extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging , Vol.21, No 
12, pp. 1450-1460. ISSN: 0278-0062. 

Wang, T. & Basu, A. (2007). A note on 'A fully parallel 3D thinning algorithm and its 
applications'. Pattern Recognition Letters, Vol. 28, No. 4. pp. 501-506.  ISSN:0167-
8655. 

Xiang, B.; Zhang, X.; Ma, W. and Zha, H (2008). Skeletonization of Branched Volume by 
Shape Decomposition. In CCPR08: Chinese Conference on Pattern Recognition. pp. 
116-121. ISBN: 978-1-4244-2316-3; Beijing, China; October 2008; IEEE Press, New 
Jersey, USA. 

Xu, H.; Gossett, N. & Chen, B. (2007). Knowledge and heuristic-based modeling of laser-
scanned trees. ACM Transactions on Graphics , Vol. 26, No.4, pp.  19. ISSN: 0730-
0301. 

Zhang, X.; Liu, J.; Li, Z. & Jaeger, M (2008). Volume decomposition and hierarchical 
skeletonization. In VRCAI ’08: Proceedings of The 7th ACM SIGGRAPH International 
Conference on Virtual-Reality Continuum and Its Applications in Industry. ISBN:978-1-
60558-335-8; Singapore; December 2008; ACM Press, New York, NY, USA. 

Zhang, X.; Liu, J.; Jaeger, M. & Li, Z. (2009). Volume Decomposition for Hierarchical 
Skeletonization, The International Journal of Virtual Reality; to appear 

Zhou, Y. & Toga, A. W. (1999). Efficient skeletonization of volumetric objects. IEEE 
Transactions on Visualization and Computer Graphics, Vol. 5, No.3, pp. 196-209. ISSN: 
1077-2626. 

 



Volume Decomposition and Hierarchical Skeletonization for Shape Analysis 71

 

Ju, T.; M. Baker, L. & Chiu, W. (2007). Computing a family of skeletons of volumetric models 
for shape description. Comput. Aided Des, Vol.39, No.5, pp.  352-360, ISSN: 0010-
4485. 

Katz S. & Tal A. (2003). Hierarchical mesh decomposition using fuzzy clustering and cuts. 
ACM Computer Graphics (Proc. of SIGGRAPH 2003) , Vol. 22, No. 3, 954–961, ISSN: 
0730-0301. 

Li, X.; T. Woon, W.; Tan, T. S. & Huang, Z. (2001), Decomposing polygon meshes for 
interactive applications. In I3D ’01: Proceedings of the 2001 symposium on Interactive 
3D graphics, pp.35-42, ISBN:1-58113-292-1, Research Triangle Park, North Carolina, 
USA, March 2001, ACM Press, New York, NY, USA. 

Lien, J. -M. & Amato, N. M. (2004). Approximate convex decomposition of polyhedra. In 
SIGGRAPH ’04: ACM SIGGRAPH 2004 Posters, pp. 2, ISBN: 1-58113-896-2, Los 
Angeles, California, August 2004, ACM Press, New York, NY, USA. 

Lien, J. & Amato, N. (2005). Simultaneous shape decomposition and skeletonization using 
approximate convex decomposition. In Technical Report, TR05-004, pp. 44-47, 
Parasol Laboratory, Department of Computer Science, Texas A M University; 
College Station, Texas, USA; Dec 2005. 

Lien, J. -M. & Amato, N. M. (2007). Approximate convex de-composition of polyhedra. In 
Symposium on Solid and Physical Modeling, pp.121-131, ISBN:1-59593-358-1, Cardiff, 
Wales, UK; Jun 2006; ACM Press, New York, NY, USA. 

Liu, J.; Zhang, X. & Blaise, F. (2004). Distance contained centerline for virtual endoscopy. In 
IEEE International Symp. Biomedical Imaging Macro to Nano (ISBI), pp. 261-264, ISBN: 
0-7803-8388-5, Arlington, VA, USA, April 2004, IEEE Press, New Jersey, USA. 

Luboz, V.; Wu, X., Krissian, K.; Westin, C. -F.; Kikinis, R.; Cotin, S. & Dawson, S. (2005). A 
segmentation and reconstruction technique for 3d vascular structures, In 
Proceedings Medical Image Computing and Computer-Assisted Intervention - MICCAI 
2005, pp. 43-50, ISSN: 0938-7994 (Print) 1432-1084 (Online); Palm Springs, CA, USA; 
October 26-29, 2005; Springer-Verlag, Berlin, Heidelberg. 

Ma, C. M. & Sonka, M. (1996). A fully parallel 3D thinning algorithm and its applications. 
Computer Vision and Image Understanding,  Vol.64, No.3, pp. 420-433, ISSN: 1077-
3142. 

Ma, W.; Xiang, B.; Zhang, X. & Zha H. (2008), Decomposition of Branching Volume Data by 
Tip Detection. In ICIP08: IEEE International Conference on Image Processing(ICIP). pp. 
1948-1951. ISBN: 978-1-4244-1765-0; San Diego, California, U.S.A; October, 2008; 
IEEE Press, New Jersey, USA. 

Ma, W.; Xiang, B.; Zha, H.; Liu, J. & Zhang, X. (2009). Modeling Plants with Sensor Data, 
Science in China Series F: Information Sciences, Vol. 52, No. 3, pp. 500-510, ISSN: 1009-
2757 (Print) 1862-2836 (Online). 

Reniers, D. & Telea, A. (2007), Skeleton-based Hierarchical Shape Segmentation, in: 
Proceedings of IEEE International Conference on Shape Modeling and Applications, 2007. 
SMI '07. pp. 179-188; ISBN: 0-7695-2815-5; Lyon, France; 13-15 June 2007, IEEE 
Computer Society  Washington, DC, USA 

Rom, H. & Medioni, G. (1993). Hierarchical decomposition and axial shape description. IEEE 
Transactions on Pattern Analysis and Machine Intelligence , Vol.15, No.10, pp.  973-98, 
ISSN: 0162-8828. 

 

Sato, M.; Bitter, I.; Bender, M. & Kaufman, A. (2000). Teasar. Tree-structure extraction 
algorithm for accurate and robust skeletons. In Proc. 8th Pacific conf. Computer 
Graphics and Applications, pp. 281-289, ISBN: 0-7695-0868-5; Hong Kong, China, 
October 2000; IEEE Computer Society  Washington, DC, USA. 

Shahrokni, A.; Zoroofi, R. & Soltanian-Zadeh, H. (2001). Fast skeletonization algorithm for 
3d elongated objects, In Proc. SPIE 4322, Vol. 4322, Medical Imaging 2001, pp. 323-
330, ISBN: 0-8194-4008-6, February 2001, San Diego, CA, USA, SPIE Press, 
Bellingham, USA. 

Siddiqi, K. and Kimia, B.(1995), Parts of visual form: Computational aspects, , IEEE 
Transactions on Pattern Analysis and Machine Intelligence., vol. 17, No. 3, pp. 239-251,. 
ISSN: 0162-8828 

Simmons, M. & Sequin, C. H. (1998). 2D shape decomposition and the automatic generation 
of hierarchical representations. International Journal of Shape Modeling, Vol., No.4, 
pp. 63-78. ISSN: 0218-6543. 

Telea A.; Sminchisescu C. & Dickinson S. (2004). Optimal inference for hierarchical skeleton 
abstraction. In ICPR 2004, pp.  19-22; ISBN:1051-4651; Cambridge, UK; August, 
2004; IEEE Computer Society  Washington, DC, USA. 

Tung, T. & Schmitt, F. (2004). Augmented reeb graphs for content-based retrieval of 3d mesh 
models. In: Proceedings of Shape Modeling Applications 2004., pp.157-166, ISBN: 0-
7695-2075-8; Genoa, Italy; June 2004; IEEE Computer Society, Los Alamitos, 
California, USA. 

Wan, M.; Liang, Z.; Ke, Q.; Hong, L.; Bitter, I. & Kaufman, A. (2002). Automatic centerline 
extraction for virtual colonoscopy. IEEE Transactions on Medical Imaging , Vol.21, No 
12, pp. 1450-1460. ISSN: 0278-0062. 

Wang, T. & Basu, A. (2007). A note on 'A fully parallel 3D thinning algorithm and its 
applications'. Pattern Recognition Letters, Vol. 28, No. 4. pp. 501-506.  ISSN:0167-
8655. 

Xiang, B.; Zhang, X.; Ma, W. and Zha, H (2008). Skeletonization of Branched Volume by 
Shape Decomposition. In CCPR08: Chinese Conference on Pattern Recognition. pp. 
116-121. ISBN: 978-1-4244-2316-3; Beijing, China; October 2008; IEEE Press, New 
Jersey, USA. 

Xu, H.; Gossett, N. & Chen, B. (2007). Knowledge and heuristic-based modeling of laser-
scanned trees. ACM Transactions on Graphics , Vol. 26, No.4, pp.  19. ISSN: 0730-
0301. 

Zhang, X.; Liu, J.; Li, Z. & Jaeger, M (2008). Volume decomposition and hierarchical 
skeletonization. In VRCAI ’08: Proceedings of The 7th ACM SIGGRAPH International 
Conference on Virtual-Reality Continuum and Its Applications in Industry. ISBN:978-1-
60558-335-8; Singapore; December 2008; ACM Press, New York, NY, USA. 

Zhang, X.; Liu, J.; Jaeger, M. & Li, Z. (2009). Volume Decomposition for Hierarchical 
Skeletonization, The International Journal of Virtual Reality; to appear 

Zhou, Y. & Toga, A. W. (1999). Efficient skeletonization of volumetric objects. IEEE 
Transactions on Visualization and Computer Graphics, Vol. 5, No.3, pp. 196-209. ISSN: 
1077-2626. 

 



Pattern Recognition72



Structure and Motion from Image Sequences based on Multi-Scale Bayesian Network 73

Structure and Motion from Image Sequences based on Multi-Scale 
Bayesian Network

Norio Tagawa and Shoichi Naganuma

X 
 

Structure and Motion from Image Sequences 
based on Multi-Scale Bayesian Network 

 
Norio Tagawa and Shoichi Naganuma 

Tokyo Metropolitan University 
Japan 

 
1. Introduction  

A lot of studies have been reported on the problem of structure from motion (SFM) as a 
central theme of computer vision (CV). In the beginning of the research in this field, the 
principles of 3-D depth recovery and 3-D motion estimation from the viewpoint of 
mathematics have the attention of a lot of researchers (Adiv, 1985; Huang & Faugeras, 1989; 
Kanatani, 1993; Longuet-Higgins, 1981; Maybank, 1990; Tagawa et al., 1993; Tsai & Huang, 
1984; Zhuang et al., 1988). Subsequently accurate recovery methods have been examined 
and simultaneously the idea and the role of stochastic inference in CV have been discussed 
and analyzed (Daniilidis & Nagel, 1990; Kanatani, 1996; Tagawa et al., 1994; Tagawa et al. 
1996). Recently, stable and efficient methods represented by the factorization technique 
(Han & Kanade, 2002; Ke & Kanade, 2005) and methods with no use of camera calibration 
(Han & Kanade, 2002) have been proposed. Using these methods the development of the 
virtual reality technique has been intensely advanced. However, the intuitive difficulties of 
SFM, such as accuracy, high-resolution, computational cost and so on, have not been solved 
completely. Namely, a practical method for accurately detecting dense motion fields in 
images and/or relative depth maps between a camera and a target object, keeping spatial 
discontinuity with low computational cost, has not been established, and many studies have 
progressed on this problem (Brox et al., 2004; Farnebäck, 2001). Although the method based 
on the Markov random field (MRF) including a line process (Geman & Geman, 1984) is 
systematic and the resultant accuracy is significant, its realization in human vision system is 
not easy because of its computational complexity. On the other hand, increasing the 
observation information by unifying multiple frames is an important strategy, and the 
recently regarded methods described above use multi-frame information suitably (Bruhn & 
Weickert, 2005). However, these techniques assume that tracking of sparse feature points 
has been performed in advance, and hence, reliable detection caused by integrating 
temporal information is derived only at the sparse pixels. In this study we introduce a 
method which can recover dense and accurate depth maps based on two successive frames 
with no use of the complex MRF including a line process. In this framework, we are going to 
consider temporal unification in our future research. 
Since the detection of 2-dimensional motion field, called optical flow, based on the gradient 
equations is an ill-posed problem, another condition is required to determine the value of 
optical flow at each pixel. This issue is called “aperture problem,” and it is a fundamental 
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difficulty causing heteroptics in human vision. In the direct method (Horn & Welden Jr, 
1988; Stein & Shashua, 1997) which recovers depth without explicit detection of optical flow, 
the aperture problem also arises. The aperture problem has been conventionally avoided by 
either the local optimization (Lucas & Kanade, 1981; Kearney et al., 1987) or the global 
optimization (Horn & Schunk, 1981). The former assumes that optical flow or depth is 
locally constant. The latter assumes that the optical flow or depth changes smoothly in the 
spatial and/or the temporal domains. However, these assumptions impose constraints on 
the shape of the target directly or indirectly and cause resolution deterioration of the 
recovered structure. Especially, at the pixels where depth varies discontinuously, for 
example the contour of the object, the recovered depth might be inaccurate. Lately, in 
consideration of the case in which intensity invariableness before and after relative camera 
motion does not hold, methods using intensity constraint as well as geometric constraint are 
examined (Maki et al. 2002). Although it is possible that these schemes can solve the 
aperture problem, the research on this issue is still in progress.  
As another difficulty with respect to the optical flow detection, the alias problem should be 
solved. When the intensity pattern with short wavelength in comparison with the size of 
optical flow is used to detect optical flow, large detection error is observed. This detection 
error coincides with a usual aliasing phenomenon, and hence a frame rate is not enough to 
get complete information of the intensity variation. In an active vision scheme, the alias 
problem can be avoided by making the size of optical flow under a certain value constantly 
with a suitable time-sampling interval. However, for usual applications, passively taken 
image sequences are often used to recover depth maps, and then, a method based on a 
signal processing scheme is desirable. Most of the conventional methods extract spatially 
smooth intensity patterns by low-pass filtering. Therefore using these techniques, only a low 
spatial-resolution structure is recovered.  
In our study, original images are decomposed into multi-scale images, and the depth 
information detected using low resolution images is propagated to high resolution images 
in order to avoid the alias problem and to realize stable and high-resolution recovery using 
the dynamic Bayesian network spreading to a resolution direction. In this statistical 
inference processing, by applying the local optimization method and making the local 
region size smaller as the resolution of the treated images increases, depth discontinuity can 
be exactly recovered with low computational cost in comparison with the MRF. We 
introduce an algorithm by which depth map is recovered directly from the spatial and 
temporal variations of the image intensity without detecting optical flow. Although most of 
the related research firstly detects optical flow (Tagawa et al., 1995), and recovers depth map 
using the detected optical flow as an intervening measurement (Tagawa et al., 1996), it is 
natural for human vision system to extract and recognize optical flow, which is not 
necessarily caused by rigid motion, and depth map in parallel from the temporal variation 
of the light intensity received on a retina. From a computational theory, firstly detected 
optical flow without rigid motion constraints can be regarded as an intermediate solution 
derived by expanding the solution space, and hence it is not sure that the finally obtained 
depth map satisfies the exact constraints.  
In the dynamic Bayesian network used in this study, each unknown parameter is 
represented as a node as well as the depth corresponding to each pixel to be recovered and 
the observed image information. We call this graphical model a multi-scale Bayesian 
network. If the parameters, including relative 3-D motion between the camera and the object, 

 

are determined in advance, the inference of depth map is realized by the Kalman filter 
(Huang & Ho, 1999; Matthies & Kanade, 1989). For optical flow detection, Simoncelli 
proposed a method based on the same network in which optical flow is considered as a 
node and parameters are assumed to be known (Simoncelli, 1999).  
The scheme we propose in this chapter is to estimate depth map and parameters 
simultaneously from image observations using the above described Bayesian network. The 
parameters to be estimated are common to all multi-scale images, and hence, complete 
information propagation of both depth and parameters is complicated. Therefore, a suitable 
approximation has to be adopted. For that purpose we proposed a method based on the 
MAP-EM algorithm, in which the Laplace approximation is applied to the posterior 
probabilities of the parameters, and the saddle point approximation is introduced to the 
posterior of the depth (Tagawa et al., 2008). However, in this method, the variances of the 
parameters are computed by naïve numerical evaluation of the second order differentials of 
the log likelihood, which estimation is unstable and inaccurate. In this chapter, we present a 
new algorithm, in which the Supplemented MAP-EM algorithm (Meng & Rubin, 1991; van 
Dyk et al., 1995) is adopted to achieve a stable and accurate estimator of the above variances.  

 
2. Principle of Direct Structure and Motion Recovery 

2.1 Optical flow caused by rigid motion 
We use perspective projection as our camera-imaging model shown in Fig. 1. The camera is 
fixed with an (X, Y, Z) coordinate system, where the viewpoint, i.e., lens center, is at origin 
O and the optical axis is along the Z-axis. The projection plane, i.e. image plane, Z = 1 can be 
used without any loss of generality, which means that the focal length equals 1. A space 
point (X, Y, Z) on the object is projected to the image point (x, y). At each (x, y), the optical 
flow [vx, vy]T is formulated with an inverse depth d(x, y) =1/Z(x, y) and the camera’s 
translational and rotational vectors u =[ux, uy, uz]T, and r = [rx, ry, rz]T, respectively, are given 
as follows:  
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necessarily caused by rigid motion, and depth map in parallel from the temporal variation 
of the light intensity received on a retina. From a computational theory, firstly detected 
optical flow without rigid motion constraints can be regarded as an intermediate solution 
derived by expanding the solution space, and hence it is not sure that the finally obtained 
depth map satisfies the exact constraints.  
In the dynamic Bayesian network used in this study, each unknown parameter is 
represented as a node as well as the depth corresponding to each pixel to be recovered and 
the observed image information. We call this graphical model a multi-scale Bayesian 
network. If the parameters, including relative 3-D motion between the camera and the object, 

 

are determined in advance, the inference of depth map is realized by the Kalman filter 
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proposed a method based on the same network in which optical flow is considered as a 
node and parameters are assumed to be known (Simoncelli, 1999).  
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approximation has to be adopted. For that purpose we proposed a method based on the 
MAP-EM algorithm, in which the Laplace approximation is applied to the posterior 
probabilities of the parameters, and the saddle point approximation is introduced to the 
posterior of the depth (Tagawa et al., 2008). However, in this method, the variances of the 
parameters are computed by naïve numerical evaluation of the second order differentials of 
the log likelihood, which estimation is unstable and inaccurate. In this chapter, we present a 
new algorithm, in which the Supplemented MAP-EM algorithm (Meng & Rubin, 1991; van 
Dyk et al., 1995) is adopted to achieve a stable and accurate estimator of the above variances.  
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In the above equations, d is an unknown variable at each pixel position, and u and r are 
unknown parameters common for the whole image. In the following, Eqs. 1 and 2 are 
rewritten as  
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2.2 Gradient equation for rigid motion 
The optical flow constraint equation, which is called the “gradient equation,” is the first 
approximation of the assumption that image intensity is invariable before and after the 
relative 3-D motion between a camera and an object. At each pixel (x, y) in the image, the 
gradient equation is formulated with the partial differentials fx, fy and ft, where t denotes 
time, of the image intensity f(x, y, t) and the optical flow  
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By substituting Eqs. 3 and 4 into Eq. 5, the gradient equation representing a rigid motion 
constraint can be derived explicitly as  
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This equation can be used for the direct recovering the structure and the motion (Horn & 
Weldon Jr, 1988; Stein & Shashua, 1997). In this study, we use a convolution kernel defined 
as a derivative of the suitable interpolator kernel (Farid & Simoncelli, 1997), which is 
described in Sec.6.2 in detail, to calculate fx and fy accurately, and ft is detected as the finite 
difference using two successive frames. Hence, we suppose that only ft contains observation 
error, and we use Eq. 6 as the observation equation.  
It is obvious that from Eq. 6 the norm of u and d cannot be uniquely determined. Therefore, 
we suppose that the norm of u equals 1, and consider u to be u = [ux, uy, (1-ux2-uy2)1/2]T. 

 
3. Outline of Depth Recovery with Multi-Scale Processing 

3.1 Problems definition 
In order to recover accurate and high resolution depth map, the alias problem and the 
aperture problem have to be avoided. Firstly, we briefly explain the aperture problem. By 
representing the optical flow at each pixel as [vx, vy]T, from the relation kt  = vx kx + vy ky 
between the spatial wavenumber (kx, ky) and the temporal wavenumber kt, it can be known 
that the Nyquist frequency of time-sampling takes different value for each spatial frequency. 

 

However, usual time-sampling rate for each pixel, i.e. frame rate, is constant independently 
of the spatial frequencies. Hence, the possibility that the time-sampling rate for high spatial 
frequencies can not satisfy the sampling theory is higher than such possibility for low spatial 
frequencies. Therefore, a lot of conventinal methods analyze only the low resolution images 
extracted by low-pass filtering. In these techniques, high resolution information appears to 
be lost, which causes deterioration of the recovered structure.  
Subsequently, the aperture problem means that if some pairs of (fx, fy) take the same values 
in the local region in the image, where the optical flow can be assumed to be constant, we 
can not determine the optical flow uniquely by solving simultaneously the multiple 
equations corresponding to Eq. 5 obtained at the pixels in such local region. The essential 
cause for the aperture problem is the fact that Eq. 5 is ill-posed. The conventional methods 
which can cope with the problem are roughly devided into two types: the local optimization 
method and the global optimization method. The local optimization method assumes that 
the optical flow or the corresponding depth in each spatial local region and/or in each 
temporal local region is constant. Such the local regions have to be determined so that 

s),( yx ff  take various values. Then, each optical flow and each corresponding depth are 
obtained using the multiple equations in Eq. 5. By this approach, local constraints are 
introduced into the unknown structure, and only linear computations are required. On the 
other hand, the global optimization method uses the global constraints represented by the 
spatial smoothness of the optical flow or the depth, and concretely solves differential 
equations derived through the variational principle.  
As mentioned above, introducing limitations to the image information used to recover 
depth, i.e. low frequency components are extracted and used, for the alias problem, and 
introducing limitations to the unknown structure, i.e. resolution and hence degree of 
freedom of structure are lowered, for the aperture problem, are important approaches. 
Much conventional methods solve the aperture problem and the alias problem by applying 
such kinds of limitations. However, they cause resolution lowering of the obtained structure 
as compared with the raw image resolution, and then, accuracy of recovering is decreased 
especially at the discontinuous parts of the structure.  

 
3.2 Fundamental concept of proposed solution 
In the method described in this chapter, we aim to solve the above described two problems 
without lowering the resolution of recovered structure. Fundamental ideas are (i) 
decomposing images into multi-scale images each of which has proper spatial frequencies,  
(ii) adapting the assumed resolution of the structure to the resolution of the used image at 
each scale processing, and (iii) advancing the processing from low resolutions to high 
resolutions sequentially.  
The combination of (i) and (iii) deals with the alias problem. Although it is desirable that 
low resolution images are used in order to avoid aliasing, it is important that high resolution 
images are suitably analyzed in order not to lower the resolution of the recovered structure. 
Therefore, the employment of high resolution information with avoiding the aliasing can be 
performed by sequentially propagating the stable depth map with no aliasing obtained from 
low resolution step to high resolution step. This strategy is the same as the one proposed in 
the previous study (Simoncelli, 1999) for optical flow detection. By adopting the Bayesian 
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This equation can be used for the direct recovering the structure and the motion (Horn & 
Weldon Jr, 1988; Stein & Shashua, 1997). In this study, we use a convolution kernel defined 
as a derivative of the suitable interpolator kernel (Farid & Simoncelli, 1997), which is 
described in Sec.6.2 in detail, to calculate fx and fy accurately, and ft is detected as the finite 
difference using two successive frames. Hence, we suppose that only ft contains observation 
error, and we use Eq. 6 as the observation equation.  
It is obvious that from Eq. 6 the norm of u and d cannot be uniquely determined. Therefore, 
we suppose that the norm of u equals 1, and consider u to be u = [ux, uy, (1-ux2-uy2)1/2]T. 
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3.1 Problems definition 
In order to recover accurate and high resolution depth map, the alias problem and the 
aperture problem have to be avoided. Firstly, we briefly explain the aperture problem. By 
representing the optical flow at each pixel as [vx, vy]T, from the relation kt  = vx kx + vy ky 
between the spatial wavenumber (kx, ky) and the temporal wavenumber kt, it can be known 
that the Nyquist frequency of time-sampling takes different value for each spatial frequency. 

 

However, usual time-sampling rate for each pixel, i.e. frame rate, is constant independently 
of the spatial frequencies. Hence, the possibility that the time-sampling rate for high spatial 
frequencies can not satisfy the sampling theory is higher than such possibility for low spatial 
frequencies. Therefore, a lot of conventinal methods analyze only the low resolution images 
extracted by low-pass filtering. In these techniques, high resolution information appears to 
be lost, which causes deterioration of the recovered structure.  
Subsequently, the aperture problem means that if some pairs of (fx, fy) take the same values 
in the local region in the image, where the optical flow can be assumed to be constant, we 
can not determine the optical flow uniquely by solving simultaneously the multiple 
equations corresponding to Eq. 5 obtained at the pixels in such local region. The essential 
cause for the aperture problem is the fact that Eq. 5 is ill-posed. The conventional methods 
which can cope with the problem are roughly devided into two types: the local optimization 
method and the global optimization method. The local optimization method assumes that 
the optical flow or the corresponding depth in each spatial local region and/or in each 
temporal local region is constant. Such the local regions have to be determined so that 

s),( yx ff  take various values. Then, each optical flow and each corresponding depth are 
obtained using the multiple equations in Eq. 5. By this approach, local constraints are 
introduced into the unknown structure, and only linear computations are required. On the 
other hand, the global optimization method uses the global constraints represented by the 
spatial smoothness of the optical flow or the depth, and concretely solves differential 
equations derived through the variational principle.  
As mentioned above, introducing limitations to the image information used to recover 
depth, i.e. low frequency components are extracted and used, for the alias problem, and 
introducing limitations to the unknown structure, i.e. resolution and hence degree of 
freedom of structure are lowered, for the aperture problem, are important approaches. 
Much conventional methods solve the aperture problem and the alias problem by applying 
such kinds of limitations. However, they cause resolution lowering of the obtained structure 
as compared with the raw image resolution, and then, accuracy of recovering is decreased 
especially at the discontinuous parts of the structure.  

 
3.2 Fundamental concept of proposed solution 
In the method described in this chapter, we aim to solve the above described two problems 
without lowering the resolution of recovered structure. Fundamental ideas are (i) 
decomposing images into multi-scale images each of which has proper spatial frequencies,  
(ii) adapting the assumed resolution of the structure to the resolution of the used image at 
each scale processing, and (iii) advancing the processing from low resolutions to high 
resolutions sequentially.  
The combination of (i) and (iii) deals with the alias problem. Although it is desirable that 
low resolution images are used in order to avoid aliasing, it is important that high resolution 
images are suitably analyzed in order not to lower the resolution of the recovered structure. 
Therefore, the employment of high resolution information with avoiding the aliasing can be 
performed by sequentially propagating the stable depth map with no aliasing obtained from 
low resolution step to high resolution step. This strategy is the same as the one proposed in 
the previous study (Simoncelli, 1999) for optical flow detection. By adopting the Bayesian 
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inference as an information propagation scheme, depth error in low resolution can be 
compensated by high resolution processing.  
The combination of (i) and (ii) deals with the aperture problem. If we adopt the scheme (i) to 
avoid the aliasing, the obtained multi-scale depth information has naturally a hierarchical 
structure. Hence, it is appropriate that spatial resolution of the depth variable is lowered for 
low resolution step and inversely it is improved for high resolution step. Such control of the 
resolution depending on the image resolution can be done by both the local optimization 
method and the global optimization method, and in this study, we use the local 
optimization scheme, since it can be performed by local computations. Basically, for the low 
resolution step the size of the region where depth is assumed to be constant is expanded, 
and as resolution becomes high, this size is contracted.  
In addition to the methodological feature of our solution described above, the following 
technical originality is asserted in this study. If the parameters contained in our statistical 
model are determined in advance, the Kalman filter can be applied to the inference of depth 
map (Huang & Ho, 1999; Matthies & Kanade, 1989). However, such condition can not be 
generally supposed, and hence, our solution can estimate both depth map and parameters 
by information propagation on the dynamic Bayesian network spreading to the image 
resolution direction. In this scheme, a strategy with low computational cost is quite 
important, since simultaneous complete belief propagation (BP) is a complicated problem. 
Therefore, we adopt suitable approximations, i.e. the Laplace approximation is applied to 
the posterior probabilities of the parameters and the saddle point approximation is 
introduced to the posterior of the depth, and additionally, the Supplemented MAP-EM 
algorithm (Meng & Rubin, 1991) is applied as a stable and effective processing. The 
remarkable feature of the Supplemented MAP-EM algorithm compared with the simple 
MAP-EM algorithm is that by the Supplemented MAP-EM algorithm the asymptotic 
variance-covariance of the parameters can be estimated using only the code for the MAP-
EM algorithm itself and the code for standard matrix operation instead of the numerical 
differentials. The asymptotic variance-covariance matrix is necessary for BP, and then, the 
application of the Supplemented MAP-EM algorithm is a strong assertion in this study. This 
framework can be used for a lot of fields in which the usual Kalman filter can be applied 
effectively.  

 
4. Computation Principle based on Multi-Scale Processing 

4.1 Image decomposition and probabilistic models 
Firstly, we explain decomposition of observed images into multi-scale images. In order to 
simply decompose those into multiple images having different resolutions, it is reasonable 
to vary the cut-off frequency of the spatial low-pass filter. However, since we assume for the 
following processing that the observation errors contained in the temporal differentials of 
the image intensity have statistically independency among different resolutions, we adopt 
the decomposition using a spatial band-pass filter. In the following, index l = 1, 2, … , L 
represents the difference of the frequency band of the image, and l = 1 indicates the lowest 
resolution image, called the lowest image hereafter. The resolution of the depth map for 
each resolution image is defined according to its frequency band which corresponds to the 
spatial wavelength. Namely, for the image indexed by l, depth is assumed to be constant in 
a local region which size is Nl, and size Nl is determined along with a rule that 
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l1 > l2. Although a pyramid structure of multi-scale images, for example the Wavelet 
transform, is suitable for effective treatment of the information, all information observed at 
all pixels is used without performing down sampling.  
Next, we define the probabilistic models. As mentioned in Sec. 2.2, translational vector u is 
described as u = [ux, uy, (1-ux2-uy2)1/2]T, hence the scale of d should be fixed by this 
normalization of u. As mentioned above, d is a constant in the local region for each 
resolution image, and the constants for all the local regions are independent. Among the 
different resolutions, d is supposed to be a conditionally independent unknown variable. 
This is based on the definition 
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where I(l) indicates a linear interpolation operator from l to l+1. In this equation, n0(l) is a 
Gaussian random variable with zero mean and variance 2

0  common to all local regions 
and all resolutions, which means a perturbation from the interpolation value and it is 
statistically independent of other random variables. The probability density function of d(l+1) 
is given as 
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d  can be formulated recuirsively as follows: 
 

( 1) ( ) ( )I ,l l l
d dm m      (9) 

 

.I 2
0

)(22)()1(2  





 l
d

ll
d  (10) 

 
Equation 10 indicates an approximated representation in which the covariance terms of d(l) 

are neglected and hence only the variance terms are considered. Moreover, 
2)(I l  is also the 

linear interpolation operator, the weight coefficients of which correspond to the power of 
each of the corresponding coefficient of I(l).  
Subsequently, we define a probabilistic model for an observation ft. An observation equation 
containing an observation error is given based on Eq. 6 as follows: 
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There have been several discussions with respect to a noise model of Eq. 11 (Nestares et al., 
2000; Weiss & Fleet, 2001). For simplicity, the observation error n1(l)  is a Gaussian random 
variable with zero mean and variance 2

1  common to all local regions and all resolutions 
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inference as an information propagation scheme, depth error in low resolution can be 
compensated by high resolution processing.  
The combination of (i) and (ii) deals with the aperture problem. If we adopt the scheme (i) to 
avoid the aliasing, the obtained multi-scale depth information has naturally a hierarchical 
structure. Hence, it is appropriate that spatial resolution of the depth variable is lowered for 
low resolution step and inversely it is improved for high resolution step. Such control of the 
resolution depending on the image resolution can be done by both the local optimization 
method and the global optimization method, and in this study, we use the local 
optimization scheme, since it can be performed by local computations. Basically, for the low 
resolution step the size of the region where depth is assumed to be constant is expanded, 
and as resolution becomes high, this size is contracted.  
In addition to the methodological feature of our solution described above, the following 
technical originality is asserted in this study. If the parameters contained in our statistical 
model are determined in advance, the Kalman filter can be applied to the inference of depth 
map (Huang & Ho, 1999; Matthies & Kanade, 1989). However, such condition can not be 
generally supposed, and hence, our solution can estimate both depth map and parameters 
by information propagation on the dynamic Bayesian network spreading to the image 
resolution direction. In this scheme, a strategy with low computational cost is quite 
important, since simultaneous complete belief propagation (BP) is a complicated problem. 
Therefore, we adopt suitable approximations, i.e. the Laplace approximation is applied to 
the posterior probabilities of the parameters and the saddle point approximation is 
introduced to the posterior of the depth, and additionally, the Supplemented MAP-EM 
algorithm (Meng & Rubin, 1991) is applied as a stable and effective processing. The 
remarkable feature of the Supplemented MAP-EM algorithm compared with the simple 
MAP-EM algorithm is that by the Supplemented MAP-EM algorithm the asymptotic 
variance-covariance of the parameters can be estimated using only the code for the MAP-
EM algorithm itself and the code for standard matrix operation instead of the numerical 
differentials. The asymptotic variance-covariance matrix is necessary for BP, and then, the 
application of the Supplemented MAP-EM algorithm is a strong assertion in this study. This 
framework can be used for a lot of fields in which the usual Kalman filter can be applied 
effectively.  

 
4. Computation Principle based on Multi-Scale Processing 

4.1 Image decomposition and probabilistic models 
Firstly, we explain decomposition of observed images into multi-scale images. In order to 
simply decompose those into multiple images having different resolutions, it is reasonable 
to vary the cut-off frequency of the spatial low-pass filter. However, since we assume for the 
following processing that the observation errors contained in the temporal differentials of 
the image intensity have statistically independency among different resolutions, we adopt 
the decomposition using a spatial band-pass filter. In the following, index l = 1, 2, … , L 
represents the difference of the frequency band of the image, and l = 1 indicates the lowest 
resolution image, called the lowest image hereafter. The resolution of the depth map for 
each resolution image is defined according to its frequency band which corresponds to the 
spatial wavelength. Namely, for the image indexed by l, depth is assumed to be constant in 
a local region which size is Nl, and size Nl is determined along with a rule that 
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l1 > l2. Although a pyramid structure of multi-scale images, for example the Wavelet 
transform, is suitable for effective treatment of the information, all information observed at 
all pixels is used without performing down sampling.  
Next, we define the probabilistic models. As mentioned in Sec. 2.2, translational vector u is 
described as u = [ux, uy, (1-ux2-uy2)1/2]T, hence the scale of d should be fixed by this 
normalization of u. As mentioned above, d is a constant in the local region for each 
resolution image, and the constants for all the local regions are independent. Among the 
different resolutions, d is supposed to be a conditionally independent unknown variable. 
This is based on the definition 
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where the mean md(l+1) and the variance 
)1(2 l

d  can be formulated recuirsively as follows: 
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Equation 10 indicates an approximated representation in which the covariance terms of d(l) 

are neglected and hence only the variance terms are considered. Moreover, 
2)(I l  is also the 

linear interpolation operator, the weight coefficients of which correspond to the power of 
each of the corresponding coefficient of I(l).  
Subsequently, we define a probabilistic model for an observation ft. An observation equation 
containing an observation error is given based on Eq. 6 as follows: 
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There have been several discussions with respect to a noise model of Eq. 11 (Nestares et al., 
2000; Weiss & Fleet, 2001). For simplicity, the observation error n1(l)  is a Gaussian random 
variable with zero mean and variance 2

1  common to all local regions and all resolutions 
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and it is statistically independent of other random variables. From Eq. 11, ft(l) is also a 
Gaussian random variable and its conditional probability density can be formulated as 
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The probabilistic model defined above can be represented as a graphical model, i.e. the 
Bayesian network shown in Fig. 2. In this network, the parameters  2

1
2
0 ,,,, ryx uu , 

which are also shown in Fig. 2, are regarded as probabilistic variables estimated through BP, 
which is described in the following section. In this figure, the parameters are shown not to 
be common to the layers formally, but they are assumed to be constants with respect to the 
layers in this study. 
 

 
Fig. 2. Graphical model used in this chapter 
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represents a set of arbitrary values a defined at all the pixels. Such )1(ˆ ld  corresponds to the 
mean of a posterior probability of d(l+1) after obtaining all observations. This posterior 
probability is introduced as follows.  
Let  )(l

tf  be a set of ft(l) in a local region   in an image where d(l) is assumed to be constant, 
and the next holds  
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This can be rewritten using the Bayes formula as follows: 
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The numerator of the right hand side of Eq. 14 can be concretely shown. Firstly, the second 
term of this numerator can be written using d(l) which resolution is one-step lower than d(l+1)  
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where  I    indicates a set of the elements used for the linear interpolation. From Eqs. 7 and 

11, Eq. 15 also represents the Gaussian distribution, and using the mean )(~ ld  and the 
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d  of the posterior distribution   ),( )()( l

t
l fdp  for resolution l, Eq. 15 can be 

represented as Eq. 8, i.e.,  
 

      .
~I2

~Iexp
~I2

1,
2
0

)(2)(

2)()()1(

2
0

)(2)(

)()1(
22

























 













 











l

d
l

lll

l
d

l

l
t

l ddfdp   

(17) 

 
Therefore, the numerator of Eq. 14 can be formulated as follows: 
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and it is statistically independent of other random variables. From Eq. 11, ft(l) is also a 
Gaussian random variable and its conditional probability density can be formulated as 
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where N is the number of pixels in the region  . The estimator of d(l+1) minimizing H 
formulated by Eq. 20 is the MAP (Maximum A Posteriori) estimator )1( l

MAPd  and it coincides 

with the mean of the posterior probability in Eq. 14. Hence, )1()1( ~   ll
MAP dd  holds. For the 

Gaussian distribution, the MAP estimator is also the minimum variance estimator. It can be 
known that )1(~ ld  is computed recursively using Eq. 21, and this procedure is an essential 
operation of the Kalman filter. Equations 7 and 11 correspond to the state equation and the 
observation equation, respectively.  
The Kalman filter is usually used to estimate effectively a marginal posterior probability of 
inner state at the present time using observations already measured. Since we aim to 
estimate  )(Ld , and   )( )( Lld l   is not explicitely needed, in the proposed scheme, we can 

determine  )(Ld  in a way similar to the Kalman filter strategy, i.e. we use the marginal 

posterior probability      ),,( )1()()( L
t

L
t

L ffdp  instead of the simultaneous posterior 

probability         ),,,,( )1()()1()(   L
t

L
t

LL ffddp  to determine  )(Ld . This estimator is often 

called the MPM (Marginal Posterior Mode) estimator. Another essential reason for using the 
Kalman filter strategy is the fact that the alias problem should be avoided. When ft(l) is 
measured as a difference using two succsessive frames, if the amplitude of the 2-D motion is 
larger than the spatial wavelength corresponding to the spatial frequency band of f(l), the 
undesirable aliasing occurs. Therefore, we define ft(l)  in which alising can not be seen using 

the estimated optical flow  T)1()1()1( ˆ,ˆˆ   l
y

l
x

l vvv  calculated indirectly from the depth )1(~ ld  
obtained for the one-step low resolution images f(l-1) as follows: 
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where a warp operation is defined as 
 

    ,,,,W tttfttf   vxxv  (24) 
 
and partial differential t/  is done as a finite difference. From the above definitions, the 
optical flow estimations at the lower resolution step, which estimations have little risk of 
aliasing, should be used successively, so as to avoid aliasing and detect stable ft(l). For such 

 

purpose, the sequential procedure from low resolution step to high resolution step is 
required.  

 
4.3 Computation flow including parameter determination 
For the successive estimation described in the above section, there are some parameters 
which should be known in advance. It is usual that parameters are treated as definite 
variables and are determined as a maximum likelihood (ML) estimator. On the other hand, 
it is known that the MAP estimator obtained by considering a parameter as a probabilistic 
variable formally having a uniform distribution coincides with a ML estimator. Hence, in 
this study, we suppose that the parameters are probabilistic variables as well as depth. 
Since we assume that 2

0  and 2
1  are common to all resolution steps, 

 2
1

2
0 ,,,, ryx uu  has to be determined with no dependence of each resolution 

processing. The information of  )(ld  is propagated from low resolution to high resolution, 
therefore we estimate   by the same scheme and adopt the Bayesian inference formally 
supposing a prior of  . The posterior probability density of  can be decomposed in the 
following way  
 

    
     
     

     
     

    
   .

,,

,,,

,,

,,,

,,

)1(

)1(

)1()2()1(

)1()2()1(

)1()1()(

)1()1()(

)1()(

t

t

t
L

t
L

t

t
L

t
L

t

t
L

t
L

t

t
L

t
L

t

t
L

t

fp
pfp

fffp

fffp

fffp

fffp

ffp

























 

(25) 

 
We assume that the last term at the right hand side of Eq. 25, i.e.   )1(

tfp  , is explicitly 

known. After observing  )2(
tf  from the next higher resolution images, we can compute  
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In this equation, the term    ,)1()2(

tt ffp  can be derived using Eqs. 12 and 17 as follows: 

 
             .,,, )2()1()2()2()2()1()2( ddfdpdfpffp tttt    (27) 

 
It should be noticed that   is omitted in Eqs. 12 and 17 and in these equations   means a 
true value, but in Eq. 27   is considered as a variable. By propagating the computation of 
Eq. 26 successively from low resolution images to high resolution images, we can finally 
obtain the left hand side of Eq. 25. This procedure also coincides with Kalman filtering for a 
state variable having no dynamic transition. By assuming a prior having a large entropy for 
 p , for example a uniform distribution, the Bayesian estimator MAP  approximately 

equals to the ML estimator.  
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where N is the number of pixels in the region  . The estimator of d(l+1) minimizing H 
formulated by Eq. 20 is the MAP (Maximum A Posteriori) estimator )1( l

MAPd  and it coincides 

with the mean of the posterior probability in Eq. 14. Hence, )1()1( ~   ll
MAP dd  holds. For the 

Gaussian distribution, the MAP estimator is also the minimum variance estimator. It can be 
known that )1(~ ld  is computed recursively using Eq. 21, and this procedure is an essential 
operation of the Kalman filter. Equations 7 and 11 correspond to the state equation and the 
observation equation, respectively.  
The Kalman filter is usually used to estimate effectively a marginal posterior probability of 
inner state at the present time using observations already measured. Since we aim to 
estimate  )(Ld , and   )( )( Lld l   is not explicitely needed, in the proposed scheme, we can 

determine  )(Ld  in a way similar to the Kalman filter strategy, i.e. we use the marginal 

posterior probability      ),,( )1()()( L
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L ffdp  instead of the simultaneous posterior 
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LL ffddp  to determine  )(Ld . This estimator is often 

called the MPM (Marginal Posterior Mode) estimator. Another essential reason for using the 
Kalman filter strategy is the fact that the alias problem should be avoided. When ft(l) is 
measured as a difference using two succsessive frames, if the amplitude of the 2-D motion is 
larger than the spatial wavelength corresponding to the spatial frequency band of f(l), the 
undesirable aliasing occurs. Therefore, we define ft(l)  in which alising can not be seen using 

the estimated optical flow  T)1()1()1( ˆ,ˆˆ   l
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l vvv  calculated indirectly from the depth )1(~ ld  
obtained for the one-step low resolution images f(l-1) as follows: 
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where a warp operation is defined as 
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and partial differential t/  is done as a finite difference. From the above definitions, the 
optical flow estimations at the lower resolution step, which estimations have little risk of 
aliasing, should be used successively, so as to avoid aliasing and detect stable ft(l). For such 

 

purpose, the sequential procedure from low resolution step to high resolution step is 
required.  
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We assume that the last term at the right hand side of Eq. 25, i.e.   )1(
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known. After observing  )2(
tf  from the next higher resolution images, we can compute  
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In this equation, the term    ,)1()2(

tt ffp  can be derived using Eqs. 12 and 17 as follows: 

 
             .,,, )2()1()2()2()2()1()2( ddfdpdfpffp tttt    (27) 

 
It should be noticed that   is omitted in Eqs. 12 and 17 and in these equations   means a 
true value, but in Eq. 27   is considered as a variable. By propagating the computation of 
Eq. 26 successively from low resolution images to high resolution images, we can finally 
obtain the left hand side of Eq. 25. This procedure also coincides with Kalman filtering for a 
state variable having no dynamic transition. By assuming a prior having a large entropy for 
 p , for example a uniform distribution, the Bayesian estimator MAP  approximately 

equals to the ML estimator.  
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We again refer the successive estimation of  )(ld , and also in Eqs. 14, 21 and 22 the true 
value of   is necessary to be known. Correctly, Eq. 14 should be written as 

    
 ,,, )1()1()1(

t
l

t
l ffdp  . Hence, in order to solve a problem, in which  is unknown as 

well as  )(Ld , the marginalization with respect to   is required to propagate the 
information of depth as follows:  
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From the above discussion, the flow of procedures at each resolution step is summarized in 
the following five steps. We assume that at the lth layer the posteriors of   and  )(ld  are 

already derived as     )1()( ,, t
l

t ffp   and     )1()()( ,, t
l

t
l ffdp  , respectively.   

 
(i) Using Eq. 17, compute the predictive posterior probability      ,,, )1()()1(

t
l

t
l ffdp   from 

    )1()()( ,, t
l

t
l ffdp  .  

(ii) By generalizing Eqs. 26 and 27 for (l+1)th layer, compute the posteriors of the 
parameters     )1()1( ,, t

l
t ffp   from     )1()( ,, t

l
t ffp   at the previous layer, 

     ,,, )1()()1(
t

l
t

l ffdp    obtained at (i) and   ,)1()1( ll
t dfp  definded in Eq. 12.  

(iii) Using      ,,, )1()()1(
t

l
t

l ffdp   and   ,)1()1( ll
t dfp  alike in (ii), compute the posterior 

of depth conditioned on the parameters     
 ,,, )1()1()1(

t
l

t
l ffdp  .  

(iv) Using Eq. 28, compute the marginal posterior of depth     )1()1()1( ,, t
l

t
l ffdp 

  from 

    
 ,,, )1()1()1(

t
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t
l ffdp   obtained in (iii) and     )1()1( ,, t

l
t ffp   obtained in (ii).  

(v) The above procedures should be repeated for the next resolution layer.  
 
There is another scheme to determine the parameters besides the above one. By considering 
both  )(ld  and  as state variables, their successive updating can be performed. Based on 
the extended Kalman filter theory, this can be formulated by linearizing locally the 
observation equation and the state equation with respect to  . However, the obtained 
estimator is the Bayesian estimator based on the simultaneous posterior 
      )1()()( ,,, t

l
t

l ffdp  . On the other hand, our scheme can obtain the estimators based on 

both marginal posteriors       )1()()( ,, t
l

t
l ffdp   and     )1()( ,, t

l
t ffp  . Since  )(ld  and 

 have no special meaning as a pair, the estimation scheme in our study is adequate.  

 

 

5. Computing Algorithm 

5.1 Application of EM algorithm for approximation 
In order to approximately execute the BP procedure mentioned in the above section, we can 
use a framework with the EM algorithm (Dempster et al., 1977). The EM algorithm is an 
effective scheme if applied to the problem which is easy to be solved if some unknown 
variables, often called the hidden variables, are observed in addition to actual observations. 
Such hidden variables and observations considered together are called the ˝complete data,˝ 
and the observations themselves are called the ˝incomplete data.˝ By the EM algorithm, the 
posterior probabilities of the hidden variables and the ML estimators of the parameters can 
be obtained through iterative procedures. Additionally, by the MAP-EM algorithm 
extended version of EM algorithm, the MAP estimation of the parameters can be performed 
based on the posterior probabilities of the parameters marginalized with respect to the 
hidden variables. Although the details are omitted, the following two steps are executed at 
the each iteration:  
[E-step]: The posterior probabilities of the hidden variables are derived using the 
parameters values estimated at the previous iteration. Using these probabilities the 
evaluation function, called Q function, needed for the parameters updating is introduced.  
[M-step]: The parameters values are updated by maximizing the Q function introduced in 
the E-step. 
In this study, the MAP-EM algorithm is applied for each resolution l, and hence, the MAP 
estimator MAP using the prior     )1()1( ,, t

l
t ffp   and the MAP estimator  )(l

MAPd  based on 

its posterior conditioned by MAP are determined. These estimators are not completely the 
ones given in Eqs. 25 and 28. However, the application of the MAP-EM algorithm with 
supplemented function described in the following subsections in details enables an efficient 
computation algorithm for our problem, and the estimators derived by this algorithm can be 
assumed to be appropriate approximations.  

 
5.2 MAP-EM algorithm for determining depth and motion 
In this section, we introduce the explicit formulations for the resolution l, i.e. the layer l, to 
obtain MAP and  )(l

MAPd  using the images which resolutions are not exceeding l. At the E-
step, the following Q function with respect to  is constructed  
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where    ( ) (1) ˆE   , , ,l
t tf f    denotes the conditional expectation using 

     ̂,,, )1()()(
t

l
t

l ffdp  , and in the following formulations including Eq. 29, the symbol ̂  

indicates the estimate or variable depending on the estimate derived in this iteration. In Eq. 
29, the simultaneous probability of  )(l

tf and  )(ld  is 
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We again refer the successive estimation of  )(ld , and also in Eqs. 14, 21 and 22 the true 
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From the above discussion, the flow of procedures at each resolution step is summarized in 
the following five steps. We assume that at the lth layer the posteriors of   and  )(ld  are 

already derived as     )1()( ,, t
l
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l ffdp  , respectively.   
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(v) The above procedures should be repeated for the next resolution layer.  
 
There is another scheme to determine the parameters besides the above one. By considering 
both  )(ld  and  as state variables, their successive updating can be performed. Based on 
the extended Kalman filter theory, this can be formulated by linearizing locally the 
observation equation and the state equation with respect to  . However, the obtained 
estimator is the Bayesian estimator based on the simultaneous posterior 
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both marginal posteriors       )1()()( ,, t
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t
l ffdp   and     )1()( ,, t
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t ffp  . Since  )(ld  and 

 have no special meaning as a pair, the estimation scheme in our study is adequate.  

 

 

5. Computing Algorithm 

5.1 Application of EM algorithm for approximation 
In order to approximately execute the BP procedure mentioned in the above section, we can 
use a framework with the EM algorithm (Dempster et al., 1977). The EM algorithm is an 
effective scheme if applied to the problem which is easy to be solved if some unknown 
variables, often called the hidden variables, are observed in addition to actual observations. 
Such hidden variables and observations considered together are called the ˝complete data,˝ 
and the observations themselves are called the ˝incomplete data.˝ By the EM algorithm, the 
posterior probabilities of the hidden variables and the ML estimators of the parameters can 
be obtained through iterative procedures. Additionally, by the MAP-EM algorithm 
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based on the posterior probabilities of the parameters marginalized with respect to the 
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the each iteration:  
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supplemented function described in the following subsections in details enables an efficient 
computation algorithm for our problem, and the estimators derived by this algorithm can be 
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In this section, we introduce the explicit formulations for the resolution l, i.e. the layer l, to 
obtain MAP and  )(l

MAPd  using the images which resolutions are not exceeding l. At the E-
step, the following Q function with respect to  is constructed  
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(30) 

In Eq. 30, we suppose that the number of pixels in the local region )(l
i is constant with 

respect to the local region index i and it takes value )(lN . Additionally, the number of the 
local regions in an image is given by )(lM . The function which expectation is computed in 
Eq. 29 is concretely written using Eqs. 12 and 17 as follows: 
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(31) 

 
where the Laplace approximation is applied to     )1()1( ,, t

l
t ffp  , i.e. it is approximated 

by a Gaussian distribution, since it has a complex form. To simplify the computations, we 
assume that there is no correlation between each two of  rm ,, yx uu , 2

0 and 2
1 . As 

parameters of the Laplace approximation, the mean~ and the covariance V~  of   at layer l-
1 are used. Their estimation method is described in the next section.  

On the other hand,     
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i
  used for the expectation in Eq. 29 has a 

Gaussian distribution, and its mean and variance are represented using ̂ and Eqs. 21 and 
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By taking the expectation of Eq. 31 with respect to     
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  using Eqs. 32 

and 33,   ˆ;Q  in Eq. 29 can be concretely derived. At the M-step,   ˆ;Q  should be 
maximized with respect to  in order to update  . Therefore, to update  we can 
minimize the following function, which is obtained by multiplying   ˆ;Q  by -2 and 
neglecting the constant value  
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Minimization of  J in Eq. 34 cannot be done analytically; therefore, numerical search has 
to be performed. In general, the value completely minimizing an objective function is 
difficult to be found. In such case, we can use the generalized MAP-EM algorithm in which, 
at the M-step, parameter updating is done so as to enlarge the value of the Q function more 
than that for the parameters values obtained at the previous iteration. By the generalized 
MAP-EM algorithm, the computational cost for each M-step often decreases, although the 
number of iterations may increase.  
After convergence of the above two steps for each layer l, if the initial values of  for the 
iteration are suitable, we can obtain MAP , which maximizes     )1()( ,, t

l
t ffp   and 

coincides with the mean ~ of this probability because of the Laplace approximation, and 
)(l

MAPd , which maximizes     
~,,, )1()()(

t
l

t
l ffdp   and also coincides with the mean )(~ ld . The 

probability which should be actually evaluated corresponds to Eq. 28, and the integration 
for this marginalization requires a numerical computation or a random sampling technique. 
Hence, in this study, we justify the solution of the above MAP-EM algorithm by applying 
the saddle point approximation to     )1()( ,, t

l
t ffp  , as follows: 
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5.3 Parameter variance estimation using Supplemented EM technique 
In order to evaluate Eq. 34, i.e. Eq. 37, for each layer l, the variance-covariance matrix of  at 
the previous layer l -1 is required. However, this matrix cannot be estimated directly by the 
MAP-EM algorithm. Usually used naive approximate method is evaluating 
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In Eq. 30, we suppose that the number of pixels in the local region )(l
i is constant with 

respect to the local region index i and it takes value )(lN . Additionally, the number of the 
local regions in an image is given by )(lM . The function which expectation is computed in 
Eq. 29 is concretely written using Eqs. 12 and 17 as follows: 
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where the Laplace approximation is applied to     )1()1( ,, t

l
t ffp  , i.e. it is approximated 

by a Gaussian distribution, since it has a complex form. To simplify the computations, we 
assume that there is no correlation between each two of  rm ,, yx uu , 2
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parameters of the Laplace approximation, the mean~ and the covariance V~  of   at layer l-
1 are used. Their estimation method is described in the next section.  
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By taking the expectation of Eq. 31 with respect to     
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and 33,   ˆ;Q  in Eq. 29 can be concretely derived. At the M-step,   ˆ;Q  should be 
maximized with respect to  in order to update  . Therefore, to update  we can 
minimize the following function, which is obtained by multiplying   ˆ;Q  by -2 and 
neglecting the constant value  
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Minimization of  J in Eq. 34 cannot be done analytically; therefore, numerical search has 
to be performed. In general, the value completely minimizing an objective function is 
difficult to be found. In such case, we can use the generalized MAP-EM algorithm in which, 
at the M-step, parameter updating is done so as to enlarge the value of the Q function more 
than that for the parameters values obtained at the previous iteration. By the generalized 
MAP-EM algorithm, the computational cost for each M-step often decreases, although the 
number of iterations may increase.  
After convergence of the above two steps for each layer l, if the initial values of  for the 
iteration are suitable, we can obtain MAP , which maximizes     )1()( ,, t

l
t ffp   and 

coincides with the mean ~ of this probability because of the Laplace approximation, and 
)(l

MAPd , which maximizes     
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l ffdp   and also coincides with the mean )(~ ld . The 

probability which should be actually evaluated corresponds to Eq. 28, and the integration 
for this marginalization requires a numerical computation or a random sampling technique. 
Hence, in this study, we justify the solution of the above MAP-EM algorithm by applying 
the saddle point approximation to     )1()( ,, t

l
t ffp  , as follows: 
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5.3 Parameter variance estimation using Supplemented EM technique 
In order to evaluate Eq. 34, i.e. Eq. 37, for each layer l, the variance-covariance matrix of  at 
the previous layer l -1 is required. However, this matrix cannot be estimated directly by the 
MAP-EM algorithm. Usually used naive approximate method is evaluating 
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  t

l
t ffp  numerically at MAP of layer l -1. In this study, we aim to 

compute the variance-covariance matrix by a stable and efficient scheme, and an application 
of the Supplemented EM (SEM) algorithm (Meng & Rubin, 1991) is examined and proposed. 
Using the SEM algorithm, the asymptotic variance-covariance of the parameters can be 
estimated using only the code for the EM algorithm and the code for computing the 
complete data asymptotic variance-covariance matrix.  
Since, in this study, the priors of the parameters should be considered at each layer l, the 
usage of the MAP-EM algorithm is appropriate. Hence, the S-MAP-EM algorithm, which is 
the MAP-EM algorithm with the supplemented procedures described below in detail, is 
actually used instead of the SEM algorithm. Let 

̂
V  denote the “observed” asymptotic 

variance-covariance matrix, which is evaluated for the converging value ̂ without 
expectation operation, and it is used as an estimate. The important equation for the S-MAP-
EM algorithm is 
 

,ˆˆ VVV   c  (39) 
 

             ,,,ln,,,,ln
1

ˆ
)1()1()1()1()()(

T

2

ˆ




















 t

l
tt

l
t

ll
tc ffpffdfp V  

(40) 

 
  .ˆˆ

1
ˆ 




 cVDMDMIV  (41) 

 
In Eq. 41, I indicates a unit matrix, and DM is the Jacobian matrix for the mapping 

1:  kkM implicitly defined by the MAP-EM algorithm, where k indicates the iteration 
number. In the same way as a wide class of problems where probability of the complete-
data belongs to the exponential family, ̂cV  can be derived analytically in this study. On the 
other hand, 

̂
DM has to be estimated by a stable computation.  

If k converges to some value ̂ and  M  is continuous, ̂ is a fixed point of the iteration 
and satisfies   ˆˆ M . By a Taylor series expansion of  kk M  1 at ̂ , we can have the 
first approximation  
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From this equation, the dd matrix

̂
DM is often referred to as the rate of convergence, 

where d is the degree of freedom of  and in this study 7d . It is convenient to estimate 

̂
DM by numerical evaluation using an iteration procedure, for example the following 
formulation  
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However, this provides only a few eigenvalues of
̂

DM , and the matrix itself cannot be 
computed. On the other hand, Meng and Rubin (1991) explained that  each element of 

̂
DM  

is the component-wise rate of convergence of a “forced EM” for the S-MAP-EM algorithm. 
Let rij be the (i, j)th element of 

̂
DM , and we define  
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j is the value of j on the kth iteration of the MAP-EM algorithm and î indicates 

the thi component of the converging value ̂ . By the definition of rij, the following 
equation holds  
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From this, for example, the following procedure can be introduced to obtain ̂cV  .  
S-MAP-EM algorithm 
(i)  Run the MAP-EM algorithm in order to obtain ̂ , and save all the values }{ k  at each 

iteration. 
(ii)  For each k , compute k

j)( using Eq. 44, and run one iteration of the MAP-EM algorithm 

using k
j)( as a current estimate to obtain )( )(

k
jiM  , and subsequently the ratio k

ijr  in Eq. 

45 for each i (i = 1, …, d). This is done for each j (j = 1, …, d).  
(iii)  Check the convergence of k

ijr  using  1k
ij

k
ij rr with a certain threshold value  , and 

determine rij (i, j =1, … , d) and hence, 
̂

DM . 
(iv)  Compute ̂cV by Eq. 40, and then using Eqs. 39 and 41, evaluate the observed 

asymptotic variance-covariance matrix
̂

V . 
 
At step (i) in the above procedure, we assume that the updating sequence of the parameters 
by the MAP-EM algorithm is stored to save computational time. However, to save extra 
storage, at step (ii) one-iteration of the MAP-EM algorithm to obtain k from 1k is done 
firstly instead of saving all the values of k . Using this k , one-iteration of the S-MAP-EM 
at step (ii) is realized.  
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(ii)  For each k , compute k

j)( using Eq. 44, and run one iteration of the MAP-EM algorithm 

using k
j)( as a current estimate to obtain )( )(

k
jiM  , and subsequently the ratio k

ijr  in Eq. 

45 for each i (i = 1, …, d). This is done for each j (j = 1, …, d).  
(iii)  Check the convergence of k

ijr  using  1k
ij

k
ij rr with a certain threshold value  , and 

determine rij (i, j =1, … , d) and hence, 
̂

DM . 
(iv)  Compute ̂cV by Eq. 40, and then using Eqs. 39 and 41, evaluate the observed 

asymptotic variance-covariance matrix
̂

V . 
 
At step (i) in the above procedure, we assume that the updating sequence of the parameters 
by the MAP-EM algorithm is stored to save computational time. However, to save extra 
storage, at step (ii) one-iteration of the MAP-EM algorithm to obtain k from 1k is done 
firstly instead of saving all the values of k . Using this k , one-iteration of the S-MAP-EM 
at step (ii) is realized.  
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Note that V is a symmetric matrix, and if it seems to be quite asymmetric, there has been a 
programming error in either MAP-EM or S-MAP-EM, or convergences of both have not 
been sufficient.  

 
6. Implementation 

6.1 Image decomposition into multi-scale images 
Ideally, we have to decompose images into multi-scale images using spatio-temporal 
filtering. In this study, we will examine an algorithm using only two successive frames. 
Therefore, temporal filter can not be used and hence only spatial filter is discussed.  
We assume that input images have 256256 pixels and the number of resolution layers is 4. 
For each resolution l, the size Nl of a local region l , where depth is constant, has to be 
defined. The resolution l and the size Nl can be treated independently, but here, we simply 
define Nl so that intensity pattern has a slow slope in l . The set of Nl values and the 
corresponding spatial wavelengths, which components are extracted by an ideal band-pass 
filter, are shown in Table 1. 
 

layer number l Nl  
[pixels] 

spatial wavelength 
[pixels] 

1 32*32 DC –  64 (DC –  4 cycles) 
2 16*16 64 –  32 (4 cycles –  8 cycles) 
3 8*8 32 –  16 (8 cycles – 16 cycles) 
4 8*8 16 – 8 (16 cycles – 32 cycles) 

Table 1. Decomposition parameters 

 
6.2 Derivative filter 
To get the accurate estimates of the spatial gradients of intensity, the choice of convolution 
kernels of derivative is important. Directly applying simple first-order differences produces 
poor estimates, especially in highly textured region.  
By assuming no spatial alias occurs in images, the derivative of the continuous sampling 
function is the best kernel, but the resulting kernel needs to be quite large to estimate high 
accurate gradients. Hence, a lot of computer vision researchers have used sampled Gaussian 
derivatives that have better properties than simple differences, but are less computationally 
expensive than sampling function.  
On the other hand, Farid and Simoncelli have proposed a simple design procedure for 
matched pairs of 1-D kernels, which consists of a interpolator and a differentiator, suitable 
for gradient estimation (Farid & Simoncelli, 1997). Let )(ˆ kB be the frequency domain 

representation of the interpolator, and )(ˆ kD be that of the differentiator. The kernel pairs 
determined by their procedure can have the following properties:  
1. The derivative filters are good approximations to the derivative of the interpolator. This 

means that, for a derivative along the x-axis, )(ˆ)(ˆ kk DBjkx   holds, where kx is the 
component of the frequency coordinate in the x direction; 

2. The interpolator is symmetric with 1)(ˆ 0B ; 

 

3. Both kernels are separable, and hence the design problem is reduced to one 
dimensional, for computational efficiency and ease of design; and 

4. The design algorithm includes a model for signal and noise statistics. 
 
In this research, we use the kernels derived by this procedure, and concretely, the five-tap 
kernel ]108415.0 ,280353.0 ,0 ,280353.0 ,108415.0[  is applied to all the resolution layers as a 
differentiator.  
As a temporal derivative, we compute simply the finite difference using two successive 
frames, hence the temporal derivative may be corrupted by large error. 

 
6.3 Concrete procedures for M-step 
At the M-step in the MAP-EM algorithm, we have to minimize Eq. 34 for each iteration. As 
described in Sec.5.2, the generalized MAP-EM algorithm can be adopted for estimating only 
the parameters values. However, the variances of the parameters are also required to be 
estimated, and therefore S-MAP-EM is performed. For the conventional S-MAP-EM 
algorithm denoted in Sec.5.3, it is assumed that the Q function is maximized at each M-step. 
If we use the generalized MAP-EM scheme, certain extension of S-MAP-EM has to be 
achieved. Hence, we will give up applying generalized MAP-EM and completely minimize 
Eq. 34 at the M-step.  
Since Eq. 34 is not a quadratic form with respect to the parameter vector, we will use the 
steepest descent method to minimize it. We introduce the gradient vector, i.e. the steepest 
descent direction, of Eq. 34. By defining T T[ , , , ]x y zu u um r , partial derivative with respect 
to m can be written as follows: 
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The matrix A and vector b in Eq. 46 are shown in Sec. 10.1. Additionally, partial derivatives 
with respect to 2

0 and 2
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where i and )(m are defined as  
 )]~[/(I 2

0
)1(22)1(  i

l
d

l
idJ and 2

1/)(  fJ .  
By evaluating the values of Eqs. 46, 47 and 48 at the current values of parameters, we can 
know the steepest descent direction and perform numerical search for the minimization 
parameters of )(J defined in Eq. 34.  
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Note that V is a symmetric matrix, and if it seems to be quite asymmetric, there has been a 
programming error in either MAP-EM or S-MAP-EM, or convergences of both have not 
been sufficient.  

 
6. Implementation 

6.1 Image decomposition into multi-scale images 
Ideally, we have to decompose images into multi-scale images using spatio-temporal 
filtering. In this study, we will examine an algorithm using only two successive frames. 
Therefore, temporal filter can not be used and hence only spatial filter is discussed.  
We assume that input images have 256256 pixels and the number of resolution layers is 4. 
For each resolution l, the size Nl of a local region l , where depth is constant, has to be 
defined. The resolution l and the size Nl can be treated independently, but here, we simply 
define Nl so that intensity pattern has a slow slope in l . The set of Nl values and the 
corresponding spatial wavelengths, which components are extracted by an ideal band-pass 
filter, are shown in Table 1. 
 

layer number l Nl  
[pixels] 

spatial wavelength 
[pixels] 

1 32*32 DC –  64 (DC –  4 cycles) 
2 16*16 64 –  32 (4 cycles –  8 cycles) 
3 8*8 32 –  16 (8 cycles – 16 cycles) 
4 8*8 16 – 8 (16 cycles – 32 cycles) 

Table 1. Decomposition parameters 

 
6.2 Derivative filter 
To get the accurate estimates of the spatial gradients of intensity, the choice of convolution 
kernels of derivative is important. Directly applying simple first-order differences produces 
poor estimates, especially in highly textured region.  
By assuming no spatial alias occurs in images, the derivative of the continuous sampling 
function is the best kernel, but the resulting kernel needs to be quite large to estimate high 
accurate gradients. Hence, a lot of computer vision researchers have used sampled Gaussian 
derivatives that have better properties than simple differences, but are less computationally 
expensive than sampling function.  
On the other hand, Farid and Simoncelli have proposed a simple design procedure for 
matched pairs of 1-D kernels, which consists of a interpolator and a differentiator, suitable 
for gradient estimation (Farid & Simoncelli, 1997). Let )(ˆ kB be the frequency domain 

representation of the interpolator, and )(ˆ kD be that of the differentiator. The kernel pairs 
determined by their procedure can have the following properties:  
1. The derivative filters are good approximations to the derivative of the interpolator. This 

means that, for a derivative along the x-axis, )(ˆ)(ˆ kk DBjkx   holds, where kx is the 
component of the frequency coordinate in the x direction; 

2. The interpolator is symmetric with 1)(ˆ 0B ; 

 

3. Both kernels are separable, and hence the design problem is reduced to one 
dimensional, for computational efficiency and ease of design; and 

4. The design algorithm includes a model for signal and noise statistics. 
 
In this research, we use the kernels derived by this procedure, and concretely, the five-tap 
kernel ]108415.0 ,280353.0 ,0 ,280353.0 ,108415.0[  is applied to all the resolution layers as a 
differentiator.  
As a temporal derivative, we compute simply the finite difference using two successive 
frames, hence the temporal derivative may be corrupted by large error. 

 
6.3 Concrete procedures for M-step 
At the M-step in the MAP-EM algorithm, we have to minimize Eq. 34 for each iteration. As 
described in Sec.5.2, the generalized MAP-EM algorithm can be adopted for estimating only 
the parameters values. However, the variances of the parameters are also required to be 
estimated, and therefore S-MAP-EM is performed. For the conventional S-MAP-EM 
algorithm denoted in Sec.5.3, it is assumed that the Q function is maximized at each M-step. 
If we use the generalized MAP-EM scheme, certain extension of S-MAP-EM has to be 
achieved. Hence, we will give up applying generalized MAP-EM and completely minimize 
Eq. 34 at the M-step.  
Since Eq. 34 is not a quadratic form with respect to the parameter vector, we will use the 
steepest descent method to minimize it. We introduce the gradient vector, i.e. the steepest 
descent direction, of Eq. 34. By defining T T[ , , , ]x y zu u um r , partial derivative with respect 
to m can be written as follows: 
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where i and )(m are defined as  
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By evaluating the values of Eqs. 46, 47 and 48 at the current values of parameters, we can 
know the steepest descent direction and perform numerical search for the minimization 
parameters of )(J defined in Eq. 34.  
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6.4 Parameter variance with complete data 
In order to estimate the variance-covariance matrix of the parameters using the SEM scheme, 
we have to know the variance-covariance matrix of the complete data ̂cV in Eqs. 39 and 41. 
We will compute analytically the 2nd derivative according to Eq. 40. Let )(L be the 

conditional log likelihood function in Eq. 40 and T2
1

2
000 ],,[ m , and we can 

use 0
 ˆ/L , hence the following equation can be derived  
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In the right hand side of Eq. 49,  /0 is shown as follows:  
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Additionally, T

00
2 /  L in Eq. 49 consists of the components shown in Eq. A5. By 

evaluating Eqs. 50 and A5 at  ˆ , we can know 
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Using Eqs. 49 and 52, ̂cV can be computed as follows: 
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7. Examples 

To confirm the effectiveness of the proposed method, we conducted numerical experiments 
using artificial images. Figure 3(a) shows the first image, with 256256 pixels generated by 
a computer graphics (CG) technique using the depth map shown in Fig. 3(b) and a random 
texture. The second successive image was generated at a different viewpoint, which was 
assumed to move with  T0.0,0.0,1.0u and  T0.0,0.0,0.0r . In this situation, the 
theoretically calculated norm of the optical flow between the two successive images was 
approximately two pixels on average for the whole image. These images were decomposed 
into four layers with different resolutions in accordance with the method and the 
parameters described in Sec.6.1. The decomposed images are shown in Fig. 4.  
The estimated depth maps are shown in Fig. 5. As mentioned in Sec. 2.2, u and d can not 
be uniquely determined, and hence the scale of the depth in Fig. 5 is adjusted so that the 
value of the estimated u can be regarded as a true value. The mesh size in Fig. 5 is denoted 

by Nl, and for example, 32321 N pixels. In the experiments, the variances of d and  in 
the priors to 1l were set to be sufficiently large. The result obtained using all the observed 
information corresponding to the four layers at the same time without BP is shown in Fig. 6. 
For this result, the local region size was 88  pixels. From these results, we can confirm that 
stable recovery of the depth map is achieved by the proposed method. 
The above results were derived for noise-free images. Therefore, )(

1
ln in Eq. 11 corresponds 

to the 1st approximation error of the gradient equation. We confirmed through experiments 
that, for the Gaussian image noise with a standard deviation of 5% with respect to the 
dynamic range of the image intensity, the proposed method has almost the same 
performance as that shown in Fig. 5. Additionally, we omitted BP of  , and found that the 
root mean square error (RMSE) of the depth is one and a half times larger than that using BP 
for  . This result is due to the estimation bias.  

 
8. Conclusions 

We introduced a scheme and an explicit algorithm for stably recovering object shape as a 
depth map. This scheme is based on the multi-scale Bayesian network and the approximate 
BP using the EM algorithm. Especially, in this study to estimate the variance-covariance 
matrix in a stable way, the Supplemented MAP-EM algorithm is applied. The effectiveness 
and the applicability of the proposed algorithm were shown through numerical examples. 
In the future, the performance for real image sequences needs to be examined, and a 
quantitative evaluation of the accuracy is required. Additionally, we are very interested in a 
temporal expansion of this scheme, and it has been considered in our current work.  
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In order to estimate the variance-covariance matrix of the parameters using the SEM scheme, 
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7. Examples 

To confirm the effectiveness of the proposed method, we conducted numerical experiments 
using artificial images. Figure 3(a) shows the first image, with 256256 pixels generated by 
a computer graphics (CG) technique using the depth map shown in Fig. 3(b) and a random 
texture. The second successive image was generated at a different viewpoint, which was 
assumed to move with  T0.0,0.0,1.0u and  T0.0,0.0,0.0r . In this situation, the 
theoretically calculated norm of the optical flow between the two successive images was 
approximately two pixels on average for the whole image. These images were decomposed 
into four layers with different resolutions in accordance with the method and the 
parameters described in Sec.6.1. The decomposed images are shown in Fig. 4.  
The estimated depth maps are shown in Fig. 5. As mentioned in Sec. 2.2, u and d can not 
be uniquely determined, and hence the scale of the depth in Fig. 5 is adjusted so that the 
value of the estimated u can be regarded as a true value. The mesh size in Fig. 5 is denoted 

by Nl, and for example, 32321 N pixels. In the experiments, the variances of d and  in 
the priors to 1l were set to be sufficiently large. The result obtained using all the observed 
information corresponding to the four layers at the same time without BP is shown in Fig. 6. 
For this result, the local region size was 88  pixels. From these results, we can confirm that 
stable recovery of the depth map is achieved by the proposed method. 
The above results were derived for noise-free images. Therefore, )(

1
ln in Eq. 11 corresponds 

to the 1st approximation error of the gradient equation. We confirmed through experiments 
that, for the Gaussian image noise with a standard deviation of 5% with respect to the 
dynamic range of the image intensity, the proposed method has almost the same 
performance as that shown in Fig. 5. Additionally, we omitted BP of  , and found that the 
root mean square error (RMSE) of the depth is one and a half times larger than that using BP 
for  . This result is due to the estimation bias.  

 
8. Conclusions 

We introduced a scheme and an explicit algorithm for stably recovering object shape as a 
depth map. This scheme is based on the multi-scale Bayesian network and the approximate 
BP using the EM algorithm. Especially, in this study to estimate the variance-covariance 
matrix in a stable way, the Supplemented MAP-EM algorithm is applied. The effectiveness 
and the applicability of the proposed algorithm were shown through numerical examples. 
In the future, the performance for real image sequences needs to be examined, and a 
quantitative evaluation of the accuracy is required. Additionally, we are very interested in a 
temporal expansion of this scheme, and it has been considered in our current work.  
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(a)           (b)  
Fig. 3. Data used in the experiments: (a) artificial image; (b) true depth map 

(a)   (b)  

(c)   (d)  
 

Fig. 5. Estimated depth map with BP;  (a) l=1; (b) l=2; (c) l=3; (d) l=4 

 

(a)   (b)   (c)   (d)  
Fig. 4. Decomposed images: (a) l=1; (b) l=2; (c) l=3; (d) l=4 

 

 
Fig. 6. Estimated depth map without BP 
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11. Appendix 

11.1 Definitions of matrix A and vector b in Eq. 46 
The symmetric matrix A and vector b in Eq. 46 are explicitly defined as follows: 
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where the coefficients i and i depending on the depth estimation are also defined  
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11. Appendix 

11.1 Definitions of matrix A and vector b in Eq. 46 
The symmetric matrix A and vector b in Eq. 46 are explicitly defined as follows: 
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where the coefficients i and i depending on the depth estimation are also defined  
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11.2 Definitions of matrix T
00

2 /  L  in Eq. 53 

The components of T
00

2 /  L can be written as follows: 
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Abstract  
 

Typically, Super Resolution Reconstruction (SRR) is the process by which additional 
information is incorporated to enhance a noisy low resolution image hence producing a high 
resolution image. Although many such SRR algorithms have been proposed in the last two 
decades, almost SRR estimations are based on L1 or L2 statistical norm estimation therefore 
these SRR algorithms are usually very sensitive to their assumed model of data and noise 
that limits their utility. Unfortunately, the real noise models that corrupt the measure 
sequence are unknown; consequently, SRR algorithm using L1 or L2 norm may degrade the 
image sequence rather than enhance it. This paper proposes a novel SRR algorithm based on 
the stochastic regularization technique of Bayesian MAP estimation by minimizing a cost 
function. The Hampel norm is used for measuring the difference between the projected 
estimate of the high-resolution image and each low resolution image in order to remove 
outliers in the data. Moreover, Tikhonov regularization and Hampel-Tikhonov 
regularization are used to remove artifacts from the final answer and improve the rate of 
convergence. Finally, the efficiency of the proposed algorithm is demonstrated here in the 
experimental results using the Lena (Standard Image) and the Susie (40th Frame: Standard 
Sequence) in both subjective and objective measurement. The numbers of experimental 
results confirm the effectiveness of our method and demonstrate its superiority to other 
super-resolution algorithms based on L1 and L2 norm for a several noise models (such as 
noiseless, AWGN, Poisson, Salt & Pepper Noise and Speckle Noise) and several noise 
power. 

 
1. Introduction  
 

Super Resolution Reconstruction (SRR) traditionally allows the recovery of a high-resolution 
(HR) image from several low-resolution (LR) images that are noisy, blurred, and down 
sampled. Thus, SRR have a variety of applications in remote sensing, video frame freezing, 
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medical diagnostics and military information acquisition. Consequently, SRR has emerged 
as an alternative for producing one or a set of HR images from a sequence of LR images. 
In the section, we will concentrate on the regularized reconstruction point of view therefore 
the estimation is one of the most important parts of the SRR algorithms and directly affect to 
the SRR performance. R. R. Schultz et al. (Schultz, R. R. and Stevenson R. L. 1994; Schultz, R. 
R. and Stevenson R. L. 1996) proposed the SRR algorithm using ML estimator (L2 Norm) 
with HMRF Regularization in 1996. In 1997, M. Elad et al. (Elad, M. and Feuer, A. 1997) 
proposed the SRR algorithm using the ML estimator (L2 Norm) with nonellipsoid 
constraints. Next, M. Elad et al. (Elad, M. and Feuer, A. 1999a; Elad, M. and Feuer, A. 1999c) 
proposed the SRR algorithm using R-SD and R-LMS (L2 Norm) in 1999. M. Elad et al. (Elad, 
M. and Hecov Hel-Or, Y. 2001) proposed the fast SRR algorithm ML estimator (L2 Norm) 
for restoration the warps are pure translations, the blur is space invariant and the same for 
all the images, and the noise is i.i.d. Gaussian in 2001. A. J. Patti et al. proposed (Patti, A. J. 
and Altunbasak, Y. 2001) a SRR algorithm using ML (L2 Norm) estimator with POCS-based 
regularization in 2001 and Y. Altunbasak et al. (Altunbasak, Y., Patti, A. J. and Mersereau, R. 
M. 2002) proposed a SRR algorithm using ML (L2 Norm) estimator for the MPEG sequences 
in 2002. D. Rajan et al. (Rajan, D., Chaudhuri, S. and Joshi, M. V. 2003, Rajan, D. and 
Chaudhuri, S. 2003) proposed SRR using ML (L2 Norm) with MRF regularization to 
simultaneously estimate the depth map and the focused image of a scene in 2003. S. Farsiu 
et al. (Farsiu, S., Robinson, M. D., Elad, M., Milanfar, P. 2004; Farsiu, S., Robinson, M. D., 
Elad, M. and Milanfar, P. 2004) proposed SRR algorithm ML estimator (L1 Norm) with BTV 
Regularization in 2004. Next, they propose a fast SRR of color images (Farsiu, S., Elad, M. 
and Milanfar, P. 2006) using ML estimator (L1 Norm) with BTV and Tikhonov 
Regularization in 2006. Y. He et at. (He, Y., Yap, K., Chen, L. and Lap-Pui 2007) proposed 
SRR algorithm to integrate image registration into SRR estimation (L2 Norm) in 2007. For 
the data fidelity cost function, all the above SRR methods are based on the simple estimation 
techniques such as L1 Norm or L2 Norm Minimization. For normally distributed data, the 
L1 norm produces estimates with higher variance than the optimal L2 (quadratic) norm but 
the L2 norm is very sensitive to outliers because the influence function increases linearly 
and without bound. From the robust statistical estimation (Black, M. J. and Rangarajan, A. 
1996), Hampel Norm is designed to be more robust than L1 and L2. Hampel norm is 
designed to be robustness and reject outliers, the norm must be more forgiving about 
outliers; that is, it should increase less rapidly than L2. This paper proposes a robust 
iterative SRR algorithm using Hampel norm for the data fidelity cost function with 
Tikhonov Regularization and Hampel-Tikhonov Regularization. While the former is 
responsible for robustness and edge preservation, the latter seeks robustness with respect to 
blur, outliers, and other kinds of errors not explicitly modeled in the fused images. This 
experimental results demonstrate that our method’s performance is superior to what was 
proposed earlier in this previous reviews. 
The organization of this paper is as follows. Section 2 briefly introduces the main concepts of 
estimation technique in SRR frameworks based on L1 and L2 norm minimization. Section 3 
presents the proposed SRR based on Hampel norm minimization with Tikhonov 
Regularization and Hampel-Tikhonov Regularization. Section 4 outlines the proposed 
solution and presents the comparative experimental results obtained by using the proposed 
Hampel norm method and by using the L1 and L2 norm method. Finally, Section 5 provides 
the summary and conclusion. 

 

2. Introduction of SRR algorithms 
 

For SRR framework (Elad, M. and Feuer, A. 1999b, Elad, M. and Hecov Hel-Or, Y. 2001), 
Assume that low-resolution frames of images are   tY  as our measured data and each 

frame contains 1 2N N  pixels. A high-resolution frame  tX  is to be estimated from the N  

low-resolution images and each frame contains 1 2qN qN  pixels, where q  is an integer-
valued interpolation factor in both the horizontal and vertical directions. To reduce the 
computational complexity, each frame is separated into overlapping blocks. For convenience 
of notation, all overlapping blocked frames will be presented as vector, ordered column-
wise lexicographically. Namely, the overlapping blocked LR frame is 2M

kY   ( 2 1M  ) and 

the overlapping blocked HR frame is 2 2q MX   ( 2 2 21 or 1L q M  ). We assume that the two 
images are related via the following equation 
 

; 1, 2, ,k k k k kY D H F X V k N     (1.1) 
 

NY

1qN

2qN

2N

X

1Y 2Y NY

X

 kY



 a High-Resolution Image

 b Low-Resolution Image Sequence

Blocked HR Image

X

 c The Relation between Overlapping Blocked HR Image
and  Overlapping Blocked LR Image Sequence

(SRR Observation Model)

Blocked LR Image

k k k k kY D H F X V 

L

L

M

M

Degradation Process

1N

 
Wrap Process

Translation Tranform

kF
Blur Process

kH
Decimation

Process

kD
kF X k kH F X

Noise
kV

X

1Y 2Y

 
Fig. 1. The Classical SRR Observation Model 



A Robust Iterative Multiframe SRR based on Hampel  
Stochastic Estimation with Hampel-Tikhonov Regularization 101

 

medical diagnostics and military information acquisition. Consequently, SRR has emerged 
as an alternative for producing one or a set of HR images from a sequence of LR images. 
In the section, we will concentrate on the regularized reconstruction point of view therefore 
the estimation is one of the most important parts of the SRR algorithms and directly affect to 
the SRR performance. R. R. Schultz et al. (Schultz, R. R. and Stevenson R. L. 1994; Schultz, R. 
R. and Stevenson R. L. 1996) proposed the SRR algorithm using ML estimator (L2 Norm) 
with HMRF Regularization in 1996. In 1997, M. Elad et al. (Elad, M. and Feuer, A. 1997) 
proposed the SRR algorithm using the ML estimator (L2 Norm) with nonellipsoid 
constraints. Next, M. Elad et al. (Elad, M. and Feuer, A. 1999a; Elad, M. and Feuer, A. 1999c) 
proposed the SRR algorithm using R-SD and R-LMS (L2 Norm) in 1999. M. Elad et al. (Elad, 
M. and Hecov Hel-Or, Y. 2001) proposed the fast SRR algorithm ML estimator (L2 Norm) 
for restoration the warps are pure translations, the blur is space invariant and the same for 
all the images, and the noise is i.i.d. Gaussian in 2001. A. J. Patti et al. proposed (Patti, A. J. 
and Altunbasak, Y. 2001) a SRR algorithm using ML (L2 Norm) estimator with POCS-based 
regularization in 2001 and Y. Altunbasak et al. (Altunbasak, Y., Patti, A. J. and Mersereau, R. 
M. 2002) proposed a SRR algorithm using ML (L2 Norm) estimator for the MPEG sequences 
in 2002. D. Rajan et al. (Rajan, D., Chaudhuri, S. and Joshi, M. V. 2003, Rajan, D. and 
Chaudhuri, S. 2003) proposed SRR using ML (L2 Norm) with MRF regularization to 
simultaneously estimate the depth map and the focused image of a scene in 2003. S. Farsiu 
et al. (Farsiu, S., Robinson, M. D., Elad, M., Milanfar, P. 2004; Farsiu, S., Robinson, M. D., 
Elad, M. and Milanfar, P. 2004) proposed SRR algorithm ML estimator (L1 Norm) with BTV 
Regularization in 2004. Next, they propose a fast SRR of color images (Farsiu, S., Elad, M. 
and Milanfar, P. 2006) using ML estimator (L1 Norm) with BTV and Tikhonov 
Regularization in 2006. Y. He et at. (He, Y., Yap, K., Chen, L. and Lap-Pui 2007) proposed 
SRR algorithm to integrate image registration into SRR estimation (L2 Norm) in 2007. For 
the data fidelity cost function, all the above SRR methods are based on the simple estimation 
techniques such as L1 Norm or L2 Norm Minimization. For normally distributed data, the 
L1 norm produces estimates with higher variance than the optimal L2 (quadratic) norm but 
the L2 norm is very sensitive to outliers because the influence function increases linearly 
and without bound. From the robust statistical estimation (Black, M. J. and Rangarajan, A. 
1996), Hampel Norm is designed to be more robust than L1 and L2. Hampel norm is 
designed to be robustness and reject outliers, the norm must be more forgiving about 
outliers; that is, it should increase less rapidly than L2. This paper proposes a robust 
iterative SRR algorithm using Hampel norm for the data fidelity cost function with 
Tikhonov Regularization and Hampel-Tikhonov Regularization. While the former is 
responsible for robustness and edge preservation, the latter seeks robustness with respect to 
blur, outliers, and other kinds of errors not explicitly modeled in the fused images. This 
experimental results demonstrate that our method’s performance is superior to what was 
proposed earlier in this previous reviews. 
The organization of this paper is as follows. Section 2 briefly introduces the main concepts of 
estimation technique in SRR frameworks based on L1 and L2 norm minimization. Section 3 
presents the proposed SRR based on Hampel norm minimization with Tikhonov 
Regularization and Hampel-Tikhonov Regularization. Section 4 outlines the proposed 
solution and presents the comparative experimental results obtained by using the proposed 
Hampel norm method and by using the L1 and L2 norm method. Finally, Section 5 provides 
the summary and conclusion. 

 

2. Introduction of SRR algorithms 
 

For SRR framework (Elad, M. and Feuer, A. 1999b, Elad, M. and Hecov Hel-Or, Y. 2001), 
Assume that low-resolution frames of images are   tY  as our measured data and each 

frame contains 1 2N N  pixels. A high-resolution frame  tX  is to be estimated from the N  

low-resolution images and each frame contains 1 2qN qN  pixels, where q  is an integer-
valued interpolation factor in both the horizontal and vertical directions. To reduce the 
computational complexity, each frame is separated into overlapping blocks. For convenience 
of notation, all overlapping blocked frames will be presented as vector, ordered column-
wise lexicographically. Namely, the overlapping blocked LR frame is 2M

kY   ( 2 1M  ) and 

the overlapping blocked HR frame is 2 2q MX   ( 2 2 21 or 1L q M  ). We assume that the two 
images are related via the following equation 
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where 
 X  (vector format) is the original high-resolution blocked image. 
 
  kY t  (vector format) is the blurred, decimated, down sampled and noisy blocked 

image 
 kF  (

2 2 2 2q M q MF   and matrix format) stands for the geometric warp (Typically, 
Translational Motion) between the images X  and kY . 

 
kH  ( 2 2 2 2q M q M

kH
  and matrix format)is the blur matrix which is a space and time 

invariant. 
 kD  ( 2 2 2M q M

kD
  and matrix format) is the decimation matrix assumed constant. 

 kV  ( 2M
kV   and vector format) is a system noise. 

A popular family of estimators is the ML-type estimators (M estimators) (Elad, M. and 
Feuer, A. 1999c). We rewrite the definition of these estimators in the super resolution 
reconstruction framework as the following minimization problem: 
 

 
1

ˆ ArgMin
N

k k k k
X k

X D H F X Y


 
  

 
  (1.2) 

 
where     is a norm estimation. To minimize (1.2), the intensity at each pixel of the 

expected image must be close to those of the original image. 
SRR (Super-Resolution Reconstruction) is an ill-posed problem (Elad, M. and Feuer, A. 1997; 
Elad, M. and Feuer, A. 1999a; Elad, M. and Feuer, A. 1999b; Elad, M. and Hecov Hel-Or, Y. 
2001; Elad, M. and Feuer, A. 1999c). For the under-determined cases (i.e., when fewer than 
required frames are available), there exist an infinite number of solutions which satisfy (1.2). 
The solution for squared and over-determined cases is not stable, which means small 
amounts of noise in measurements will result in large perturbations in the final solution. 
Therefore, considering regularization in SRR algorithm as a mean for picking a stable 
solution is very useful, if not necessary. Also, regularization can help the algorithm to 
remove artifacts from the final answer and improve the rate of convergence. A 
regularization term compensates the missing measurement information with some general 
prior information about the desirable HR solution, and is usually implemented as a penalty 
factor in the generalized minimization cost function. Unfortunately, certain types of 
regularization cost functions work efficiently for some special types of images but are not 
suitable for general images. 

 
2.1 L1 Norm with Tikhonov Regularization 
A popular family of estimators is the L1 Norm estimators that are used in SRR problem 
(Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004; Farsiu, S., Elad, M. and Milanfar, 
P. 2006). Due to ill-posed problem of SRR, a regularization term compensates the missing 
measurement information with some general prior information about the desirable HR 
solution, and is usually implemented as a penalty factor in the generalized minimization 
cost function. The most classical and simplest Tikhonov regularization cost functions is the 

 

Laplacian regularization (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) 
therefore we rewrite the definition of these estimators in the SRR context as the following 
minimization problem: 
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where the Laplacian kernel (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) is 
defined as 
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where   is the step size in the gradient direction. 

 
2.2 L2 Norm with Tikhonov Regularization 
Another popular family of estimators is the L2 Norm estimators that are used in SRR 
problem (Schultz, R. R. and Stevenson R. L. 1994; Schultz, R. R. and Stevenson R. L. 1997). 
We rewrite the definition of these estimators in the SRR context that is combined the 
Laplacian regularization as the following minimization problem: 
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3. The Proposed Robust SRR Algorithm 
 

The success of SRR algorithm is highly dependent on the accuracy of the imaging process 
model. Unfortunately, these models are not supposed to be exactly true, as they are merely 
mathematically convenient formulations of some general prior information. When the data 
or noise model assumptions do not faithfully describe the measure data, the estimator 
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where 
 X  (vector format) is the original high-resolution blocked image. 
 
  kY t  (vector format) is the blurred, decimated, down sampled and noisy blocked 

image 
 kF  (

2 2 2 2q M q MF   and matrix format) stands for the geometric warp (Typically, 
Translational Motion) between the images X  and kY . 

 
kH  ( 2 2 2 2q M q M
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  and matrix format)is the blur matrix which is a space and time 

invariant. 
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  and matrix format) is the decimation matrix assumed constant. 

 kV  ( 2M
kV   and vector format) is a system noise. 

A popular family of estimators is the ML-type estimators (M estimators) (Elad, M. and 
Feuer, A. 1999c). We rewrite the definition of these estimators in the super resolution 
reconstruction framework as the following minimization problem: 
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remove artifacts from the final answer and improve the rate of convergence. A 
regularization term compensates the missing measurement information with some general 
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The success of SRR algorithm is highly dependent on the accuracy of the imaging process 
model. Unfortunately, these models are not supposed to be exactly true, as they are merely 
mathematically convenient formulations of some general prior information. When the data 
or noise model assumptions do not faithfully describe the measure data, the estimator 
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performance degrades. Furthermore, existence of outliers defined as data points with 
different distributional characteristics than the assumed model will produce erroneous 
estimates. Almost all noise models used in SRR algorithms are based on Additive White 
Gaussian Noise (AWGN) model; therefore, SRR algorithms can effectively apply only on the 
image sequence that is corrupted by AWGN. Due to this noise model, L1 norm or L2 norm 
error are effectively used in SRR algorithm. Unfortunately, the real noise models that 
corrupt the measure sequence are unknown therefore SRR algorithm using L1 norm or L2 
norm may degrade the image sequence rather than enhance it. The robust norm error is 
necessary for SRR algorithm applicable to several noise models. For normally distributed 
data, the L1 norm produces estimates with higher variance than the optimal L2 (quadratic) 
norm but the L2 norm is very sensitive to outliers because the influence function increases 
linearly and without bound. From the robust statistical estimation (Black, M. J. and 
Rangarajan, A. 1996), Hampel Norm is designed to be more robust than L1 and L2. While 
these robust norms are designed to reject outliers, these norms must be more forgiving 
about the remaining outliers; that is, it should increase less rapidly than L2. 
A robust estimation is estimated technique that is resistance to such outliers. In SRR 
framework, outliers are measured images or corrupted images that are highly inconsistent 
with the high resolution original image. Outliers may arise from several reasons such as 
procedural measurement error, noise or inaccurate mathematical model. Outliers should be 
investigated carefully; therefore, we need to analyze the outlier in a way which minimizes 
their effect on the estimated model. L2 norm estimation is highly susceptible to even a small 
number of discordant observations or outliers. For L2 norm estimation, the influence of the 
outlier is much larger than the other measured data because L2 norm estimation weights the 
error quadraticly.  Consequently, the robustness of L2 norm estimation is poor. 
Hampel’s norm (Black, M. J. and Rangarajan, A. 1996) is one of error norm from the robust 
statistic literature. It is equivalent to the L1 norm for large value. But, for normally 
distributed data, the L1 norm produces estimates with higher variance than the optimal L2 
(quadratic) norm, so Hampel’s norm is designed to be quadratic for small values and its 
influence does not descend all the way to zero. The Hampel norm function (    ) and its 

influence function (     ) are shown in Figure 2.1 (a) and Figure 2.1 (b), respectively 

We rewrite the definition of these estimators in the super resolution context as the following 
minimization problem: 
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By the steepest descent method, the solution is: 
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where T  is Hampel constant parameter. 
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Fig. 2(a). The Hampel Norm function 
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Fig. 2(b). The Influence function of Hampel Norm 

 
3.1 Hampel Norm with Tikhonov Regularization 
The most classical and simplest Tikhonov regularization cost functions is the Laplacian 
regularization (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) therefore we 
rewrite the definition of these estimators in the SRR context as the following minimization 
problem: 
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performance degrades. Furthermore, existence of outliers defined as data points with 
different distributional characteristics than the assumed model will produce erroneous 
estimates. Almost all noise models used in SRR algorithms are based on Additive White 
Gaussian Noise (AWGN) model; therefore, SRR algorithms can effectively apply only on the 
image sequence that is corrupted by AWGN. Due to this noise model, L1 norm or L2 norm 
error are effectively used in SRR algorithm. Unfortunately, the real noise models that 
corrupt the measure sequence are unknown therefore SRR algorithm using L1 norm or L2 
norm may degrade the image sequence rather than enhance it. The robust norm error is 
necessary for SRR algorithm applicable to several noise models. For normally distributed 
data, the L1 norm produces estimates with higher variance than the optimal L2 (quadratic) 
norm but the L2 norm is very sensitive to outliers because the influence function increases 
linearly and without bound. From the robust statistical estimation (Black, M. J. and 
Rangarajan, A. 1996), Hampel Norm is designed to be more robust than L1 and L2. While 
these robust norms are designed to reject outliers, these norms must be more forgiving 
about the remaining outliers; that is, it should increase less rapidly than L2. 
A robust estimation is estimated technique that is resistance to such outliers. In SRR 
framework, outliers are measured images or corrupted images that are highly inconsistent 
with the high resolution original image. Outliers may arise from several reasons such as 
procedural measurement error, noise or inaccurate mathematical model. Outliers should be 
investigated carefully; therefore, we need to analyze the outlier in a way which minimizes 
their effect on the estimated model. L2 norm estimation is highly susceptible to even a small 
number of discordant observations or outliers. For L2 norm estimation, the influence of the 
outlier is much larger than the other measured data because L2 norm estimation weights the 
error quadraticly.  Consequently, the robustness of L2 norm estimation is poor. 
Hampel’s norm (Black, M. J. and Rangarajan, A. 1996) is one of error norm from the robust 
statistic literature. It is equivalent to the L1 norm for large value. But, for normally 
distributed data, the L1 norm produces estimates with higher variance than the optimal L2 
(quadratic) norm, so Hampel’s norm is designed to be quadratic for small values and its 
influence does not descend all the way to zero. The Hampel norm function (    ) and its 

influence function (     ) are shown in Figure 2.1 (a) and Figure 2.1 (b), respectively 

We rewrite the definition of these estimators in the super resolution context as the following 
minimization problem: 
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where T  is Hampel constant parameter. 

 

0

50

100

150

200

250

300

-20 -15 -10 -5 0 5 10 15 20

Input

O
ut
pu
t

T = 1
T = 2
T = 3
T = 4
T = 5
T = 6
T = 7
T = 8
T = 9

Fig. 2(a). The Hampel Norm function 
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Fig. 2(b). The Influence function of Hampel Norm 

 
3.1 Hampel Norm with Tikhonov Regularization 
The most classical and simplest Tikhonov regularization cost functions is the Laplacian 
regularization (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004) therefore we 
rewrite the definition of these estimators in the SRR context as the following minimization 
problem: 
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3.2 Hampel Norm with Hampel-Tikhonov Regularization 
This paper proposes an alternative robust regularization function, so called Hampel-
Tikhonov regularization, for incorporating in the SRR algorithm. Consequently, we rewrite 
the definition of these estimators in the SRR context combining with the Hampel-Laplacian 
regularization as the following minimization problem: 
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4. Experimental Result 
 

This section presents the experiments and results obtained by the proposed robust SRR 
methods using Hampel norm with Tikhonov regularization and with Hampel- Tikhonov 
regularization that are calculated by (10-11) and (14-15) respectively. To demonstrate the 
proposed robust SRR performance, the results of L1 norm SRR (Farsiu, S., Robinson, M. D., 
Elad, M. and Milanfar, P. 2004; Farsiu, S., Elad, M. and Milanfar, P. 2006) with Laplacian 
regularization that is calculated by (4) and the results of L2 norm SRR (Schultz, R. R. and 
Stevenson R. L. 1994; Schultz, R. R. and Stevenson R. L. 1997) with Laplacian regularization 
that is calculated by (6) are presented in order to compare the performance. 
These experiments are implemented in MATLAB and the block size is fixed at 8x8 (16x16 for 
overlapping block). In this experiment, we create a sequence of LR frames by using the Lena 
(Standard Image) and Susie (40th Frame: Standard Sequence). First, we shifted this HR 
image by a pixel in the vertical direction. Then, to simulate the effect of camera PSF, this 
shifted image was convolved with a symmetric Gaussian low-pass filter of size 3x3 with 
standard deviation equal to one. The resulting image was subsampled by the factor of 2 in 
each direction. The same approach with different motion vectors (shifts) in vertical and 
horizontal directions was used to produce 4 LR images from the original scene. We added 
difference noise model to the resulting LR frames. Next, we use 4 LR frames to generate the 
high resolution image by the different SRR methods.  
The criterion for parameter selection in this paper was to choose parameters which produce 
both most visually appealing results and highest PSNR. Therefore, to ensure fairness, each 
experiment was repeated several times with different parameters and the best result of each 
experiment was chosen (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004; Farsiu, 
S., Elad, M. and Milanfar, P. 2006). 
For objective or PSNR measurement of the Lena (Standard image) and Susie (40th Frame) 
are shown in Table I and Table II respectively. For subjective or virtual measurement of the 
Lena (Standard image) and Susie (40th Frame) are shown in figure 3 and figure 4 
respectively. 

 
4.1 Noiseless 
For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. The result of SRR based on Hampel 
estimator with Laplacian and Hampel-Laplacian Regularization gives outstandingly higher 
PSNR than L1 and L2 norm estimator about 1-3 dB. 
For subjective or virtual measurement of Lena (Standard image), the original HR image is 
shown in Fig. 3 (a-1) and one of corrupted LR images is shown in Fig. 3 (a-2). Next, the 
result of implementing the SRR algorithm using L1 estimator with Laplacian Regularization, 
L2 estimator with Laplacian Regularization, Hampel estimator with Laplacian 
Regularization and Hampel estimator with Hampel-Laplacian Regularization  are shown in 
Figs. 3 (a-3) – 3 (a-6) respectively. 
For subjective or virtual measurement of Susie (40th Frame), the original HR image is shown 
in Fig. 4 (a-1) and one of corrupted LR images is shown in Fig. 4 (a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2 
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization 



A Robust Iterative Multiframe SRR based on Hampel  
Stochastic Estimation with Hampel-Tikhonov Regularization 107

 

   2

1
ArgMin

N

kHAMPEL k k k
X k

X f D H F X Y X


 
     

 
  (9) 

 
By the steepest descent method, the solution is: 
 

 
  

11

ˆ
ˆ ˆ

ˆ

N
T T T

k nk k k HAMPEL k k k
kn n

T
n

F H D Y D H F X
X X

X







 
  

   
     

  
(10) 

 

   
 

   

2 ;
2 sign ; 2

2 3 sign ;2 3

0 ; 3

HAMPEL HAMPEL

x x T
T x T x T

x f x T x x T x T

x T



 
       
 

 
(11) 

 
3.2 Hampel Norm with Hampel-Tikhonov Regularization 
This paper proposes an alternative robust regularization function, so called Hampel-
Tikhonov regularization, for incorporating in the SRR algorithm. Consequently, we rewrite 
the definition of these estimators in the SRR context combining with the Hampel-Laplacian 
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4. Experimental Result 
 

This section presents the experiments and results obtained by the proposed robust SRR 
methods using Hampel norm with Tikhonov regularization and with Hampel- Tikhonov 
regularization that are calculated by (10-11) and (14-15) respectively. To demonstrate the 
proposed robust SRR performance, the results of L1 norm SRR (Farsiu, S., Robinson, M. D., 
Elad, M. and Milanfar, P. 2004; Farsiu, S., Elad, M. and Milanfar, P. 2006) with Laplacian 
regularization that is calculated by (4) and the results of L2 norm SRR (Schultz, R. R. and 
Stevenson R. L. 1994; Schultz, R. R. and Stevenson R. L. 1997) with Laplacian regularization 
that is calculated by (6) are presented in order to compare the performance. 
These experiments are implemented in MATLAB and the block size is fixed at 8x8 (16x16 for 
overlapping block). In this experiment, we create a sequence of LR frames by using the Lena 
(Standard Image) and Susie (40th Frame: Standard Sequence). First, we shifted this HR 
image by a pixel in the vertical direction. Then, to simulate the effect of camera PSF, this 
shifted image was convolved with a symmetric Gaussian low-pass filter of size 3x3 with 
standard deviation equal to one. The resulting image was subsampled by the factor of 2 in 
each direction. The same approach with different motion vectors (shifts) in vertical and 
horizontal directions was used to produce 4 LR images from the original scene. We added 
difference noise model to the resulting LR frames. Next, we use 4 LR frames to generate the 
high resolution image by the different SRR methods.  
The criterion for parameter selection in this paper was to choose parameters which produce 
both most visually appealing results and highest PSNR. Therefore, to ensure fairness, each 
experiment was repeated several times with different parameters and the best result of each 
experiment was chosen (Farsiu, S., Robinson, M. D., Elad, M. and Milanfar, P. 2004; Farsiu, 
S., Elad, M. and Milanfar, P. 2006). 
For objective or PSNR measurement of the Lena (Standard image) and Susie (40th Frame) 
are shown in Table I and Table II respectively. For subjective or virtual measurement of the 
Lena (Standard image) and Susie (40th Frame) are shown in figure 3 and figure 4 
respectively. 

 
4.1 Noiseless 
For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. The result of SRR based on Hampel 
estimator with Laplacian and Hampel-Laplacian Regularization gives outstandingly higher 
PSNR than L1 and L2 norm estimator about 1-3 dB. 
For subjective or virtual measurement of Lena (Standard image), the original HR image is 
shown in Fig. 3 (a-1) and one of corrupted LR images is shown in Fig. 3 (a-2). Next, the 
result of implementing the SRR algorithm using L1 estimator with Laplacian Regularization, 
L2 estimator with Laplacian Regularization, Hampel estimator with Laplacian 
Regularization and Hampel estimator with Hampel-Laplacian Regularization  are shown in 
Figs. 3 (a-3) – 3 (a-6) respectively. 
For subjective or virtual measurement of Susie (40th Frame), the original HR image is shown 
in Fig. 4 (a-1) and one of corrupted LR images is shown in Fig. 4 (a-2). Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2 
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization 
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and Hampel estimator with Hampel-Laplacian Regularization  are shown in Figs. 4 (a-3) – 4 
(a-6) respectively. 
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Table 1. The experimental Result of Proposed Method (Lena Image) 

 

4.2 AWGN (Additive White Gaussian Noise) 
For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. For the Lena image, the result of SRR based 
on Hampel estimator with Laplacian and Hampel-Laplacian Regularization gives the higher 
PSNR than L1 and L2 norm estimator. For the Susie image, the result of SRR based on 
Hampel estimator with Laplacian and Hampel-Laplacian Regularization and L2 estimator 
gives the higher PSNR than L1 norm estimator. 
For subjective or virtual measurement of Lena (Standard image) at 5 AWGN cases, the 
original HR image is shown in Fig. 3 (b-1) - 3 (f-1) respectively and one of corrupted LR 
images is shown in Fig. 3 (b-2) - 3 (f-2) respectively. Next, the result of implementing the 
SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with 
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel 
estimator with Hampel-Laplacian Regularization  are shown in Figs. 3 (b-3) – 3 (b-6), Figs. 
3(c-3) – 3 (c-6), Figs. 3 (d-3) – 3 (d-6), Figs. 3 (e-3) – 3 (e-6) and Figs. 3 (f-3) – 3 (f-6) 
respectively. 
For subjective or virtual measurement of Susie (40th Frame) at 3 AWGN cases, the original 
HR image is shown in Fig. 4 (b-1) - 4 (f-1) respectively and one of corrupted LR images is 
shown in Fig. 4 (b-2) - 4 (f-2) respectively. Next, the result of implementing the SRR 
algorithm using L1 estimator with Laplacian Regularization, L2 estimator with Laplacian 
Regularization, Hampel estimator with Laplacian Regularization and Hampel estimator 
with Hampel-Laplacian Regularization  are shown in Figs. 4 (b-3) – 4 (b-6), Figs. 4 (c-3) – 4 
(c-6), Figs. 4 (d-3) – 4 (d-6), Figs. 4 (e-3) – 4 (e-6) and Figs. 4 (f-3) – 4 (f-6) respectively. 
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and Hampel estimator with Hampel-Laplacian Regularization  are shown in Figs. 4 (a-3) – 4 
(a-6) respectively. 
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4.2 AWGN (Additive White Gaussian Noise) 
For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. For the Lena image, the result of SRR based 
on Hampel estimator with Laplacian and Hampel-Laplacian Regularization gives the higher 
PSNR than L1 and L2 norm estimator. For the Susie image, the result of SRR based on 
Hampel estimator with Laplacian and Hampel-Laplacian Regularization and L2 estimator 
gives the higher PSNR than L1 norm estimator. 
For subjective or virtual measurement of Lena (Standard image) at 5 AWGN cases, the 
original HR image is shown in Fig. 3 (b-1) - 3 (f-1) respectively and one of corrupted LR 
images is shown in Fig. 3 (b-2) - 3 (f-2) respectively. Next, the result of implementing the 
SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with 
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel 
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For subjective or virtual measurement of Susie (40th Frame) at 3 AWGN cases, the original 
HR image is shown in Fig. 4 (b-1) - 4 (f-1) respectively and one of corrupted LR images is 
shown in Fig. 4 (b-2) - 4 (f-2) respectively. Next, the result of implementing the SRR 
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4.3 Poisson Noise 
For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. The result of SRR based on Hampel 
estimator with Laplacian and Hampel-Laplacian Regularization and L2 estimator gives the 
higher PSNR than L1 norm estimator. 
For subjective or virtual measurement of Lena (Standard image), the original HR image is 
shown in Fig. 3 (g-1) and one of corrupted LR images is shown in Fig. 3 (g-2). Next, the 
result of implementing the SRR algorithm using L1 estimator with Laplacian Regularization, 
L2 estimator with Laplacian Regularization, Hampel estimator with Laplacian 
Regularization and Hampel estimator with Hampel-Laplacian Regularization  are shown in 
Figs. 3 (g-3) – 3 (g-6) respectively. 
For subjective or virtual measurement of Susie (40th Frame), the original HR image is shown 
in Fig. 4 (g-1) and one of corrupted LR images is shown in Fig. 4 (g-2). Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2 
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization 
and Hampel estimator with Hampel-Laplacian Regularization  are shown in Figs. 4 (g-3) – 4 
(g-6) respectively 

 
4.4 Salt&Pepper Noise 
For objective or PSNR measurement, this experiment is a 3 Salt&Pepper Noise cases at 
D=0.005, D=0.010 and D=0.015 respectively (D is the noise density for Salt&Pepper noise 
model). The result of the Lena (Standard image) and Susie (40th Frame) are shown in Table I 
and II respectively. The result of SRR based on Hampel estimator with Laplacian and 
Hampel-Laplacian Regularization gives dramatically higher PSNR than L1 and L2 norm 
estimator about 4-5 dB. 
For subjective or virtual measurement of Lena (Standard image) at 3 Salt&Pepper Noise 
cases, the original HR image is shown in Fig. 3 (h-1) - 3 (j-1) respectively and one of 
corrupted LR images is shown in Fig. 3 (h-2) - 3 (j-2) respectively. Next, the result of 
implementing the SRR algorithm using L1 estimator with Laplacian Regularization, L2 
estimator with Laplacian Regularization, Hampel estimator with Laplacian Regularization 

 

and Hampel estimator with Hampel-Laplacian Regularization  are shown in Figs. 3 (h-3) – 3 
(h-6), Figs. 3 (i-3) – 3 (i-6) and Figs. 3 (j-3) – 3 (j-6) respectively. 
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SRR algorithm using L1 estimator with Laplacian Regularization, L2 estimator with 
Laplacian Regularization, Hampel estimator with Laplacian Regularization and Hampel 
estimator with Hampel-Laplacian Regularization  are shown in Figs. 4 (h-3) – 4 (h-6), Figs. 4 
(i-3) – 4 (i-6) and Figs. 4 (j-3) – 4 (j-6) respectively. 
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For objective or PSNR measurement, the result of the Lena (Standard image) and Susie (40th 
Frame) are shown in Table I and II respectively. (V is the noise variance for Speckle noise 
model) The result of SRR based on Hampel estimator with Laplacian and Hampel-Laplacian 
Regularization and L2 estimator gives the higher PSNR than L1 norm estimator. 
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with Hampel-Laplacian Regularization  are shown in Figs. 4 (k-3) – 4 (k-6), Figs. 4 (l-3) – 4 (l-
6) and Figs. 4 (m-3) – 4 (m-6) respectively. 
From the number of experimental results, the T parameter is low (like L1 norm) such as T=1 
to T=5 for high noise power and is high for low noise power (like L2 norm) such as T=15 to 
T=19. Moreover, the Tg parameter is medium (like L1-Tikhonov regularization) for high 
noise power and is high for low noise power (like classical Tikhonov regularization). 
The computation cost of the proposed algorithm slightly higher than the SRR algorithm 
based on L1 and L2. 
From all experimental results of both Susie (40th Frame) and Lena (The Standard Image), all 
comparatively experimental results are concluded as follow: 

1. For AWGN case, the L2 estimator usually gives the best reconstruction because 
noise distribution is a quadratic similar to L2.   

2. For Salt&Pepper Noise cases, the Hampel estimator gives the far better 
reconstruction than L1 and L2 estimator because these robust estimators are 
designed to be robust and reject outliers. The norms are more forgiving on outliers; 
that is, they should increase less rapidly than L2. 

3. The SRR algorithm using L1 norm with the proposed registration gives the lowest 
PSRN because the L1 norm is excessively robust against the outliers. 
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5. Conclusion 
 

In this paper, we propose an alternate approach using a novel robust estimation norm 
function (based on Hampel norm function) for SRR framework with Tikhonov and Hampel-
Tikhonov Regularization. The proposed robust SRR can be effectively applied on the images 
that are corrupted by various noise models. Experimental results conducted clearly that the 
proposed robust algorithm can well be applied on the any noise models (such as Noiseless, 
AWGN, Poisson Noise, Salt&Pepper Noise and Speckle Noise) at different noise power and 
the proposed algorithm can obviously improve the result in using both subjective and 
objective measurement. 
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Fig. 3. The Experimental Result of Proposed SRR Algorithm: Lena 
(The bottom image on our experiment result of each subfigure is the absolute difference 
between it’s correspond top image to the original HR image. The difference is magnified by 
5.) 

 

 
Fig. 3. The Experimental Result of Proposed SRR Algorithm: Lena (Cont.) 
(The bottom image on our experiment result of each subfigure is the absolute difference 
between it’s correspond top image to the original HR image. The difference is magnified by 
5.) 
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Fig. 3. The Experimental Result of Proposed SRR Algorithm: Lena (Cont.) 
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Fig. 4. The Experimental Result of Proposed SRR Algorithm: Susie (40th Frame)  
(The bottom image on our experiment result of each subfigure is the absolute difference 
between it’s correspond top image to the original HR image. The difference is magnified by 
5.) 

 

 
Fig. 4. The Experimental Result of Proposed SRR Algorithm: Susie (40th Frame) (Cont.) 
(The bottom image on our experiment result of each subfigure is the absolute difference 
between it’s correspond top image to the original HR image. The difference is magnified by 
5.) 
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1. Introduction

Classification is an important mechanism in many pattern recognition applications. In many
of these application, such as object recognition, there are several classes from which the data
originates. In such cases many traditional classification methods such as Artificial Neural
Networks or Support Vector Machines are used. However, in some applications the training
data may belong to only one class. In this case, the classification is performed by finding
whether a test sample belongs to the known class or not. The main criteria in single-class
classification (also known as novelty detection) is to perform the classification without any
information about other classes.
This chapter presents a classic problem in video processing applications and addresses the
issues through novelty detection techniques. The problem at hand is to detect foreground
objects in a video with quasi-stationary background. The video background is called quasi-
stationary if the camera is static but the background itself changes due to waving tree
branches, flags, water surfaces, etc. Detection of foreground region in such scenarios requires
a pixel-wise background model for each pixel in the scene. Once the pixel models are built,
there should be a mechanism to decide whether pixels in new frames belong to their corre-
sponding background model or not. The generation of pixel models from their history and
the decision making mechanism is a novelty detection problem.
In order to address the foreground detection problem, two main approaches to novelty de-
tection, namely statistical and analytical, are presented in this chapter. The advantage and
disadvantages of these approaches are discussed. Moreover, the suitability of each approach
to specific scenarios in video processing applications are evaluated.

2. Foreground Detection

Detecting foreground regions in videos is one of the most important tasks in high-level video
processing applications. One of the major issues in detecting foreground regions using back-
ground subtraction techniques is that because of inherent changes in the background, such as
fluctuations in monitors and lights, waving flags and trees, water surfaces, the background
may not be completely stationary. These difficult situations are illustrated in Fig. 1.
In the presence of these types of backgrounds, referred to as quasi-stationary, a single back-
ground frame is not enough to accurately detect moving regions. Therefore the background
pixels of the video have to be modeled in order to detect foreground regions while allowing
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(a) (b) (c)

Fig. 1. Examples of challenges in quasi-stationary backgrounds: (a) Fluctuating monitors. (b)
Rain/Snow. (c) Waving tree branches.

for the changes in the background. The scenarios in which the background modeling tech-
niques are used to detect foreground regions are very diverse. Applications vary from indoor
scenes to outdoor, from completely stationary to dynamic backgrounds, from high quality
videos to low contrast scenes and so on. Therefore, a single system capable of addressing all
possible situations while being time and memory efficient is yet to be devised.
(Pless et al., 2003) evaluated different models for dynamic backgrounds. Typically, back-
ground models are defined independently on each pixel, and depending on the complexity
of the problem employ the expected pixel features (i.e. colors), (Elgammal et al., 2002), or
consistent motion, (Pless et al., 2000). They also may employ pixel-wise information, (Wern
et al., 1997), or regional models of the features, (Toyama et al., 1999). To improve robustness
to spatio-temporal features, (Li et al., 2004), may be used.
In (Wern et al., 1997) a single 3-D Gaussian model for each pixel in the scene is built, where the
mean and covariance of the model are learned in each frame. This system tried to model the
noise and used a background subtraction technique to detect those pixels whose probabilities
are smaller than a threshold. However, the system fails to label a pixel as foreground or
background when it has more than one modality due to fluctuations in its values, such as a
pixel belonging to a fluctuating monitor.
A mixture of Gaussians modeling technique was proposed in (Stauffer & Grimson, 2000);
(Stauffer & Grimson, 1999) to address the multi-modality of the underlying background. In
this modeling technique background pixels are modeled by a mixture of a number of Gaussian
functions. During the training stage, parameters of each Gaussian are trained and used in the
background subtraction, where the probability of each pixel is generated. Each pixel is labeled
as foreground or background based on its probability.
There are several shortcomings for mixture learning methods. First, the number of Gaussians
needs to be specified. Second, this method does not explicitly handle spatial dependencies.
Even with the use of incremental-EM, the parameter estimation and its convergence is no-
ticeably slow where the Gaussians adapt to a new cluster. The convergence speed can be im-
proved by sacrificing memory as proposed in (McKenna et al., 1998), limiting its applications
where mixture modeling is pixel-based and over long temporal windows.
In (Elgammal et al., 2002), a non-parametric kernel density estimation method (KDE) for pixel-
wise background modeling is proposed without making any assumption on its probability
distribution. Therefore, this method can easily deal with multi-modality in background pixel
distributions without specifying the number of modes in the background. However, there
are several issues to be addressed using non-parametric kernel density estimation. These

methods are memory and time consuming since the system has to compute the average of
all kernels centered at each training sample for each pixel in each frame. Also the size of
temporal window used as the background model is critical. In order to adapt the model a
sliding window is used in (Mittal & Paragios, 2004). However, the model convergence is
problematic in situations where the illumination suddenly changes.
In the traditional approaches for foreground detection presented above, the problem is ad-
dressed by reformatting a bi-class classification methodology to fit into the novelty detection
approach. For example in the Mixture of Gaussian approach, changes in each pixel are mod-
eled by a number of Gaussian functions. For new pixels a probability is calculated using the
pixel model. Then a heuristically selected threshold is used to determine whether the pixel
belongs to background or foreground based on its probability.
The major drawback of such approaches is the threshold choice. In these statistical approaches
such as the mixture of Gaussians or the KDE, the pixel model is its probability distribution
function belonging to the background. Since the background is quasi-stationary and natural,
pixels in different locations undergo different amount of changes. Since the probability den-
sity functions are normalized, the pixels with less changes will have narrow but tall probabil-
ity density functions while the pixels with more changes are represented by wider but shorter
density functions. Therefore, finding a global threshold that works well for the majority of the
background pixels and in a diverse range of applications is practically untractable.
In this chapter, two approaches based on novelty detection to address the single class classi-
fication, inherent to background modeling, are investigated. The statistical approach is based
on a recursive modeling of the background pixels. This technique is called the RM, (Tavakkoli
et al., 2006c). As an alternative to this statistical approach an analytical counter part to the
RM technique is presented and is based on the Support Vector Data Description, (Tax & Duin,
2004). This technique is called Support Vector Data Description Modeling (SVDDM) and looks
at modeling the pixels as an analytical description boundary, (Tavakkoli, Kelley, King, Nico-
lescu, Nicolescu & Bebis, 2007). An incremental version of the SVDDM technique is presented
in (Tavakkoli, Nicolescu & Bebis, 2008).
The rest of this chapter is organized as follows. In Section 3 the theory behind the RM tech-
nique is presented. Section 4 gives a detailed algorithm of the support vector data description
method in detecting foreground regions in video sequences. Performances of the proposed
methods are evaluated in Section 5. Section 6 presents a comparison between the performance
of these techniques and other existing methods on real videos as well as synthetic data and
a comparison summary is drawn in this section. Finally, Section 7 concludes the chapter and
gives future direction for research.

3. The Recursive Modeling

This section describes a technique called Recursive Modeling (RM) for foreground region de-
tection in videos. The theory behind this approach is to generate a histogram of the data sam-
ples, with the hope that when a large number of training samples are processed, the histogram
estimates the actual probability of the underlying data. System details and its theory are ex-
plained in the following, (Tavakkoli et al., 2006a), (Tavakkoli et al., 2006c), and (Tavakkoli,
Nicolescu, Bebis & Nicolesu, 2008).

3.1 The theory
Let xt be the the intensity value of a pixel at time t. The non-parametric estimation of the
background model that accurately follows its multi-modal distribution can be reformulated
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Fig. 1. Examples of challenges in quasi-stationary backgrounds: (a) Fluctuating monitors. (b)
Rain/Snow. (c) Waving tree branches.
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in terms of recursive filtering, (Tavakkoli, Nicolescu, Bebis & Nicolesu, 2008):

θ̂B
t (x) = [1 − βt] ⋅ θB

t−1(x) + αt ⋅ H∆ (x − xt) ∀x ∈ [0,255] (1)

255

∑
x=0

θB
t (x) = 1 (2)

where θB
t is the background pixel model at time t, normalized according to (2). θ̂B

t is updated
by the local kernel H (⋅) with bandwidth ∆ centered at xt. Parameters αt and βt are the learn-
ing rate and forgetting rate schedules, respectively. The kernel H should satisfy the following:

∑
x

H∆(x) = 1

∑
x

x × H∆(x) = 0 (3)

These conditions should be satisfied to ensure that the kernel is normalized, symmetric and
positive definite in case of multivariate kernels. Note that in this context there is no need to
specify the number of modalities of the background representation at each pixel. In our imple-
mentation of the RM method we use a Gaussian kernel which satisfies the above conditions.

(a) Model after 10 frames (b) Model after 200 frames

Fig. 2. Recursive modeling convergence to the actual probability density function over time.

Figure 2 shows the updating process using our proposed recursive modeling technique. It
can be seen that the trained model (solid line) converges to the actual one (dashed line) as
new samples are introduced. The actual model is the probability density function of a sample
population and the trained model is generated by using the recursive formula in (1).
In existing non-parametric kernel density estimation methods, the learning rate α is selected to
be constant and has small values. This makes the pixel model convergence slow and keeps its
history in the recent temporal window of size L = 1/α. The window size in non-parametric
models is important as the system has to cover all possible fluctuations in the background
model. That is, pixel intensity changes may not be periodic or regular and consequently do
not fit in a small temporal window. In such cases larger windows are needed, resulting in
higher memory and computational requirements to achieve accurate, real-time modeling.

Another issue in non-parametric density estimation techniques is that the window size is fixed
and is the same for all pixels in the scene. However, some pixels may have less fluctuations
and therefore need smaller windows to be accurately modeled, while others may need a much
longer history to cover their fluctuations.

3.1.1 Scheduled learning
In order to speed up the modeling convergence and recovery we use a schedule for learning
the background model at each pixel based on its history. This schedule makes the adaptive
learning process converge faster, without compromising the stability and memory require-
ments of the system. The learning rate changes according to the schedule:

αt =
1 − α0

h(t)
+ α0 (4)

where αt is the learning rate at time t and α0 is a small target rate which is:

α0 = 1/256 × σθ (5)

where σθ is the model variance. The function h(t) is a monotonically increasing function:

h(t) = t − t0 + 1 (6)

where t0 is the time at which a sudden global change is detected. At early stages the learning
occurs faster (αt = 1), then it monotonically decreases and converges to the target rate (αt →
α0). When a global change is detected h(t) resets to 1. The effect of this schedule on improving
the convergence and recovery speed are discussed later.
The forgetting rate schedule is used to account for removing those values that have occurred
long time ago and no longer exist in the background. In the current implementation we as-
sume that the forgetting rate is a portion of the learning rate βt = l ⋅ αt, where l ≤ 1. In the
current implementation l = 0.5 is employed in all experiments. This accounts for those fore-
ground objects that cover some parts of the background but after a sufficiently small period
move. This keeps the history of the covered background in short-term.

3.1.2 Incorporating color information
The recursive learning scheme in 1-D has been explained in the previous section. The back-
ground and foreground models are updated using the intensity value of pixels at each frame.
To extend the modeling to higher dimensions and incorporate color information, one may
consider each pixel as a 3 dimensional feature vector in [0,255]3. The kernel H in this space
is a multivariate kernel HΣ. In this case, instead of using a diagonal matrix HΣ a full multi-
variate kernel can be used. The kernel bandwidth matrix Σ is a symmetric positive definite
3 × 3 matrix. Given N pixels, x1,x2, ⋅ ⋅ ⋅ ,xN , labeled as background, their successive deviation
matrix is a matrix ∆X whose columns are:

[
xi − xi−1

]T with i = 2,3, ⋅ ⋅ ⋅ , N (7)

The bandwidth matrix is defined so that it represents temporal scatter of the training data:

Σ = cov(∆X) (8)

In order to decrease the memory requirements of the system we assumed that the two chromi-
nance values are independent. Making this assumption results in a significant decrease
in memory requirements while the accuracy of the model does not decay drastically. The
red/green chrominance values can be quantized into 256 discrete values.
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t−1 + αt ⋅ H∆
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- If ln
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med(θF

t )/med(θB
t )

)
≥ κ then label pixel as foreground.
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- Update κ and th

Fig. 3. The RM algorithm.

3.2 The algorithm
The proposed method, in pseudo-code, is shown in Figure 3. There are three major steps in
the RM method: training, classification and update stages, respectively. The role and results
of each stage along with its details are presented in the following.

3.2.1 The Training Stage
Before new objects appear in the scene, at each pixel all the intensity values have the same
probability of being foreground. However, in each new frame the pixel background mod-
els are updated according to equation (1), resulting in larger model values (θB) at the pixel
intensity value xt. In essence, the value of the background pixel model at each intensity x is:

θB
t (x) = P(Bg

∣∣x) x ∈ [0,255] (9)

In order to achieve better detection accuracy we introduce the foreground model which in the
classification stage is compared to the background model to make the decision on whether
the pixel belongs to background or foreground. This foreground model represents all other
unseen intensity/color values for each pixel that does not follow the background history and
is defined by:

θ̂F
t (x) = [1 − βF

t ] ⋅ θF
t−1(x) + αF

t ⋅ H∆ (x − xt) ∀x ∈ [0,255] (10)

255

∑
x=0

θF
t (x) = 1 (11)

Once the background model is updated, it is compared to its corresponding threshold th.
This threshold is automatically maintained for each pixel through the update stage which is
described in details later. If the pixel probability is less than this threshold the foreground
model for that pixel value is updated according to (10) and (11).

3.2.2 The Classification stage
For each pixel at time t we use a function θB

t for the background model and θF
t for the fore-

ground. The domain of these functions is [0,255]N , where N is the dimensionality of the pixel
feature vector. For simplicity assume the one dimensional case again, where θt is the back-
ground/foreground model whose domain is [0,255]. From equation (10), each model ranges
between 0 to 1 and its value shows the amount of evidence accumulated in the updating pro-
cess (i.e., the estimated probability). For each new intensity value xt we have the evidence

(a) An arbitrary frame (b) The threshold map

Fig. 4. Adaptive threshold map: different pixels need different thresholds.

of each model as θB
t (xt) and θF

t (xt). The classification uses a maximum a posteriori criterion to
label the pixel as foreground:

ln

(
θB

t
θF

t

)
≤ κ (12)

3.2.3 The Update stage
In order for the RM technique to address the single class classification problem at hand there
is a need for an adaptive classification criteria. Because not all pixels in the scene follow the
same changes, the decision threshold, θ and κ should be adaptive and independent for each
pixel and has to be derived from the history of that pixel. Figure 4 explains this issue.
For each pixel its threshold value (th) is selected such that its classifier results in 5% false
reject rate. That is, 95% of the time the pixel is correctly classified as belonging to background.
Therefore, The Thresholds th for each pixel should adapt to a value where:

∑
x:θB

t (x)≥th
θB

t (x) ≥ 0.95 (13)

This can be seen in Figure 4, where (a) shows an arbitrary frame of a sequence containing a
water surface and (b) shows the trained threshold map for this frame. Darker pixels in Figure
4(b) represent smaller threshold values and lighter pixels correspond to larger threshold val-
ues. As it can be observed, the thresholds in the areas that tend to change more, such as the
water surface, are lower than in those areas with less amount of change, such as the sky. This
is because for pixels which change all the time, the certainty about the background probability
values is less.
For the other set of thresholds κ, we similarly use a measure of changes in the intensity at each
pixel position. Therefore the threshold κ is proportional to the logarithm of the background
model variance:

κ ≈ ln

{
255

∑
x=0

(
θB

t (x)− mean[θB(x)]
)}

(14)

This ensures that for pixels with more changes, higher threshold values are chosen for classi-
fication, while for those pixels with fewer changes smaller thresholds are employed. It should
be mentioned that in the current implementation of the algorithm, the thresholds are updated
every 30 frames (kept as the background buffer and used to perform the adaptation process).
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probability of being foreground. However, in each new frame the pixel background mod-
els are updated according to equation (1), resulting in larger model values (θB) at the pixel
intensity value xt. In essence, the value of the background pixel model at each intensity x is:

θB
t (x) = P(Bg

∣∣x) x ∈ [0,255] (9)

In order to achieve better detection accuracy we introduce the foreground model which in the
classification stage is compared to the background model to make the decision on whether
the pixel belongs to background or foreground. This foreground model represents all other
unseen intensity/color values for each pixel that does not follow the background history and
is defined by:

θ̂F
t (x) = [1 − βF

t ] ⋅ θF
t−1(x) + αF

t ⋅ H∆ (x − xt) ∀x ∈ [0,255] (10)

255

∑
x=0

θF
t (x) = 1 (11)

Once the background model is updated, it is compared to its corresponding threshold th.
This threshold is automatically maintained for each pixel through the update stage which is
described in details later. If the pixel probability is less than this threshold the foreground
model for that pixel value is updated according to (10) and (11).

3.2.2 The Classification stage
For each pixel at time t we use a function θB

t for the background model and θF
t for the fore-

ground. The domain of these functions is [0,255]N , where N is the dimensionality of the pixel
feature vector. For simplicity assume the one dimensional case again, where θt is the back-
ground/foreground model whose domain is [0,255]. From equation (10), each model ranges
between 0 to 1 and its value shows the amount of evidence accumulated in the updating pro-
cess (i.e., the estimated probability). For each new intensity value xt we have the evidence

(a) An arbitrary frame (b) The threshold map

Fig. 4. Adaptive threshold map: different pixels need different thresholds.

of each model as θB
t (xt) and θF

t (xt). The classification uses a maximum a posteriori criterion to
label the pixel as foreground:

ln

(
θB

t
θF

t

)
≤ κ (12)

3.2.3 The Update stage
In order for the RM technique to address the single class classification problem at hand there
is a need for an adaptive classification criteria. Because not all pixels in the scene follow the
same changes, the decision threshold, θ and κ should be adaptive and independent for each
pixel and has to be derived from the history of that pixel. Figure 4 explains this issue.
For each pixel its threshold value (th) is selected such that its classifier results in 5% false
reject rate. That is, 95% of the time the pixel is correctly classified as belonging to background.
Therefore, The Thresholds th for each pixel should adapt to a value where:

∑
x:θB

t (x)≥th
θB

t (x) ≥ 0.95 (13)

This can be seen in Figure 4, where (a) shows an arbitrary frame of a sequence containing a
water surface and (b) shows the trained threshold map for this frame. Darker pixels in Figure
4(b) represent smaller threshold values and lighter pixels correspond to larger threshold val-
ues. As it can be observed, the thresholds in the areas that tend to change more, such as the
water surface, are lower than in those areas with less amount of change, such as the sky. This
is because for pixels which change all the time, the certainty about the background probability
values is less.
For the other set of thresholds κ, we similarly use a measure of changes in the intensity at each
pixel position. Therefore the threshold κ is proportional to the logarithm of the background
model variance:

κ ≈ ln

{
255

∑
x=0

(
θB

t (x)− mean[θB(x)]
)}

(14)

This ensures that for pixels with more changes, higher threshold values are chosen for classi-
fication, while for those pixels with fewer changes smaller thresholds are employed. It should
be mentioned that in the current implementation of the algorithm, the thresholds are updated
every 30 frames (kept as the background buffer and used to perform the adaptation process).



Pattern Recognition130

More in depth evaluation of the RM technique for novelty detection and its experimental
results on synthetic data and real videos will be presented in the future sections. The RM is
also compared intensively with the SVDDM as well as the traditional background modeling
approaches.

4. The Support Vector Data Description Modeling

In this section a powerful technique in describing the background pixel intensities, called
Support Vector Data Description Modeling is presented, (Tavakkoli, Nicolescu & Bebis, 2007).
Single-class classifiers, also known as novelty detectors are investigated in the literature,
(Bishop, 1994). Our method trains single class classifiers for each pixel in the scene as their
background model. The backbone of the proposed method is based on describing a data set
using their support vectors, (Tax & Duin, 2004). In the following, details of the SVDDM and
the algorithm which detects foreground regions based on this technique are presented.

4.1 The theory
A normal data description gives a closed boundary around the data which can be represented
by a hyper-sphere (i.e. F (R, a)) with center a and radius R, whose volume should be mini-
mized. To allow the possibility of outliers in the training set, slack variables εi ≥ 0 are intro-
duced. The error function to be minimized is:

F (R, a) = R2 + C∑
i

εi ∥xi − a∥2 ≤ R2 + εi (15)

subject to:
∥xi − a∥2 ≤ R2 + εi ∀i. (16)

In order to have a flexible data description kernel functions K(xi, xj) = Φ(xi) ⋅ Φ(xj) are used.
After applying the kernel and using Lagrange optimization the SVDD function becomes:

L = ∑
i

αiK(xi, xi)− ∑
i,j

αiαjK(xi, xj) (17)

∀αi : 0 ≤ αi ≤ C

Only data points with non-zero αi are needed in the description of the data set, therefore they
are called support vectors of the description. After optimizing (17) the Lagrange multipliers
should satisfy the normalization constraint ∑i αi = 1.
Optimizing equation (17) is a Quadratic Programming (QP) problem. Generally the SVDD is
used to describe large data sets. In such applications optimization via standard QP techniques
becomes intractable. To address this issue several algorithms have been proposed which em-
ploy faster solutions to the above QP problem.

4.2 The algorithm
The methodology described in section 4.1 is used in our technique to build a descriptive
boundary for each pixel in the background training frames to generate its model for the back-
ground. Then these boundaries are used to classify their corresponding pixels in new frames
as background and novel (foreground) pixels. There are several advantages in using the Sup-
port Vector Data Description (SVDD) method in detecting foreground regions:

∙ Unlike existing statistical modeling techniques, the proposed method explicitly ad-
dresses the single-class classification problem.

1. Initialization; C , Trn_No, σ
2. For each frame t

For each pixel x(i,j)
2.1. Training stage % OC(i,j) = 1- class classifier for pixel (i,j)

SVD(i,j)← Incrementally train(xt(i, j)) % SVD: The Description
2.2. Classification stage % Desc(i,j) = classification values

Desc(i,j)← Test(xt(i, j),OC(i,j))
Label pixel based on Desc(i,j).

2.3. Update stage
Re-train classifiers every 30 frames

Fig. 5. The SVDDM algorithm.

∙ The proposed method has less memory requirements compared to non-parametric den-
sity estimation techniques, in which all the training samples for the background need to
be stored in order to estimate the probability of each pixel in new frames. The proposed
technique only requires a very small portion of the training samples, support vectors.

∙ The accuracy of this method is not limited to the accuracy of the estimated probability
density functions for each pixel.

∙ The efficiency of our method can be explicitly measured in terms of false reject rates.
The proposed method considers a goal for false positive rates, and generates the de-
scription of the data by fixing the false positive tolerance of the system.

Figure 5 shows the proposed algorithm in pseudo-code format1. The only critical parameter
is the number of training frames (Trn_No) that needs to be initialized. The support vector
data description confidence parameter C is the target false reject rate of the system. This is
not a critical parameter and accounts for the system’s tolerance. Finally the Gaussian kernel
bandwidth, σ does not have a particular effect on the detection rate as long as it is not set to
be less than one, since features used in our method are normalized pixel chrominance values.
For all of our experiments we set C = 0.1 and σ = 5. The optimal value for these parameters
can be estimated by a cross-validation stage.

4.2.1 The Training Stage
In order to generate the background model for each pixel the SVDDM method uses a number
of training frames. The background model in this technique is the description of the data
samples (color and/or intensity values). The data description is generated in the training
stage of the algorithm. In this stage, for each pixel a SVDD classifier is trained using the
training frames, detecting support vectors and the values of Lagrange multipliers.
The support vectors and their corresponding Lagrange multipliers are stored as the classifier
information for each pixel. This information is used for the classification step of the algorithm.
The training stage can be performed off-line in cases where there are not global changes in the
illumination or can be performed in parallel to the classification to achieve efficient results.

4.2.2 The Incremental SVDD Training Algorithm
Our incremental training algorithm is based on the theorem proposed by Osuna et al. in
Osuna et al. (1997). According to Osuna a large QP problem can be broken into series of

1 The proposed method is implemented in MATLAB 6.5, using Data Description toolbox (Tax, 2005).
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More in depth evaluation of the RM technique for novelty detection and its experimental
results on synthetic data and real videos will be presented in the future sections. The RM is
also compared intensively with the SVDDM as well as the traditional background modeling
approaches.

4. The Support Vector Data Description Modeling

In this section a powerful technique in describing the background pixel intensities, called
Support Vector Data Description Modeling is presented, (Tavakkoli, Nicolescu & Bebis, 2007).
Single-class classifiers, also known as novelty detectors are investigated in the literature,
(Bishop, 1994). Our method trains single class classifiers for each pixel in the scene as their
background model. The backbone of the proposed method is based on describing a data set
using their support vectors, (Tax & Duin, 2004). In the following, details of the SVDDM and
the algorithm which detects foreground regions based on this technique are presented.

4.1 The theory
A normal data description gives a closed boundary around the data which can be represented
by a hyper-sphere (i.e. F (R, a)) with center a and radius R, whose volume should be mini-
mized. To allow the possibility of outliers in the training set, slack variables εi ≥ 0 are intro-
duced. The error function to be minimized is:

F (R, a) = R2 + C∑
i

εi ∥xi − a∥2 ≤ R2 + εi (15)

subject to:
∥xi − a∥2 ≤ R2 + εi ∀i. (16)

In order to have a flexible data description kernel functions K(xi, xj) = Φ(xi) ⋅ Φ(xj) are used.
After applying the kernel and using Lagrange optimization the SVDD function becomes:

L = ∑
i

αiK(xi, xi)− ∑
i,j

αiαjK(xi, xj) (17)

∀αi : 0 ≤ αi ≤ C

Only data points with non-zero αi are needed in the description of the data set, therefore they
are called support vectors of the description. After optimizing (17) the Lagrange multipliers
should satisfy the normalization constraint ∑i αi = 1.
Optimizing equation (17) is a Quadratic Programming (QP) problem. Generally the SVDD is
used to describe large data sets. In such applications optimization via standard QP techniques
becomes intractable. To address this issue several algorithms have been proposed which em-
ploy faster solutions to the above QP problem.

4.2 The algorithm
The methodology described in section 4.1 is used in our technique to build a descriptive
boundary for each pixel in the background training frames to generate its model for the back-
ground. Then these boundaries are used to classify their corresponding pixels in new frames
as background and novel (foreground) pixels. There are several advantages in using the Sup-
port Vector Data Description (SVDD) method in detecting foreground regions:

∙ Unlike existing statistical modeling techniques, the proposed method explicitly ad-
dresses the single-class classification problem.

1. Initialization; C , Trn_No, σ
2. For each frame t

For each pixel x(i,j)
2.1. Training stage % OC(i,j) = 1- class classifier for pixel (i,j)

SVD(i,j)← Incrementally train(xt(i, j)) % SVD: The Description
2.2. Classification stage % Desc(i,j) = classification values

Desc(i,j)← Test(xt(i, j),OC(i,j))
Label pixel based on Desc(i,j).

2.3. Update stage
Re-train classifiers every 30 frames

Fig. 5. The SVDDM algorithm.

∙ The proposed method has less memory requirements compared to non-parametric den-
sity estimation techniques, in which all the training samples for the background need to
be stored in order to estimate the probability of each pixel in new frames. The proposed
technique only requires a very small portion of the training samples, support vectors.

∙ The accuracy of this method is not limited to the accuracy of the estimated probability
density functions for each pixel.

∙ The efficiency of our method can be explicitly measured in terms of false reject rates.
The proposed method considers a goal for false positive rates, and generates the de-
scription of the data by fixing the false positive tolerance of the system.

Figure 5 shows the proposed algorithm in pseudo-code format1. The only critical parameter
is the number of training frames (Trn_No) that needs to be initialized. The support vector
data description confidence parameter C is the target false reject rate of the system. This is
not a critical parameter and accounts for the system’s tolerance. Finally the Gaussian kernel
bandwidth, σ does not have a particular effect on the detection rate as long as it is not set to
be less than one, since features used in our method are normalized pixel chrominance values.
For all of our experiments we set C = 0.1 and σ = 5. The optimal value for these parameters
can be estimated by a cross-validation stage.

4.2.1 The Training Stage
In order to generate the background model for each pixel the SVDDM method uses a number
of training frames. The background model in this technique is the description of the data
samples (color and/or intensity values). The data description is generated in the training
stage of the algorithm. In this stage, for each pixel a SVDD classifier is trained using the
training frames, detecting support vectors and the values of Lagrange multipliers.
The support vectors and their corresponding Lagrange multipliers are stored as the classifier
information for each pixel. This information is used for the classification step of the algorithm.
The training stage can be performed off-line in cases where there are not global changes in the
illumination or can be performed in parallel to the classification to achieve efficient results.

4.2.2 The Incremental SVDD Training Algorithm
Our incremental training algorithm is based on the theorem proposed by Osuna et al. in
Osuna et al. (1997). According to Osuna a large QP problem can be broken into series of

1 The proposed method is implemented in MATLAB 6.5, using Data Description toolbox (Tax, 2005).
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smaller sub-problems. The optimization converges as long as at least one sample violates the
KKT conditions.
In the incremental learning scheme, at each step we add one sample to the training working
set consisting of only support vectors. Assume we have a working set which minimizes the
current SVDD objective function for the current data set. The KKT conditions do not hold for
samples which do not belong to the description. Thus, the SVDD converges only for the set
which includes a sample outside the description boundary.
The smallest possible sub-problem consists of only two samples (Platt, 1998b). Since only
the new sample violates the KKT conditions at every step, our algorithm chooses one sample
from the working set along with the new sample and solves the optimization. Solving the
QP problem for two Lagrange multipliers can be done analytically. Because there are only
two multipliers at each step, the minimization constraint can be displayed in 2-D. The two
Lagrange multipliers should satisfy the inequality in (17) and the linear equality in the nor-
malization constraint.
We first compute the constraints on each of the two multipliers. The two Lagrange multipliers
should lie on a diagonal line in 2-D (equality constraint) within a rectangular box (inequality
constraint). Without loss of generality we consider that the algorithm starts with finding the
upper and lower bounds on α2 which are H = min(C,αold

1 + αold
2 ) and L = max(0,αold

1 + αold
2 ),

respectively. The new value for αnew
2 is computed by finding the maximum along the direction

given by the linear equality constraint:

αnew
2 = αold

2 +
E1 − E2

K(x2, x2) + K(x1, x1)− 2K(x2, x1)
(18)

where Ei is the error in evaluation of each multiplier. The denominator in (18) is a step size
(second derivative of objective function along the linear equality constraint). If the new value
for αnew

2 exceeds the bounds it will be clipped (α̂new
2 ). Finally, the new value for α1 is computed

using the linear equality constraint:

αnew
1 = αold

1 + αold
2 − αnew

2 (19)

4.2.3 The Classification Stage
In this stage for each frame, its pixels are used and evaluated by their corresponding classifier
to label them as background or foreground. To test each pixel zt, the distance to the center of
the description hyper-sphere is calculated:

∥zt − a∥2 = (zt ⋅ zt)− 2∑
i

αi(zt ⋅ xi) + ∑
i,j

αiαj(xi ⋅ xj) (20)

A pixel is classified as a background pixel if its distance to the center of the hyper-sphere is
less than or equal to R:

∥zt − a∥2 ≤ R2 (21)

R is the radius of the description. Therefore, it is equal to the distance of each support vector
from the center of the hyper-sphere:

R2 = (xk ⋅ xk)− 2∑
i

αi(xi ⋅ xk) + ∑
i,j

αiαj(xi ⋅ xj) (22)

Note that in the implementation of the algorithm, since the boundaries of the data description
are more complicated than a hyper-sphere, a kernel is used to map the training samples into a

Memory Req. Intensity Chrominance Intensity+Chrominance
Bytes per pixel 1024 2048 3072

Table 1. Per-pixel memory requirements for the RM method.

higher dimension. As the result the mapped samples in the higher dimension can be described
by a high dimensional hyper-sphere and the above discussion can be used.

5. Performance Evaluation

This section presents an evaluation of the performance of the RM as well as the SVDDM
techniques in terms of memory requirements, speed, and other relevant parameters.

5.1 The RM Evaluation
In this section the RM method performance is evaluated. As it will be discussed later the
RM method memory requirements and computation cost are independent of the number of
training samples. This property makes the RM method a suitable candidate to be used in
scenarios where the background changes are very slow.

5.1.1 Parameters
In the RM method there are 5 parameters: the learning and forgetting rate α and β, thresholds
th and κ, and the bandwidth Σ. As described earlier in this chapter these parameters are
trained and estimated from the data to generate an accurate and robust model. The reason that
the RM technique is robust is that it uses most of the information in the data set and there is
no limit on the number of training samples. With all parameters being automatically updated,
the system performance does not require manually chose values for these parameters.

5.1.2 Memory requirements
∙ Using only intensity values.

Since the model is a 1-D function representing the probability mass function of the
pixel,it only needs 256 × 4 bytes per pixel to be stored. Notice that in this case, for
each pixel the intensity values are integer numbers. If the memory of the system is
scarce larger bin sized can be used by quantizing the intensity values.

∙ Using chrominance values.
In this case the model is 2-D and needs 2562 × 4 bytes in memory. The current imple-
mentation of the RM method uses a simple assumption of independence between color
features which results in 8 × 256 bytes memory requirements (Tavakkoli et al., 2006c).

Table 1 shows the memory requirements in bytes per pixel for the RM method, using inten-
sity, chrominance values and their combinations, respectively. In conclusion the asymptotic
memory requirement of the RM algorithm is large but constant O(1).

5.1.3 Computation cost
∙ Using only intensity values.

If we only use pixel intensity values for pixels according to equation (1) we need 256
addition and 2 × 256 multiplication operations. Both the kernel and the model range
from 0 to 255.
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smaller sub-problems. The optimization converges as long as at least one sample violates the
KKT conditions.
In the incremental learning scheme, at each step we add one sample to the training working
set consisting of only support vectors. Assume we have a working set which minimizes the
current SVDD objective function for the current data set. The KKT conditions do not hold for
samples which do not belong to the description. Thus, the SVDD converges only for the set
which includes a sample outside the description boundary.
The smallest possible sub-problem consists of only two samples (Platt, 1998b). Since only
the new sample violates the KKT conditions at every step, our algorithm chooses one sample
from the working set along with the new sample and solves the optimization. Solving the
QP problem for two Lagrange multipliers can be done analytically. Because there are only
two multipliers at each step, the minimization constraint can be displayed in 2-D. The two
Lagrange multipliers should satisfy the inequality in (17) and the linear equality in the nor-
malization constraint.
We first compute the constraints on each of the two multipliers. The two Lagrange multipliers
should lie on a diagonal line in 2-D (equality constraint) within a rectangular box (inequality
constraint). Without loss of generality we consider that the algorithm starts with finding the
upper and lower bounds on α2 which are H = min(C,αold

1 + αold
2 ) and L = max(0,αold

1 + αold
2 ),

respectively. The new value for αnew
2 is computed by finding the maximum along the direction

given by the linear equality constraint:

αnew
2 = αold

2 +
E1 − E2

K(x2, x2) + K(x1, x1)− 2K(x2, x1)
(18)

where Ei is the error in evaluation of each multiplier. The denominator in (18) is a step size
(second derivative of objective function along the linear equality constraint). If the new value
for αnew

2 exceeds the bounds it will be clipped (α̂new
2 ). Finally, the new value for α1 is computed

using the linear equality constraint:

αnew
1 = αold

1 + αold
2 − αnew

2 (19)

4.2.3 The Classification Stage
In this stage for each frame, its pixels are used and evaluated by their corresponding classifier
to label them as background or foreground. To test each pixel zt, the distance to the center of
the description hyper-sphere is calculated:

∥zt − a∥2 = (zt ⋅ zt)− 2∑
i

αi(zt ⋅ xi) + ∑
i,j

αiαj(xi ⋅ xj) (20)

A pixel is classified as a background pixel if its distance to the center of the hyper-sphere is
less than or equal to R:

∥zt − a∥2 ≤ R2 (21)

R is the radius of the description. Therefore, it is equal to the distance of each support vector
from the center of the hyper-sphere:

R2 = (xk ⋅ xk)− 2∑
i

αi(xi ⋅ xk) + ∑
i,j

αiαj(xi ⋅ xj) (22)

Note that in the implementation of the algorithm, since the boundaries of the data description
are more complicated than a hyper-sphere, a kernel is used to map the training samples into a

Memory Req. Intensity Chrominance Intensity+Chrominance
Bytes per pixel 1024 2048 3072

Table 1. Per-pixel memory requirements for the RM method.

higher dimension. As the result the mapped samples in the higher dimension can be described
by a high dimensional hyper-sphere and the above discussion can be used.

5. Performance Evaluation

This section presents an evaluation of the performance of the RM as well as the SVDDM
techniques in terms of memory requirements, speed, and other relevant parameters.

5.1 The RM Evaluation
In this section the RM method performance is evaluated. As it will be discussed later the
RM method memory requirements and computation cost are independent of the number of
training samples. This property makes the RM method a suitable candidate to be used in
scenarios where the background changes are very slow.

5.1.1 Parameters
In the RM method there are 5 parameters: the learning and forgetting rate α and β, thresholds
th and κ, and the bandwidth Σ. As described earlier in this chapter these parameters are
trained and estimated from the data to generate an accurate and robust model. The reason that
the RM technique is robust is that it uses most of the information in the data set and there is
no limit on the number of training samples. With all parameters being automatically updated,
the system performance does not require manually chose values for these parameters.

5.1.2 Memory requirements
∙ Using only intensity values.

Since the model is a 1-D function representing the probability mass function of the
pixel,it only needs 256 × 4 bytes per pixel to be stored. Notice that in this case, for
each pixel the intensity values are integer numbers. If the memory of the system is
scarce larger bin sized can be used by quantizing the intensity values.

∙ Using chrominance values.
In this case the model is 2-D and needs 2562 × 4 bytes in memory. The current imple-
mentation of the RM method uses a simple assumption of independence between color
features which results in 8 × 256 bytes memory requirements (Tavakkoli et al., 2006c).

Table 1 shows the memory requirements in bytes per pixel for the RM method, using inten-
sity, chrominance values and their combinations, respectively. In conclusion the asymptotic
memory requirement of the RM algorithm is large but constant O(1).

5.1.3 Computation cost
∙ Using only intensity values.

If we only use pixel intensity values for pixels according to equation (1) we need 256
addition and 2 × 256 multiplication operations. Both the kernel and the model range
from 0 to 255.
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Operations Addition Multiplication Asymptotic
Intensity 256 512 O(1)
Chrominance 512 1024 O(1)

Table 2. Per-pixel computational cost for the RM method.

Memory Req. Intensity Chrominance both asymptotic
Bytes per pixel f (C,σ)× 5 ≥ 10 f (C,σ)× 8 ≥ 24 f (C,σ) ≥ 32 O(1)
No. of SVs f (C,σ) ≥ 2 f (C,σ) ≥ 3 f (C,σ) ≥ 4 O(1)

Table 3. Per-pixel memory requirements for the SVDDM method.

∙ Using chrominance values.
Similarly, if we use 2-D chrominance values as pixel features and use the independence
assumption discussed earlier, the system requires only 2 × 256 addition and 4 × 256
multiplication operations to update the model.

Table 2 summarizes the per-pixel computational cost of the RM algorithm using only intensity
values or red/green chrominance values for each pixel. The asymptotic computation cost for
this system is constant, O(1), since the updating process merely consists of adding two func-
tions. Note that this technique does not need to compute the exponential function and acts as
an incremental process. The algorithm is inherently fast and an efficient implementation runs
in real-time reaching frame rates of 15 frames per second (fps).

5.2 The SVDDM Evaluation
In this section the SVDDM performance in terms of memory requirements and computation
cost is discussed. The key to evaluate the performance of this technique is to analyze the
optimization problem solved by the system to find support vectors.

5.2.1 Parameters
In order to generate the data description, a hyper-sphere of minimum size containing most
of the training samples is constructed to represents the boundary of the known class. The
training has three parameters including the number of training samples N, the trade off factor
C and the Gaussian kernel bandwidth σ. As mentioned in Section 4.2 for all of the experiments
the values for C and σ are taken 0.10 and 5, respectively. This leaves the system with only the
number of frames as a scene-dependent parameter.

5.2.2 Memory requirements
It is not easy to answer how many data samples are required to find an accurate description
of a target class boundary. It not only depends on the complexity of the data itself but also
on the distribution of the outlier (unknown) class. However, there is a trade-off between the
number of support vectors and the description accuracy. In that sense, a lower limit can be
found for the number of samples required to describe the coarsest distribution boundary.
In theory, only d+ 1 support vectors in d dimensions are sufficient to construct a hyper-sphere.
The center of the sphere lies within the convex hull of these support vectors.

∙ Using only intensity values.
Since by using intensity for each pixel there is only one feature value, the support vec-
tors are 1-D and therefore the minimum number of support vectors required to describe

Training Incremental1 Online2 Canonical3

Set Size SVDD SVDD SVDD
100 0.66 0.73 1.00
200 1.19 1.31 8.57
500 2.19 2.51 149.03
1000 4.20 6.93 1697.2
2000 8.06 20.1 NA
n O(1) Ω(1) O(n)

1- (Tavakkoli, Nicolescu, M., Nicolescu & Bebis, 2008)
2- (Tax & Laskov, 2003)
3- (Tax & Duin, 2004)

Table 4. Speed comparison of the incremental, online and canonical SVDD.

the data will be 2. For each support vector 2 bytes are required to store the intensity and
8 bytes to store the Lagrange multipliers, requiring at least 10 bits per pixel.

∙ Using chrominance values.
By using red and green chrominance values, cr and cg, the minimum of 3 support vec-
tors are needed to be used. This requires at least 24 bytes per pixel.

The above reasoning provides a lower limit on the number of support vectors. In practical
applications this lower limit is far from being useful for implementation. However, notice
that the number of support vectors required to sufficiently describe a data set is related to
the target description accuracy. Therefore, the memory requirement of the SVDDM method is
independent of the number of training frames. Table 3 shows memory requirements in bytes
per pixel for the SVDDM method using intensity, chrominance values and their combinations,
respectively. The asymptotic memory requirement of the SVDDM algorithm is O(1).

5.2.3 Computation cost
Training the SVDDM system for each pixel needs to solve a quadratic programming (QP)
optimization problem. The most common technique to solve the above QP is the Sequential
Minimal Optimization (Platt, 1998c); (Platt, 1998a), runing in polynomial time O(nk).
In order to show the performance of the proposed incremental training method and its effi-
ciency we compare the results obtained by our technique with those of the online SVDD (Tax
& Laskov, 2003) and canonical SVDD (Tax & Duin, 2004).
The SVVD Training Speed. In this section we compare the speed of incremental SVDD
against its online and canonical counterparts. The experiments are conducted in Matlab 6.5
on a P4 Core Duo processor with 1GB RAM. The reported training times are in seconds. Table
4 Shows the training speed of the incremental SVDD, online and canonical versions on a data
set of various sizes. The proposed SVDD training technique runs faster than both canonical
and online algorithms and its asymptotic speed is linear with the data set size. As expected,
both online and our SVDD training methods are considerably faster than the canonical train-
ing of the classifier. Notice that the training time of a canonical SVDD for 2000 training points
is not available because of its slow speed.
Number of Support Vectors. A comparison of the number of retained support vectors for our
technique, canonical, and online SVDD learning methods is presented in Table 5. Both online
and canonical SVDD training algorithm increase the number of support vectors as the size
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Operations Addition Multiplication Asymptotic
Intensity 256 512 O(1)
Chrominance 512 1024 O(1)

Table 2. Per-pixel computational cost for the RM method.

Memory Req. Intensity Chrominance both asymptotic
Bytes per pixel f (C,σ)× 5 ≥ 10 f (C,σ)× 8 ≥ 24 f (C,σ) ≥ 32 O(1)
No. of SVs f (C,σ) ≥ 2 f (C,σ) ≥ 3 f (C,σ) ≥ 4 O(1)

Table 3. Per-pixel memory requirements for the SVDDM method.

∙ Using chrominance values.
Similarly, if we use 2-D chrominance values as pixel features and use the independence
assumption discussed earlier, the system requires only 2 × 256 addition and 4 × 256
multiplication operations to update the model.

Table 2 summarizes the per-pixel computational cost of the RM algorithm using only intensity
values or red/green chrominance values for each pixel. The asymptotic computation cost for
this system is constant, O(1), since the updating process merely consists of adding two func-
tions. Note that this technique does not need to compute the exponential function and acts as
an incremental process. The algorithm is inherently fast and an efficient implementation runs
in real-time reaching frame rates of 15 frames per second (fps).

5.2 The SVDDM Evaluation
In this section the SVDDM performance in terms of memory requirements and computation
cost is discussed. The key to evaluate the performance of this technique is to analyze the
optimization problem solved by the system to find support vectors.

5.2.1 Parameters
In order to generate the data description, a hyper-sphere of minimum size containing most
of the training samples is constructed to represents the boundary of the known class. The
training has three parameters including the number of training samples N, the trade off factor
C and the Gaussian kernel bandwidth σ. As mentioned in Section 4.2 for all of the experiments
the values for C and σ are taken 0.10 and 5, respectively. This leaves the system with only the
number of frames as a scene-dependent parameter.

5.2.2 Memory requirements
It is not easy to answer how many data samples are required to find an accurate description
of a target class boundary. It not only depends on the complexity of the data itself but also
on the distribution of the outlier (unknown) class. However, there is a trade-off between the
number of support vectors and the description accuracy. In that sense, a lower limit can be
found for the number of samples required to describe the coarsest distribution boundary.
In theory, only d+ 1 support vectors in d dimensions are sufficient to construct a hyper-sphere.
The center of the sphere lies within the convex hull of these support vectors.

∙ Using only intensity values.
Since by using intensity for each pixel there is only one feature value, the support vec-
tors are 1-D and therefore the minimum number of support vectors required to describe

Training Incremental1 Online2 Canonical3

Set Size SVDD SVDD SVDD
100 0.66 0.73 1.00
200 1.19 1.31 8.57
500 2.19 2.51 149.03
1000 4.20 6.93 1697.2
2000 8.06 20.1 NA
n O(1) Ω(1) O(n)

1- (Tavakkoli, Nicolescu, M., Nicolescu & Bebis, 2008)
2- (Tax & Laskov, 2003)
3- (Tax & Duin, 2004)

Table 4. Speed comparison of the incremental, online and canonical SVDD.

the data will be 2. For each support vector 2 bytes are required to store the intensity and
8 bytes to store the Lagrange multipliers, requiring at least 10 bits per pixel.

∙ Using chrominance values.
By using red and green chrominance values, cr and cg, the minimum of 3 support vec-
tors are needed to be used. This requires at least 24 bytes per pixel.

The above reasoning provides a lower limit on the number of support vectors. In practical
applications this lower limit is far from being useful for implementation. However, notice
that the number of support vectors required to sufficiently describe a data set is related to
the target description accuracy. Therefore, the memory requirement of the SVDDM method is
independent of the number of training frames. Table 3 shows memory requirements in bytes
per pixel for the SVDDM method using intensity, chrominance values and their combinations,
respectively. The asymptotic memory requirement of the SVDDM algorithm is O(1).

5.2.3 Computation cost
Training the SVDDM system for each pixel needs to solve a quadratic programming (QP)
optimization problem. The most common technique to solve the above QP is the Sequential
Minimal Optimization (Platt, 1998c); (Platt, 1998a), runing in polynomial time O(nk).
In order to show the performance of the proposed incremental training method and its effi-
ciency we compare the results obtained by our technique with those of the online SVDD (Tax
& Laskov, 2003) and canonical SVDD (Tax & Duin, 2004).
The SVVD Training Speed. In this section we compare the speed of incremental SVDD
against its online and canonical counterparts. The experiments are conducted in Matlab 6.5
on a P4 Core Duo processor with 1GB RAM. The reported training times are in seconds. Table
4 Shows the training speed of the incremental SVDD, online and canonical versions on a data
set of various sizes. The proposed SVDD training technique runs faster than both canonical
and online algorithms and its asymptotic speed is linear with the data set size. As expected,
both online and our SVDD training methods are considerably faster than the canonical train-
ing of the classifier. Notice that the training time of a canonical SVDD for 2000 training points
is not available because of its slow speed.
Number of Support Vectors. A comparison of the number of retained support vectors for our
technique, canonical, and online SVDD learning methods is presented in Table 5. Both online
and canonical SVDD training algorithm increase the number of support vectors as the size
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Training Incremental1 Online2 Canonical3

Set Size No. of SV’s No. of SV’s No. of SV’s
100 12 16 14
200 14 23 67
500 16 53 57
1000 19 104 106
2000 20 206 NA
n O(1) O(n) O(n)

1- (Tavakkoli, Nicolescu, M., Nicolescu & Bebis, 2008)
2- (Tax & Laskov, 2003)
3- (Tax & Duin, 2004)

Table 5. The number of support vectors retained.

(a) training speed (b) number of support vectors

Fig. 6. Speed and the number of support vectors comparison between the canonical learning
(⋅− curve), the online learning (−− curve), and the incremental method (− line).

of the data set increases. However, our method keeps almost a constant number of support
vectors. This can be interpreted as mapping to the same higher dimensional feature space for
any given number of samples in the data set.
Notice that by increasing the number of training samples the proposed SVDD training algo-
rithm requires less memory than both online and canonical algorithms. This makes the pro-
posed algorithm suitable for applications in which the number of training samples increase
by time. Since the number of support vectors is inversely proportional to the classification
speed of the system, the incremental SVDD classification time is constant with respect to the
number of samples compared with the canonical and the online methods. Figure 6 (a) and (b)
shows the training speed and the number of retained support vectors, respectively.

6. Experimental Results and Comparison

In this section the performances of our approaches on a number of challenging videos are
discussed and their results are compared with those of existing methods in the literature. A
number of challenging scenarios are presented to the algorithms and their ability to handle
issues are evaluated. The comparisons are performed both qualitatively and quantitatively.

(a) (b) (c) (d)

Fig. 7. Rapidly fluctuating background: (a) Handshake video sequence. Detected foreground
regions using (b) AKDE. (c) RM. (d) SVDDM.

(a) (b) (c) (d)

Fig. 8. Low contrast videos: (a) Handshake video sequence. Detected foreground regions using
(b) AKDE. (b) RM. (d) SVDDM.

6.1 Foreground Detection in Videos
This section compares the performance of the proposed techniques using several real video
sequences that pose significant challenges. Their performances are also compared with the
mixture of Gaussians method (Stauffer & Grimson, 2000), the spatio-temporal modeling pre-
sented in (Li et al., 2004) and the simple KDE method (Elgammal et al., 2002). We use differ-
ent scenarios to test the performance of the proposed techniques and to discuss where each
method is suitable. In order to have a unified comparison and evaluation we use a baseline
system based on Adaptive Kernel Density Estimation (AKDE) (Tavakkoli et al., 2006b). The
following a several scenarios which the comparisons and evaluations are performed on.

6.1.1 Rapidly fluctuating backgrounds
Our experiments showed that for videos where possible fluctuations in the background occur
in about 10 seconds, the AKDE technique needs less memory and works faster compared to
the RM and SVDDM.
Figure 7 shows the detection results of the AKDE, RM and the SVDDM algorithms on the
Handshake video sequence. From this figure the AKDE performs better than both the RM and
the SVDDM. Note that in this particular frame the color of foreground objects is very close to
the background in some regions. The SVDDM technique results in very smooth and reliable
foreground regions but may result in missing some parts of the foreground which are very
similar to the background. Moreover, all methods successfully modeled the fluctuations seen
on monitors as a part of the background.
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Training Incremental1 Online2 Canonical3

Set Size No. of SV’s No. of SV’s No. of SV’s
100 12 16 14
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500 16 53 57
1000 19 104 106
2000 20 206 NA
n O(1) O(n) O(n)

1- (Tavakkoli, Nicolescu, M., Nicolescu & Bebis, 2008)
2- (Tax & Laskov, 2003)
3- (Tax & Duin, 2004)

Table 5. The number of support vectors retained.
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(⋅− curve), the online learning (−− curve), and the incremental method (− line).

of the data set increases. However, our method keeps almost a constant number of support
vectors. This can be interpreted as mapping to the same higher dimensional feature space for
any given number of samples in the data set.
Notice that by increasing the number of training samples the proposed SVDD training algo-
rithm requires less memory than both online and canonical algorithms. This makes the pro-
posed algorithm suitable for applications in which the number of training samples increase
by time. Since the number of support vectors is inversely proportional to the classification
speed of the system, the incremental SVDD classification time is constant with respect to the
number of samples compared with the canonical and the online methods. Figure 6 (a) and (b)
shows the training speed and the number of retained support vectors, respectively.

6. Experimental Results and Comparison

In this section the performances of our approaches on a number of challenging videos are
discussed and their results are compared with those of existing methods in the literature. A
number of challenging scenarios are presented to the algorithms and their ability to handle
issues are evaluated. The comparisons are performed both qualitatively and quantitatively.
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Fig. 7. Rapidly fluctuating background: (a) Handshake video sequence. Detected foreground
regions using (b) AKDE. (c) RM. (d) SVDDM.

(a) (b) (c) (d)

Fig. 8. Low contrast videos: (a) Handshake video sequence. Detected foreground regions using
(b) AKDE. (b) RM. (d) SVDDM.

6.1 Foreground Detection in Videos
This section compares the performance of the proposed techniques using several real video
sequences that pose significant challenges. Their performances are also compared with the
mixture of Gaussians method (Stauffer & Grimson, 2000), the spatio-temporal modeling pre-
sented in (Li et al., 2004) and the simple KDE method (Elgammal et al., 2002). We use differ-
ent scenarios to test the performance of the proposed techniques and to discuss where each
method is suitable. In order to have a unified comparison and evaluation we use a baseline
system based on Adaptive Kernel Density Estimation (AKDE) (Tavakkoli et al., 2006b). The
following a several scenarios which the comparisons and evaluations are performed on.

6.1.1 Rapidly fluctuating backgrounds
Our experiments showed that for videos where possible fluctuations in the background occur
in about 10 seconds, the AKDE technique needs less memory and works faster compared to
the RM and SVDDM.
Figure 7 shows the detection results of the AKDE, RM and the SVDDM algorithms on the
Handshake video sequence. From this figure the AKDE performs better than both the RM and
the SVDDM. Note that in this particular frame the color of foreground objects is very close to
the background in some regions. The SVDDM technique results in very smooth and reliable
foreground regions but may result in missing some parts of the foreground which are very
similar to the background. Moreover, all methods successfully modeled the fluctuations seen
on monitors as a part of the background.
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(a) (b) (c) (d)

Fig. 9. Slowly changing background: (a) Water video sequence. Detected foreground region
using (b) AKDE. (c) RM. (d) SVDDM.

6.1.2 Low contrast videos
To evaluate the accuracy of the SVDDM technique in low contrast video sequences and to
compare it with the AKDE technique, the experiment is performed on the Handshake video
sequence. Figure 8 shows a frame where the background and foreground colors are different.
In this experiment the quality of the images in video sequence are decreased by blurring the
video. The accuracy of the foreground regions detected using the SVDDM technique is clearly
better than those of the AKDE method. The reason is that the SVDDM fixes the false reject
rate of the classifier. This produces a description without estimating the probability density
function of the background.

6.1.3 Slowly changing backgrounds
In videos with slowly changing backgrounds the AKDE requires more training frames to gen-
erate a good background model. Therefore the system memory requirements is increased
resulting in drastic decrease in its speed. In these situations the RM technique is a very good
alternative, since its performance is independent of the number of training frames.
Figure 9(a) shows an arbitrary frame of the Water video sequence. This example is particularly
difficult because waves do not follow a regular motion pattern and their motion is slow. From
Figure 9, the AKDE without any post-processing results in many false positives while the
detection results of the RM and the SVDDM which uses more training sample are far better.
We can conclude that the RM method has a better performance compared to both the AKDE
and the SVDDM in situations in which the background has slow and irregular motion. The
AKDE employs a sliding window of limited size which may not cover all changes in the
background. The model is continuously updated in the RM method therefore keeping most
of the changes that occurred in the past. The SVDDM method performs better than the AKDE
technique in this scenario because the model that the SVDDM builds automatically generates
the decision boundaries of the background class instead.

6.1.4 Hand-held camera
In situations when the camera is not completely stationary, such as the case of a hand-held
camera, the AKDE and the current batch implementation of the SVDDM methods are not
suitable. In these situations there is a consistent, slow and irregular global motion in the
scene. These changes can not be modeled by a limited size sliding window of training frames.
In such cases the RM method outperforms other tecniques.
Figure 10 shows the modeling error of the RM method in the Room video sequence. In Figure
10(a) an arbitrary frame of this video is shown. Figure 10(b)-(d) show the false positives de-

(a) (b) (c) (d)

(e)

Fig. 10. Hand-held camera: (a) Room video sequence. False positives after (b) 2 frames, (c) 32
frames, ans (d) 247 frames using the AKDE method (e) Modeling error in a hand-held camera
situation using different methods.

tected as foreground regions using the RM method. As expected early into the video the RM
models are not very accurate resulting in a lot of false positives. However, as more and more
frames are processed the model becomes more and more accurate (Figure 10(d)). Figure 10(e)
compares the modeling error of the RM with and without scheduling as well as the AKDE
(constant window size).

6.1.5 Non-empty backgrounds
In situations in which the background of the video is not empty (that is, there is no clear back-
ground at any time in the video sequence), the AKDE and SVDDM methods fail to accurately
detect the foreground regions. In these situations the RM technique has to be used.

(a) (b) (c)

Fig. 11. Non-empty background: (a) Mall video sequence. (b) Background model after 5
frames using the RM method. (c) Background model after 95 frames using the RM method.



Novelty Detection: An Approach to Foreground Detection in Videos 139

(a) (b) (c) (d)

Fig. 9. Slowly changing background: (a) Water video sequence. Detected foreground region
using (b) AKDE. (c) RM. (d) SVDDM.

6.1.2 Low contrast videos
To evaluate the accuracy of the SVDDM technique in low contrast video sequences and to
compare it with the AKDE technique, the experiment is performed on the Handshake video
sequence. Figure 8 shows a frame where the background and foreground colors are different.
In this experiment the quality of the images in video sequence are decreased by blurring the
video. The accuracy of the foreground regions detected using the SVDDM technique is clearly
better than those of the AKDE method. The reason is that the SVDDM fixes the false reject
rate of the classifier. This produces a description without estimating the probability density
function of the background.

6.1.3 Slowly changing backgrounds
In videos with slowly changing backgrounds the AKDE requires more training frames to gen-
erate a good background model. Therefore the system memory requirements is increased
resulting in drastic decrease in its speed. In these situations the RM technique is a very good
alternative, since its performance is independent of the number of training frames.
Figure 9(a) shows an arbitrary frame of the Water video sequence. This example is particularly
difficult because waves do not follow a regular motion pattern and their motion is slow. From
Figure 9, the AKDE without any post-processing results in many false positives while the
detection results of the RM and the SVDDM which uses more training sample are far better.
We can conclude that the RM method has a better performance compared to both the AKDE
and the SVDDM in situations in which the background has slow and irregular motion. The
AKDE employs a sliding window of limited size which may not cover all changes in the
background. The model is continuously updated in the RM method therefore keeping most
of the changes that occurred in the past. The SVDDM method performs better than the AKDE
technique in this scenario because the model that the SVDDM builds automatically generates
the decision boundaries of the background class instead.

6.1.4 Hand-held camera
In situations when the camera is not completely stationary, such as the case of a hand-held
camera, the AKDE and the current batch implementation of the SVDDM methods are not
suitable. In these situations there is a consistent, slow and irregular global motion in the
scene. These changes can not be modeled by a limited size sliding window of training frames.
In such cases the RM method outperforms other tecniques.
Figure 10 shows the modeling error of the RM method in the Room video sequence. In Figure
10(a) an arbitrary frame of this video is shown. Figure 10(b)-(d) show the false positives de-
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Fig. 10. Hand-held camera: (a) Room video sequence. False positives after (b) 2 frames, (c) 32
frames, ans (d) 247 frames using the AKDE method (e) Modeling error in a hand-held camera
situation using different methods.

tected as foreground regions using the RM method. As expected early into the video the RM
models are not very accurate resulting in a lot of false positives. However, as more and more
frames are processed the model becomes more and more accurate (Figure 10(d)). Figure 10(e)
compares the modeling error of the RM with and without scheduling as well as the AKDE
(constant window size).

6.1.5 Non-empty backgrounds
In situations in which the background of the video is not empty (that is, there is no clear back-
ground at any time in the video sequence), the AKDE and SVDDM methods fail to accurately
detect the foreground regions. In these situations the RM technique has to be used.

(a) (b) (c)

Fig. 11. Non-empty background: (a) Mall video sequence. (b) Background model after 5
frames using the RM method. (c) Background model after 95 frames using the RM method.
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Fig. 12. Convergence speed.

Figure 11 shows the background model in the Mall video sequence in which the background
is almost never empty. In the RM method however, the background model is updated every
frame from the beginning of the video. When an object moves, the new pixel information is
used to update the background model and converges to the new one. Figure 11(b) shows the
background model after 5 frames from the beginning of the video and Figure 11(c) shows the
model after 95 frames into the scene. The model converges to the empty background since
each background pixel is covered by moving people only a short time compared to the length
of the time it is not covered.

6.1.6 The RM convergence speed
An important issue in the recursive learning is the convergence speed of the system (how
fast the model converges to the actual background). Figure 12 illustrates the convergence
speed of the RM with scheduled learning rate, compared to constant learning and kernel den-
sity estimation with constant window size. In this figure the modeling error of the RM with
scheduled learning and constant learning rate as well as the AKDE modeling error are plot-
ted against frame number. From Figure 12, the AKDE modeling error (the black (−⋅) curve)
drops to about 20% after about 20 frames – the training window size. The modeling error for
this technique does not converge to 0 since the constant window size does not cover all of the
slow changes in the background. In contrast, the error for an RM approach decreases as more
frames are processed. This is due to the recursive nature of this algorithm and the fact that
every frame contributes to the generation and update of the background model. The effect of
the scheduled learning proposed in section 3 can be observed in Figure 12.

6.1.7 Sudden global changes
In situations where the video background suddenly changes, such as lights on/off, the pro-
posed RM technique with scheduled learning recovers faster than the AKDE method. Gener-
ally, with the same speed and memory requirements, the RM method results in faster conver-
gence and lower modeling error.
Figure 13 shows the comparison of the recovery speed from an expired background model to
the new one. This happens in the Lobby video sequence when the lights go off (Figure 13(a))
or they go on (Figure 13(b)). In our example, lights go from on to off through three global,
sudden illumination changes at frames 23, 31 and 47 (Figure 13(c)). The Figure shows that
the scheduled learning RM method (solid curve) recovers the background model after these
changes faster than non-scheduled RM and AKDE with constant window size. The constant,
large learning rate recovers much slower (dashed curve) and the AKDE technique (dotted
curve) is not able to recover even after 150 frames. A similar situation with lights going from
off to on through three global, sudden illumination changes is shown in Figure 13(d).

(a) (b)

(c)

(d)

Fig. 13. Sudden global changes in the background: (a) the Lobby video sequence with lights
on. (b) Lights off. (c) Recovery speed comparison in lights turned off scenario. (d) Recovery
speed comparison in lights turned on scenario.

6.1.8 Other difficult examples
Figure 14 shows three video sequences with challenging backgrounds. In column (a) the orig-
inal frames are shown; while columns (b), (c), and (d) show the results of the AKDE, the RM
and the SVDDM methods, respectively. In this figure, from top row to the bottom; heavy rain,
waving tree branches, and the water fountain pose significant difficulties in detecting accurate
foreground regions.

6.2 Quantitative Evaluation
Performances of our proposed methods, RM and SVDDM are evaluated quantitatively on
randomly selected samples from different video sequences, taken from (Li et al., 2004).
To evaluate the performance of each method a value “called similarity” measure is used.
The similarity measure between two regions � (detected foreground regions) and ℬ (ground
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Figure 11 shows the background model in the Mall video sequence in which the background
is almost never empty. In the RM method however, the background model is updated every
frame from the beginning of the video. When an object moves, the new pixel information is
used to update the background model and converges to the new one. Figure 11(b) shows the
background model after 5 frames from the beginning of the video and Figure 11(c) shows the
model after 95 frames into the scene. The model converges to the empty background since
each background pixel is covered by moving people only a short time compared to the length
of the time it is not covered.
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fast the model converges to the actual background). Figure 12 illustrates the convergence
speed of the RM with scheduled learning rate, compared to constant learning and kernel den-
sity estimation with constant window size. In this figure the modeling error of the RM with
scheduled learning and constant learning rate as well as the AKDE modeling error are plot-
ted against frame number. From Figure 12, the AKDE modeling error (the black (−⋅) curve)
drops to about 20% after about 20 frames – the training window size. The modeling error for
this technique does not converge to 0 since the constant window size does not cover all of the
slow changes in the background. In contrast, the error for an RM approach decreases as more
frames are processed. This is due to the recursive nature of this algorithm and the fact that
every frame contributes to the generation and update of the background model. The effect of
the scheduled learning proposed in section 3 can be observed in Figure 12.

6.1.7 Sudden global changes
In situations where the video background suddenly changes, such as lights on/off, the pro-
posed RM technique with scheduled learning recovers faster than the AKDE method. Gener-
ally, with the same speed and memory requirements, the RM method results in faster conver-
gence and lower modeling error.
Figure 13 shows the comparison of the recovery speed from an expired background model to
the new one. This happens in the Lobby video sequence when the lights go off (Figure 13(a))
or they go on (Figure 13(b)). In our example, lights go from on to off through three global,
sudden illumination changes at frames 23, 31 and 47 (Figure 13(c)). The Figure shows that
the scheduled learning RM method (solid curve) recovers the background model after these
changes faster than non-scheduled RM and AKDE with constant window size. The constant,
large learning rate recovers much slower (dashed curve) and the AKDE technique (dotted
curve) is not able to recover even after 150 frames. A similar situation with lights going from
off to on through three global, sudden illumination changes is shown in Figure 13(d).
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Fig. 13. Sudden global changes in the background: (a) the Lobby video sequence with lights
on. (b) Lights off. (c) Recovery speed comparison in lights turned off scenario. (d) Recovery
speed comparison in lights turned on scenario.

6.1.8 Other difficult examples
Figure 14 shows three video sequences with challenging backgrounds. In column (a) the orig-
inal frames are shown; while columns (b), (c), and (d) show the results of the AKDE, the RM
and the SVDDM methods, respectively. In this figure, from top row to the bottom; heavy rain,
waving tree branches, and the water fountain pose significant difficulties in detecting accurate
foreground regions.

6.2 Quantitative Evaluation
Performances of our proposed methods, RM and SVDDM are evaluated quantitatively on
randomly selected samples from different video sequences, taken from (Li et al., 2004).
To evaluate the performance of each method a value “called similarity” measure is used.
The similarity measure between two regions � (detected foreground regions) and ℬ (ground
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(a) (b) (c) (d)
Fig. 14. Other difficult examples: (a) Original frame. Detected foreground region using (b)
AKDE. (c) RM. (d) SVDDM.

truth) is defined by (Li et al., 2004):

�(�,ℬ) = �∩ ℬ
�∪ ℬ (23)

This measure increases monotonically with the similarity between detected masks and the
ground truth, ranging between 0 and 1. By using this measure we report the performance
of the AKDE method, the RM method, the SVDDM, the spatio-temporal technique presented
in (Li et al., 2004), and the mixture of Gaussians (MoG) in (Stauffer & Grimson, 2000). By
comparing the average of the similarity measure over different video sequences in Table 6, we
observed that the RM and the SVDDM methods outperform other techniques. This also shows
that the AKDE, RM and SVDDM methods work consistently well on a wide range of video
sequences. The reason for such desirable behavior lies under the fact that these techniques
automatically deal with the novelty detection problem and do not need their parameters to be
fine-tuned for each scenario.
However, from this table one might argue that AKDE does not perform better than the method
presented in (Li et al., 2004). The reason is that in (Li et al., 2004) the authors used a morpholog-
ical post-processing stage to refine their detected foreground regions while the results shown
for the AKDE are the raw detected regions. By performing a morphological post-processing
on the results obtained by the AKDE it is expected that the average similarity measure in-
crease.

6.3 Synthetic Data Sets
We used a synthetic data set, which represents randomly distributed training samples with
an unknown distribution function (Banana data set). Figure 15 shows a comparison between
different classifiers. This experiment is performed on 150 training samples using the support

Video
Method MR LB CAM SW WAT FT Avg. �(�,ℬ)

RM 0.92 0.87 0.75 0.72 0.89 0.87 0.84
SVDDM 0.84 0.78 0.70 0.65 0.87 0.80 0.77
Spatio-Temp1 0.91 0.71 0.69 0.57 0.85 0.67 0.74
MoG 2 0.44 0.42 0.48 0.36 0.54 0.66 0.49
AKDE3 0.74 0.66 0.55 0.52 0.84 0.51 0.64

1: (Li et al., 2004)
2: (Stauffer & Grimson, 2000)
3: (Tavakkoli et al., 2006b)

Table 6. Quantitative evaluation and comparison. The sequences are Meeting Room, Lobby,
Campus, Side Walk, Water and Fountain, from left to right from (Li et al., 2004).

(a) (b)

Fig. 15. Comparison between different classifiers on a synthetic data set: (a) Decision bound-
aries of different classifiers after training. (b) Data points (blue dots) outside decision bound-
aries are false rejects.

vector data description (SVDDM), the mixture of Gaussians (MoG), the kernel density estima-
tion (AKDE) and a k-nearest neighbors (KNN).
Parameters of these classifiers are manually determined to give a good performance. For all
classifiers the confidence parameter is set to be 0.1. In MoG, we used 3 Gaussians. Gaussian
kernel bandwidth in the AKDE classifier is considered σ = 1. For the KNN we used 5 nearest
neighbors. In the SVDDM classifier the Gaussian kernel bandwidth is chosen to be 5.
Figure 15(a) shows the decision boundaries of different classifiers on 150 training samples
from the Banana data set. As it can be seen from Figure 15(b), SVDDM generalizes better than
the other three classifiers and classifies the test data more accurately. In this figure the test
data is composed of 150 samples drawn from the same probability distribution function as
the training data. Therefore this should be classified as the known class.

Method SVDDM MoG AKDE KNN
FRR 0.1067 0.1400 0.1667 0.1333
RR 0.8933 0.8600 0.8333 0.8667

Table 7. Comparison of False Reject Rate and Recall Rate for different classifiers.
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(a) (b) (c) (d)
Fig. 14. Other difficult examples: (a) Original frame. Detected foreground region using (b)
AKDE. (c) RM. (d) SVDDM.

truth) is defined by (Li et al., 2004):

�(�,ℬ) = �∩ ℬ
�∪ ℬ (23)
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Video
Method MR LB CAM SW WAT FT Avg. �(�,ℬ)
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AKDE3 0.74 0.66 0.55 0.52 0.84 0.51 0.64

1: (Li et al., 2004)
2: (Stauffer & Grimson, 2000)
3: (Tavakkoli et al., 2006b)

Table 6. Quantitative evaluation and comparison. The sequences are Meeting Room, Lobby,
Campus, Side Walk, Water and Fountain, from left to right from (Li et al., 2004).
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Fig. 15. Comparison between different classifiers on a synthetic data set: (a) Decision bound-
aries of different classifiers after training. (b) Data points (blue dots) outside decision bound-
aries are false rejects.
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tion (AKDE) and a k-nearest neighbors (KNN).
Parameters of these classifiers are manually determined to give a good performance. For all
classifiers the confidence parameter is set to be 0.1. In MoG, we used 3 Gaussians. Gaussian
kernel bandwidth in the AKDE classifier is considered σ = 1. For the KNN we used 5 nearest
neighbors. In the SVDDM classifier the Gaussian kernel bandwidth is chosen to be 5.
Figure 15(a) shows the decision boundaries of different classifiers on 150 training samples
from the Banana data set. As it can be seen from Figure 15(b), SVDDM generalizes better than
the other three classifiers and classifies the test data more accurately. In this figure the test
data is composed of 150 samples drawn from the same probability distribution function as
the training data. Therefore this should be classified as the known class.

Method SVDDM MoG AKDE KNN
FRR 0.1067 0.1400 0.1667 0.1333
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Table 7. Comparison of False Reject Rate and Recall Rate for different classifiers.
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We need to define the False Reject Rate (FRR) and Recall Rate (RR) for a quantitative evalua-
tion. By definition, FRR is the percentage of missed targets, and RR is the percentage of correct
prediction (True Positive rate). These quantities are given by:

FRR =
#Missed targets

#Samples
RR =

#Correct predictions
#Samples (24)

Table 7 shows a quantitative comparison between different classifiers. In this table, FRR and
RR of classifiers are compared after training them on 150 data points drawn from an arbitrary
probability function and tested on the same number of samples drawn from the same dis-
tribution. From the above example, the FRR for SVDDM is less than that of the other three
classifiers, while its RR is higher. This proves the superiority of this classifier for the purpose
of novelty detection.

Method SVDDM MoG AKDE KNN RM
Memory needs (bytes) 1064 384 4824 4840 1024

Table 8. Comparison of memory requirements for different classifiers.

Table 8 shows memory requirements for each classifier. Since in SVDDM we do not need to
store all the training data, as can be seen from the table, it requires much less memory than
the KNN and KDE methods. Only the MoG and the RM methods need less memory than
the SVDDM technique. However, the low memory requirements of the RM are achieved by
coarse quantization of the intensity value.

6.3.1 Classification comparison
Table 9 compares the classification error, the F1 measure, as well as the training and the classi-
fication asymptotic time for various classifiers. The incremental training of the SVDD reaches
good classification rates compared to the other methods. The trade-off parameter is set to be
C = 0.1 in SVDD. Kernel bandwidth for the three SVDD methods and the Parzen window is
σ = 3.8. K = 3 is selected for the number of Gaussians in the MoG and number of nearest
neighbors in the K-NN method. The F1 measure combines both the recall and the precision
rates of a classifier:

F1 =
2 × precision × recall

precision + recall
(25)

Classifier Error F1 Training Classification
Proposed 0.015 0.992 O(1) O(1)
Batch SVD 0.100 0.947 O(N) O(N)
Online SVD 0.103 0.945 O(N) O(N)
KDE(Parzen) 0.114 0.940 O(N) O(N)
MoG 0.143 0.923 O(1) O(1)
K-means 0.150 0.919 O(1) O(1)

Table 9. Comparison of the classification error, F1 measure, and asymptotic speeds with vari-
ous classifiers on a complex data set of size 1000.

Training Data Set Error F1 No. SV’s Time
Proposed 0.005 0.997 19 4.2

Banana Online 0.075 0.961 104 6.9
Canonical 0.085 0.956 106 1697
Proposed 0.013 0.993 6 3.72

Ellipse Online 0.100 0.947 105 4.1
Canonical 0.110 0.994 108 2314
Proposed 0.065 0.966 8 3.85

Egg Online 0.095 0.950 101 3.7
Canonical 0.128 0.932 87 1581

Table 10. Comparison of the incremental SVDD training algorithm with, online and batch
methods on Banana, Ellipse and Egg data sets of size 1000.

6.3.2 Error evaluation
Table 10 compares the classification error, the F1 measure, the number of the support vectors,
and the learning time for the three learning methods. The experiments are performed on three
data sets (’Banana’, ’Ellipse’, ’Egg’) with 1000 training samples and 1000 test samples.

(a) (b)

Fig. 16. Comparison of incremental with canonical and online SVDD: (a) Classification bound-
aries . (b) Receiver Operating Curve (ROC).

6.3.3 Classification boundaries and Receiver Operating Curves
In Figure 16 (a) the classification boundaries of the three SVDD training algorithms are shown.
In this figure the blue dots are the training samples drawn from the Banana data set and the
circles represent the test data set drawn from the same probability distribution function.
The ★, ×, and + symbols are the support vectors of the Incremental, Online and Canoni-
cal SVDD training algorithms, respectively. The proposed incremental learning had fewer
support vectors compared to both online and canonical training algorithms. From Figure 16
(a) the decision boundaries of the classifier trained using the Incremental algorithm (solid
curve) is objectively more accurate than those trained by Online (dotted curve) and Canonical
(dashed curve) methods.
Figure 16 (b) shows the comparison between the Receiver Operating Curve (ROC) of the three
algorithms. The solid curve is the ROC of the Incremental learning while dotted and dashed
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In Figure 16 (a) the classification boundaries of the three SVDD training algorithms are shown.
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(a) (b)

Fig. 17. Comparison of incremental with online and canonical SVDD: (a) Normal data set. (b)
Complex (egg) data set.

AKDE RM SVDDM Spatio-temporal1 MoG2 Wallflower3

Automated Yes Yes Yes No No No
Classifier Bayes MAP SVD Bayes Bayes K-means

Memory req.∗ O(n) O(1) O(n) O(n) O(1) O(n)
Comp. cost∗ O(n) O(1) O(n) O(n) O(1) O(n)

∗ : Per-pixel memory requirements or computational cost
n: number of training frames or training features used per pixel
1 : (Li et al., 2004)
2 : (Stauffer & Grimson, 2000)
3 : (Toyama et al., 1999)

Table 11. Comparison between the proposed methods and the traditional techniques.

curves represent the Online and the Canonical learning algorithms, respectively. In this figure
the operating point (OP) of the three ROC’s (for the given trade-off value) are represented
by the circle and the dot symbols. The true positive rate for the incremental SVDD is higher
than the others. Therefore, the proposed method – under the same conditions – has higher
precision and recall rates.
Figure 17 shows a comparison of the classification boundaries, and the support vectors be-
tween the three SVDD training algorithms. The classification boundaries on a 2-D normal
distribution (Figure 17(a)) and a more complex distribution function in 2-D (Figure 17 (b)) are
extracted using the three SVDD algorithms. From the figure the incremental SVDD results in
more accurate classification boundaries than both online and canonical versions.

6.4 Comparison Summary
Table 11 provides a comparison between different traditional methods for background mod-
eling in the literature and our methods. The SVDDM explicitly deals with the single-class
classification. Other methods shown in the table – except the RM – use a binary classification
scheme and use heuristics or a more sophisticated training scheme to make it useful for the
single-class classification problem of background modeling. The RM method which has the
adaptive threshold updating mechanism solves this issue and acts as a novelty detector.

AKDE RM SVDDM Spatio-temp MoG Wallflower
Low contrast S∗ NS∗∗ S NS NS NS
Slow changes NS S S S S S
Rapid changes S S S S NS S
Global changes NS S NS S S NS

Non-empty NS S NS S S S
Hand-held camera NS S NS NS NS NS

∗ : Suitable
∗∗: Not suitable

Table 12. Scenarios where each method appears to be particularly suitable.

Table 12 shows different scenarios and illustrates where each method is suitable for fore-
ground region detection. As expected the RM method is suitable for a wide range of ap-
plications except when the contrast of images in the video is low. From this table, the only
method suitable for the hand-held camera scenario is the RM. The other methods fail to build
a very long term model for the background because of the fact that their cost grows with the
number of training background frames.

7. Conclusion

In this chapter the idea of applying a novelty detection approach to detect foreground regions
in videos with quasi-stationary is investigated. In order to detect foreground regions in such
videos the changes of the background pixel values should be modeled for each pixel or a
groups of pixels. In the traditional approaches the pixel models are generally statistical prob-
abilities of the pixels belonging to the background. In order to find the foreground regions the
probability of each pixel in new frames being a background pixel is calculated from its model.
A heuristically selected threshold is employed to detect the pixels with low probabilities.
In this chapter two approaches are presented to deal with the single class classification prob-
lem inherent to foreground detection. By employing the single class classification (novelty
detection) approach the issue of heuristically finding a suitable threshold in a diverse range of
scenarios and applications is addressed. These approaches presented in this chapter are also
extensively evaluated. Quantitative and qualitative comparisons are conducted between the
proposed approaches and the state-of-the-art, employing synthetic data as well as real videos.
The proposed novelty detection mechanisms have their own strengths and weaknesses. How-
ever, the experiments show that these techniques could be used as complimentary to one an-
other. The establishment of a universal novelty detection mechanism which incorporates the
strengths of both approaches can be considered as a potential future direction in this area.
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1. Introduction  
 

Traditional methods for object detection and classification in images involve either matched 
filter detectors which are convolved over the image, or else strong image segmentation 
followed by classification of the resultant segmented regions in the image. Neither of these 
have lived up to their potential due to (i) the inflexibility of the first approach in detecting 
objects of varying scale and orientation in varying collection conditions, and (ii) the inherent 
semantic gap between segmentation and classification in the second approach. Existing 
segmentation algorithms are built upon the following two common underlying 
assumptions; (i) the object homogeneity with respect to some characteristic, and (ii) 
difference between adjacent regions. In this chapter, we propose improving the 
segmentation process by infusing semantic knowledge into the segmentation process by 
combining the problems of segmentation and classification through a wrapper framework. 
Li et al. have noted, “it is often difficult....to determine which regions....should be used for 
the final segmentation” (Li et al., 2000). The goal of the wrapper framework is to directly 
address this problem by integrating segmentation processing with a classification process to 
provide the required semantic information needed to identify the regions of interest.  
The key to integrating semantics into the low-level segmentation is to utilize additional 
feature information of the objects of interest to provide the additional needed contextual 
information. The features available for classifying an object for image retrieval include 
texture, color, shape and structure (Safar, 2000). Since texture and color are used as low-level 
cues, shape and structure are the remaining features to provide additional semantic content. 
Using the structure of the objects of interest requires associating regions in the image with 
key structures of the object of interest, and then combining these semantically meaningful 
regions to provide the complete semantics of the desired object. These regions can either be 
semantically meaningful on their own, for example, head, limbs, torso for recognizing 
people, or they can be shape fragments that consistently occur on an object, for example 
using critical object boundary characteristics. A region combination algorithm then uses a 
shape template of the object of interest to guide the assembly of these fragments.  
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We believe a fundamental flaw of these structure-based approaches is requiring the 
identification of critical shapes and even semantically meaningful sub-shapes within the 
image. In images with complex natural illumination shadows and bright regions can be 
created which obfuscate sub-structures. In order to not require mapping of image regions 
with sub-structures the wrapper framework uses the overall shape of the object of interest as 
the source of semantic information and does not rely on sub-structures. The approach 
performs a low-level segmentation of the image, and then, irrespective of the shape of the 
labeled regions in this segmentation, applies an algorithm to combine regions based on 
knowledge of the shape of the desired object of interest. The proposed approach has been 
validated through successful demonstrations on a wide range of image applications 
including automotive occupant sensing, breast cancer detection in mamograms, and wide 
area disaster surveillance using aerial imagery.  

 
2. Related Work 
 

There is an abundance of literature on image segmentation, due to its importance in serving 
as the foundation for applications such as image understanding, object detection, and 
content-based image retrieval. Unfortunately, mechanisms to improve the results to provide 
strong segmentation where the objects of interest are reliably isolated from the background 
has continued to elude researchers. Early methods for improving segmentation involved 
pixel-level post-processing of the initial segmentation to further regularize the segmentation 
output. This approach has often relied on mathematical models such as Markov Random 
Fields (Bouman& Shapiro , 1994) (Kim, et al., 2000), or other models such as the harmonic 
oscillator model by Shi and Malik (Shi& Malik, 2000). More recently Luo and Guo proposed 
regularization at a region level rather than a pixel level, and they apply a Markov Random 
Field to combine regions using a non-purposive grouping approach that combines regions 
based on a defined characteristics of a ‘good‘ segmentation rather than relying on any model 
of the desired object of interest (Luo & Guo, 2003).  
There has also been a significant amount of research in adaptive image segmentation, where 
the control parameters of the underlying segmentation algorithm are modified, based on 
some general figures of merit of the output segmentation (Bhanu & Fonder, 2000). More 
recent low-level segmentation approaches proposed a continuously executing algorithm 
where the user stops the algorithm when the resultant segmentation appears acceptable (Tu 
& Zhu, 2002). These methods still relied on the assumption that the pixels belonging to the 
object of interest share a common set of low-level image attributes, thereby allowing the 
object to be extracted as a single entity. Unfortunately even relatively simple objects of 
interest can be composed of multiple regions of differing texture or color which would cause 
the object to be oversegmented and hence divided into multiple regions. The results of these 
approaches had limited generalized performance and demonstrated the need to devise a 
means for integrating additional semantic information into the segmentation process. 
One of the earlier approaches to integrating segmentation with classification for infusing 
semantic information, involved adjusting the segmenter control parameters of the 
underlying segmentation algorithm based on the classification of the binary (foreground-
background) segmentation (Bhanu & Peng, 2000). Unfortunately, this approach still 
assumed the object of interest is homogeneous in the segmentation feature, and finding it 
was a matter of discovering the correct control parameter via the classification results. 

 

Integrating semantics into the segmentation have found some early success in very focused 
domains, such as the work by by Tu, et al. (Tu et al., 2003) which performs simultaneous 
human face and word segmentation from an image for a system for assisting the blind. This 
method directly relies on the fact that the objects of interest can be completely defined by 
their texture (text) or color (human face). Another approach for integrating classification 
information into the segmentation process was proposed by Sifakis, et al. where they 
provide context by providing a set of two coarse object contours, one ensured to be outside 
of the object of interest, and the other designed to be inside the object of interest, in a 
manner similar to the marker-based approaches to Watershed processing (Sifakis et al., 
2002). While this method clearly provides strong context, it still is based on two key 
assumptions; (i) the object of interest “should be uniform and homogeneous with respect to 
some characteristic”, and (ii) “adjacent regions should be differing significantly” (Bhanu et 
al., 1995). Additionally these methods operate at the pixel level and hence are 
computationally intensive. 
One key development in image segmentation has been the developing interest in operating 
at the region level of images rather than at the pixel level. Some of the earliest work in 
region-based analysis is by Belongie et al, in their ‘Blob world‘ system, where images were 
grouped into regions based on color and texture and then the user defined regions of 
interest based on these parameters for that to search databases (Belongie et al., 1997). 
Unfortunately, this approach still relies on regions being of understandable interest to the 
user .  Li et al. have relaxed the limitation of identifiable sub-regions, by using properties 
such as color and texture of all of the regions in the image to attempt to allow image 
retrieval systems to bypass the segmentation process (Li et al., 2000). One drawback of this 
approach is that it compares not only the foreground, but also the background regions in the 
two images to derive the similarity, which can be particularly limiting if the object of interest 
is considerably smaller than the field of view of the image, or if the object of interest may be 
present in a wide variety of backgrounds.  Jing, et al. have also recognized that region 
analysis is essential for effective retrieval, but their approach uses region color rather than 
shape for the retrieval feature (Jing et al., 2004). More recently Athanasiadis, et al. have 
proposed a region-based simultanous segmentation and detection scheme which relies on 
two low-level features defined by MPEG-7, namely homogenous texture and dominant 
color to perform low-level segmentaiton. Based on semantic models of objects of interest, 
these low-level regions are then merged together based on fuzzy relations associated with 
semantic information regarding the objects of interest (Athanasiadis et al., 2007). 
The research highlighted to this point were based on low-level image attributes, such as 
color, grayscale, or texture, and clearly these failed to provide adequate semantic content for 
strong segmentation. Clearly, additional features are required for successful segmentation, 
and these can be found by refering to the body of research from content-based image 
retrieval where the spectrum of features available for retrieval have been defined and 
highlighted in Fig. 1 (Safar et al., 2000). Based on this taxonomy integrated segmentation-
classification methods have been recently directed at developing structural models of the 
desired object and using either tree or graph theory-based techniques to assemble detected 
regions in the image that may correspond to sub-structures in the object of interest (Yu, et 
al., 2002) (Borenstein & Ullman, 2002) (Lee & Cohen, 2004) and most recently by Cours and 
Shi (Cour & Shi, 2007). For example, Borenstein and Ullman have developed an approach 
which searches for object ‘fragments’ within the image, where these fragments correspond 
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assumed the object of interest is homogeneous in the segmentation feature, and finding it 
was a matter of discovering the correct control parameter via the classification results. 
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two images to derive the similarity, which can be particularly limiting if the object of interest 
is considerably smaller than the field of view of the image, or if the object of interest may be 
present in a wide variety of backgrounds.  Jing, et al. have also recognized that region 
analysis is essential for effective retrieval, but their approach uses region color rather than 
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proposed a region-based simultanous segmentation and detection scheme which relies on 
two low-level features defined by MPEG-7, namely homogenous texture and dominant 
color to perform low-level segmentaiton. Based on semantic models of objects of interest, 
these low-level regions are then merged together based on fuzzy relations associated with 
semantic information regarding the objects of interest (Athanasiadis et al., 2007). 
The research highlighted to this point were based on low-level image attributes, such as 
color, grayscale, or texture, and clearly these failed to provide adequate semantic content for 
strong segmentation. Clearly, additional features are required for successful segmentation, 
and these can be found by refering to the body of research from content-based image 
retrieval where the spectrum of features available for retrieval have been defined and 
highlighted in Fig. 1 (Safar et al., 2000). Based on this taxonomy integrated segmentation-
classification methods have been recently directed at developing structural models of the 
desired object and using either tree or graph theory-based techniques to assemble detected 
regions in the image that may correspond to sub-structures in the object of interest (Yu, et 
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which searches for object ‘fragments’ within the image, where these fragments correspond 
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to key identifiable regions of the object of interest but not necessarily semantically 
meaningful structures (Borenstein & Ullman, 2002). The fragments are found using a 
correlation detector approach. Borenstein and Malik developed a top-down mechanism to 
augment the traditional bottom-up segmentation algorithms similar to how the proposed 
wrapper framework operates. Their top-down approach first integrates the low-level 
regions into semantically meaningful parts using shape templates, and then further 
integrates these components to form the desired object of interest (Borenstein & Makik, 
2006). Good results are possible with these approaches when applied to relatively well-
formed images with relatively simple backgrounds, however, there are two underlying 
assumptions of these methods that can limit their broader applicability, namely: (i) they 
define a particular form for the classification problem, namely using tree or graph distances, 
and (ii) they build the segmentation using specific identifiable sub-regions in the images 
(e.g., head, arms, torso, etc. for human segmentation), and then rely on the known syntactic 
structure of the object of interest to assemble these components. One key drawback to these 
approaches is that syntactic methods can be sensitive to errors in the low-level segmentation 
which was concisely state by Datta: “extracting semantically meaningful coherent regions 
is… very challenging” (Datta et al. 2008). This was also demonstrated by Lee, et al. where 
the algorithm had problems recognizing human poses if the subjects wore gloves thereby 
hiding the skin color (Lee & Cohen, 2004). 
 

 
Fig. 1. Taxonomy of feature-based description techniques for image classification. 

 
The approach taken by the wrapepr framework is to use shape rather than structure to 
provide context to the image segmentation problem. Other researchers such as Ko and Byun 
have added shape rather than structure to their region-based search by adding a small set of 
shape features to each region (Ko & Byun, 2005). The user then selects from a sample image 
a number of regions they consider important for query, and the system then computes a 
combined search distance based on the collection of regions found in the database of images.  
Like Ko and Byun, the proposed wrapper approach computes shape featues for each region 
in the image, however rather than relying on region-to-region comparisons, our wrapper 
approach uses the image classification in a more global scheme. The image classification is 
used to assemble regions derived from the traditional segmentation algorithms rather than 
simply searching for instances of individual regions. The wrapper approach has numerous 
advantages over the various methodes described above. One advantage is that by using 
shape over structure we do not require identifiable sub-structures to be segmented from the 

 

background image. Additionally, since we do not rely on particular constructs to represent 
the problem, such as trees and graphs, it can incorporate any classification algorithm. Also, 
unlike the fragment approach of Borenstien and Ullman and Borenstien and Malik the 
wrapper approach is a more organic approach where it builds the desired object from the 
regions provided in the image rather than a priori defined representative sub-images that are 
searched for in the image. This has an important consequence in that the wrapper approach 
can utilize any existing image segmentation algorithm to create the regions with which it 
then operates. Thus rather than being considered another segmentation algorithm, the 
wrapper approach is actually a framework within which any segmenter and classifier can be 
considered for integration to address the particular problem being addressed.  

 
3. Wrapper Approach to Integrating Segmentation & Classification 
 

We derive the motivation for our approach from the domain of feature selection in pattern 
recognition, where there are two common mechanisms for selection, namely the filter 
method and the wrapper method (Dash & Liu, 1997). Filter methods analyze features 
independently of the classifier and use some ‘goodness’ metric to decide which features 
should be kept. Wrapper methods, on the other hand, use a specific classifier, and its 
resultant probability of error, to select the features. Hence in the wrapper method, the 
feature selection algorithm is wrapped inside the classifier. Based on this, we propose a new 
paradigm for image segmentation that follows the wrapper methods of feature selection, 
where we wrap the segmentation and the classification together, and use the classifier as the 
metric for selecting the best segmentation. Fig. 2 compares the traditional image 
segmentation approaches with our proposed wrapper-based segmentation approach. The 
classification algorithm provides both the semantic context for the segmentation, as well as a 
figure of merit for the resultant segmentation, based on the classification accuracy for the 
pattern class under consideration.  
 

  

(a) (b) 
Fig. 2. Approaches to image segmentation, (a) conventional methods and (b) proposed 
wrapper method. 
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The general processing flow for the entire wrapper framework can be seen in Fig. 3. The 
processing is divided two distinct phases, (i) conventional (context-free) segmentation, and 
(ii) wrapper-based (semantic) segmentation. In the conventional segmentation phase no 
contextual or semantic information is used and the image is segmented based on traditional 
low-level homogeneity metrics, typically greyscale or color depending on the application. 
The second phase is the wrapper segmentation phase where the critical semantic 
information is integrated via the classifier.  

 

  
Fig. 3. Processing flow for wrapper-based image segmentation. 

 
3.1 Conventional Segmentation Processing 
The conventional segmentation processing flow begins with a low-level order statistic filter 
such as a median filter for removing high frequency image speckle.  Order statistic filters are 
most attractive since they are edge preserving which prevents degradation of subsequent 
region labeling due to edge blurring. This step is optional and depends on the quality of the 
images being processed by the system. The Pixel Labeling and Grouping task in Figure 3 
performs conventional low-level weak segmentation. It converts the pixel values into labels, 
and then groups these labeled pixels into contiguous regions. The series of sub-tasks that 
comprise the processing of this stage are provided in Fig. 4. The first sub-task is Compute 
Pixel Data Parameters which is responsible for determining the parameters to be used to 
determine the low-level pixel labeling based on some common characteristic of the pixel 
values such as color, grayscale, or texture. There are many mechanisms proposed for 
defining the ‘common characteristics’, such as Expectation Maximization (EM), normalized 
cuts, relaxation methods, region growing methods, and split-and-merge methods, and 
finally DDMCMC which provides a framework for unifying many of these approaches 
(Belongie et al., 1997) (Tu et al., 2003). The output of all of these methods is a labeling of the 
incoming image into a small number of regions. We selected the EM algorithm for the 
region labeling algorithm was based on its relative ease of use, its flexibility, and its 
suitability for real-time operation. It fits a mixture of Gaussians that best matches the 
histogram of the grayscale values. The EM algorithm is attractive because it can easily be 
extended to use multiple features, such as texture depending on the application.  

 

The Label Pixels task then uses the mixtures defined by EM to label each pixel with its 
appropriate mixture membership, with typical results being shown in Fig. 5 (b). This labeled 
image is then mode filtered to further remove isolated pixels. Other regularization 
algorithms such as the Markov Random Fields methods discussed in Section 2 may be used 
rather than the mode filter, however, the mode filter is easy to implement, imposes a 
relatively low processing burden, and has previously been shown to be effective (Farmer & 
Jain, 2005) (Rabiei et al., 2007). 

 

Fig. 4. Processing flow for Pixel Labeling and Grouping. 
 
The third sub-task of the Pixel Labeling and Region Grouping Task is Region Label in which 
the pixels are grouped together into regions of common labeling based on an 8-way 
connected components algorithm. The Region Label sub-task then removes regions that fall 
below a user-defined threshold in order to minimize the total number of regions, with the 
particular threshold value being dependent on the application and the particular input 
image size. At this point the image has been completely divided into regions of low-level 
homogeneity (grayscale or color for the applications shown in this chapter). The final sub-
task of the Pixel Labeling and Grouping is Build Adjacency Graph. In this sub-task an 
adjacency graph is constructed to define the relative adjacency of all of the regions in the 
image. This adjacency graph will play a critical role in subsequent processing for cluster 
detection and to limit the combinatorial complexity of the region combining algorithm 
within the wrapper portion of the segmentation process.  
Recall from Fig. 3, the next stage in the conventional segmentation processing is the 
Background Removal and Blob Clustering task. Obviously, the goal of this stage is not to 
remove then entire background but rather to remove as much background as possible based 
on simple structural knowledge of images. There will still most likely be significant amounts 
of background connected to the object of interest, and this remaining background will be 
removed during region combining. The background in an image is defined as the larger 
regions and regions along the periphery of the image that typically are not of interest. The 
size of the background regions is independently defined by two characteristics, the area and 
the length. Thus regions of large area or large regional extent (such as roads and rivers in 
surveillance applications) can be ignored. Removing of the background, as shown in Fig. 5 
(c), allows the algorithm to now focus on more interesting regions, in a similar manner to 
human perception where known background regions are ignored while more interesting or 
ambiguous regions are analyzed further. Once the background is removed, of clusters of 
regions can readily be detected using the adjacency graph. Clusters are defined by 
collections of regions that are adjacent to each other, as can be seen in Fig. 5 (d). The 
wrapper segmentation processing then analyzes each of these region clusters to determine if 
any objects if interest may be present. The ability of the wrapper framework to process 
clusters of regions, rather than all the regions in an image, is critical for performance, since 
the number of possible region region combinations rapidly suffers combinatorial explosion .  
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The general processing flow for the entire wrapper framework can be seen in Fig. 3. The 
processing is divided two distinct phases, (i) conventional (context-free) segmentation, and 
(ii) wrapper-based (semantic) segmentation. In the conventional segmentation phase no 
contextual or semantic information is used and the image is segmented based on traditional 
low-level homogeneity metrics, typically greyscale or color depending on the application. 
The second phase is the wrapper segmentation phase where the critical semantic 
information is integrated via the classifier.  

 

  
Fig. 3. Processing flow for wrapper-based image segmentation. 

 
3.1 Conventional Segmentation Processing 
The conventional segmentation processing flow begins with a low-level order statistic filter 
such as a median filter for removing high frequency image speckle.  Order statistic filters are 
most attractive since they are edge preserving which prevents degradation of subsequent 
region labeling due to edge blurring. This step is optional and depends on the quality of the 
images being processed by the system. The Pixel Labeling and Grouping task in Figure 3 
performs conventional low-level weak segmentation. It converts the pixel values into labels, 
and then groups these labeled pixels into contiguous regions. The series of sub-tasks that 
comprise the processing of this stage are provided in Fig. 4. The first sub-task is Compute 
Pixel Data Parameters which is responsible for determining the parameters to be used to 
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finally DDMCMC which provides a framework for unifying many of these approaches 
(Belongie et al., 1997) (Tu et al., 2003). The output of all of these methods is a labeling of the 
incoming image into a small number of regions. We selected the EM algorithm for the 
region labeling algorithm was based on its relative ease of use, its flexibility, and its 
suitability for real-time operation. It fits a mixture of Gaussians that best matches the 
histogram of the grayscale values. The EM algorithm is attractive because it can easily be 
extended to use multiple features, such as texture depending on the application.  

 

The Label Pixels task then uses the mixtures defined by EM to label each pixel with its 
appropriate mixture membership, with typical results being shown in Fig. 5 (b). This labeled 
image is then mode filtered to further remove isolated pixels. Other regularization 
algorithms such as the Markov Random Fields methods discussed in Section 2 may be used 
rather than the mode filter, however, the mode filter is easy to implement, imposes a 
relatively low processing burden, and has previously been shown to be effective (Farmer & 
Jain, 2005) (Rabiei et al., 2007). 

 

Fig. 4. Processing flow for Pixel Labeling and Grouping. 
 
The third sub-task of the Pixel Labeling and Region Grouping Task is Region Label in which 
the pixels are grouped together into regions of common labeling based on an 8-way 
connected components algorithm. The Region Label sub-task then removes regions that fall 
below a user-defined threshold in order to minimize the total number of regions, with the 
particular threshold value being dependent on the application and the particular input 
image size. At this point the image has been completely divided into regions of low-level 
homogeneity (grayscale or color for the applications shown in this chapter). The final sub-
task of the Pixel Labeling and Grouping is Build Adjacency Graph. In this sub-task an 
adjacency graph is constructed to define the relative adjacency of all of the regions in the 
image. This adjacency graph will play a critical role in subsequent processing for cluster 
detection and to limit the combinatorial complexity of the region combining algorithm 
within the wrapper portion of the segmentation process.  
Recall from Fig. 3, the next stage in the conventional segmentation processing is the 
Background Removal and Blob Clustering task. Obviously, the goal of this stage is not to 
remove then entire background but rather to remove as much background as possible based 
on simple structural knowledge of images. There will still most likely be significant amounts 
of background connected to the object of interest, and this remaining background will be 
removed during region combining. The background in an image is defined as the larger 
regions and regions along the periphery of the image that typically are not of interest. The 
size of the background regions is independently defined by two characteristics, the area and 
the length. Thus regions of large area or large regional extent (such as roads and rivers in 
surveillance applications) can be ignored. Removing of the background, as shown in Fig. 5 
(c), allows the algorithm to now focus on more interesting regions, in a similar manner to 
human perception where known background regions are ignored while more interesting or 
ambiguous regions are analyzed further. Once the background is removed, of clusters of 
regions can readily be detected using the adjacency graph. Clusters are defined by 
collections of regions that are adjacent to each other, as can be seen in Fig. 5 (d). The 
wrapper segmentation processing then analyzes each of these region clusters to determine if 
any objects if interest may be present. The ability of the wrapper framework to process 
clusters of regions, rather than all the regions in an image, is critical for performance, since 
the number of possible region region combinations rapidly suffers combinatorial explosion .  
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Fig. 5. Conventional segmentation processing results: (a) example incoming surveillance 
image, (b) labeled image after mode filter and small region removal, (c) labeled image after 
background removal, and (d) cluster from lower left region in (c). 

 
3.2 Wrapper Segmentation Processing 
Up to this point the input image has been over-segmented to try to maximize the likelihood 
that the object of interest is not connected to a background region. In order maximize this 
likiehood, the image is intentionally over-segmented which means the object of interest is 
most likely sub-divided into multiple regions. The wrapper framework processes each 
cluster of regions independently and only tests combinations of the regions within each of 
these clusters, thereby significantly reducing the combinatorial explosion. Clusters 
consisting of individual region are tested first against a training database to see if any of 
them may match an object of interest since they require no combining. Then the remaining 
more complex clusters are processed, where a variety of combinations of region are 
attempted to see if any of these combinations may match any objects in the training 
database. 

 
3.2.1 Region Feature Extraction  
Recall from Fig. 3, the first task in the wrapper processing is the feature extraction for each 
region. Fig. 1 demonstrated there are four possible feature spaces for image retrival and 
classification. The wrapper framework incorporates shape as its semantically rich feature. 
Shape may be defined by either region or boundary descriptions (Veltkamp & Hagedorn, 
2001). While either method can be used to capture the shape of the regions that have been 
defined as comprising our image, the research to date with the wrapper framework has 
employed moments to describe these shapes. The geometric moments of an image are 
defined by (Teague, 1980):  
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where I(i,j) is the value of the image at pixel (i,j) and N and M are the numbers of rows and 
columns in the image, respectively. 
Computing the moments features on every region combination would be computationally 
prohibitive since many combinations will be generated for every region as will be shown in 
Section 3.2.2. Fortunately, due to the non-overlapping nature of the regions that comprise 
the image labeling, the basic geometric moment features can be calculated for each region 
prior to the subsequent region combining and classification stages of processing. Then 
during the region combining processing, the moments of the combined regions is simply the 

 

sum of the moments of the individual regions, which implies all pixel-level processing need 
only be performed once, and all subsequent processing is performed at the region level.  
This speedup mechanism is related to the concept of Borel sets and the calculation of 
measures on these sets. A value   is a measure if it assigns a non-negative number to each 
subset, which can be seen to be true from Equation (1) since I(i,j), i, and j are never negative. 
One important property of these measures is: “if a set is decomposed into a countable 
number of disjoint Borel sets then the total measure of the pieces equals the measure of the 
whole“, which can be mathematically stated as (Falconer, 2004): 
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is the ith subset and   is the measure. This fact was originally exploited by Spiliotis 

and Mertzios, where the computation is decomposed into a summation over a set of non-
overlapping rectangular homogenous blocks (Spiliotis & Mertzios, 1998).  We abstract this 
approach and, rather than decomposing the image into non-overlapping rectangles, we 
propose a more natural decomposition of the image into the collection of regions defined by 
the image labeling. Using the notion of disjoint Borel sets allows representing the image as: 
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where ),()( jiI k is the portion of the image corresponding to region k. From this we can now 
rewrite the geometric moment equation as: 
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From Equation (2) we can now replace the measure over the union of subsets as a 
summation over the individual measures of each of the subsets and obtain: 
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where we have reversed the order of the summations, and k
mnM  is the moment of order 

(m+n) corresponding to the kth region. Thus, the geometric moments for the entire image are 
merely a sum of the geometric moments computed for each region. 
Now we can pre-compute the moments for each region, which allows us to add the feature 
vectors from each region together to compute the moments for any region combination. The 



Application of the Wrapper Framework for Robust Image  
Segmentation For Object Detection and Recognition 159

 

    
(a) (b) (c) (d) 
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background removal, and (d) cluster from lower left region in (c). 

 
3.2 Wrapper Segmentation Processing 
Up to this point the input image has been over-segmented to try to maximize the likelihood 
that the object of interest is not connected to a background region. In order maximize this 
likiehood, the image is intentionally over-segmented which means the object of interest is 
most likely sub-divided into multiple regions. The wrapper framework processes each 
cluster of regions independently and only tests combinations of the regions within each of 
these clusters, thereby significantly reducing the combinatorial explosion. Clusters 
consisting of individual region are tested first against a training database to see if any of 
them may match an object of interest since they require no combining. Then the remaining 
more complex clusters are processed, where a variety of combinations of region are 
attempted to see if any of these combinations may match any objects in the training 
database. 

 
3.2.1 Region Feature Extraction  
Recall from Fig. 3, the first task in the wrapper processing is the feature extraction for each 
region. Fig. 1 demonstrated there are four possible feature spaces for image retrival and 
classification. The wrapper framework incorporates shape as its semantically rich feature. 
Shape may be defined by either region or boundary descriptions (Veltkamp & Hagedorn, 
2001). While either method can be used to capture the shape of the regions that have been 
defined as comprising our image, the research to date with the wrapper framework has 
employed moments to describe these shapes. The geometric moments of an image are 
defined by (Teague, 1980):  

klM

i

N

jk jijiIM l 
 00

),( ,     (1) 

where I(i,j) is the value of the image at pixel (i,j) and N and M are the numbers of rows and 
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prohibitive since many combinations will be generated for every region as will be shown in 
Section 3.2.2. Fortunately, due to the non-overlapping nature of the regions that comprise 
the image labeling, the basic geometric moment features can be calculated for each region 
prior to the subsequent region combining and classification stages of processing. Then 
during the region combining processing, the moments of the combined regions is simply the 

 

sum of the moments of the individual regions, which implies all pixel-level processing need 
only be performed once, and all subsequent processing is performed at the region level.  
This speedup mechanism is related to the concept of Borel sets and the calculation of 
measures on these sets. A value   is a measure if it assigns a non-negative number to each 
subset, which can be seen to be true from Equation (1) since I(i,j), i, and j are never negative. 
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merely a sum of the geometric moments computed for each region. 
Now we can pre-compute the moments for each region, which allows us to add the feature 
vectors from each region together to compute the moments for any region combination. The 
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ability to pre-compute features can provide a considerable benefit, since, as Yoshitaka and 
Ichikawa state: “[feature extraction] processing is one of the most time consuming parts in 
content-based retrieval. Improving the [feature extraction] processing therefore improves 
the overall performance... (Yoshitake & Ichikawa, 1998).” We will see in Section 3.2.3 that 
from this point in the processing all operations will be performed on regions rather than 
pixels which greatly reduces the overall processing complexity of the wrapper framework. 
There are many forms of image moments that can be used for image classifcation, including 
central, scale invariant, rotationally invariant, legendre, zernicke, et cetera (Teague, 1980). 
For most image object detection, classification, and retrieval applications central moments 
are always required since they provide translational invariance within the image.  

 
3.2.2 Region Combining  
For Region Combining processing an algorithm is required which will combine subsets of 
the regions in the image together while assuming a particular object class is present in the 
image. The wrapper framework operates by assuming a pattern class C to be the true class, 
and computes the classification distance of candidate segmentations to that class. The 
specifics of the classification algorithm upon which the wrapper relies are provided in 
Section 3.3. The region combining task is performed for every class, C, and at the completion 
of the processing of all the candidate classes, the class C that provides the highest 
membership probability, )|}({ CXP

k
, is selected, where the set }{

k
X defines the subset of 

regions that comprise the best segmentation for iteration k of the algorithm. Likewise, the set 
of regions }{

k
X

 
that produces this best classification probability corresponds the the best 

strong segmentation of the image.  
It is this conditioning of the probability on a particular object class that provides the 
semantic content to direct the segmentation processs. The classification distance is then used 
as a quality metric for the segmentation that corresponds to that region combination. If the 
probabilities of membership, )|}({ CXP

k
, for every class, C are too low, then the image is 

‘rejected’, which implies the object of interest is not in the image.  
The selection of these regions which will be combined into the final segmentation is 
analogous to feature selection in pattern recognition. There are a number of feature selection 
methods that can be adapted for region selection. The taxonomy for feature selection 
methods, shown in Fig. 6, divides these methods into three primary categories: (i) complete, 
(ii) heuristic, and (iii) random (Dash & Liu, 1997). These methods are the results of an 
extraordinary amount of research in the pattern recognition community, and are backed by 
both considerable empirical results as well as strong theoretical underpinnings. There is still 
no consensus as to which method is the best, since there is such a strong dependence of the 
performance of the algorithm on the data sets being analyzed (Dash & Liu, 1997). We have 
developed an approach in each of the major categories: an exhaustive search in the complete 
category, a Genetic Algorithm in the random category, and a forward sequential search in 
the heuristic category.  

 

 
Fig. 6. Taxonomy of available feature selection methods. 

The simplest algorithm is an exhaustive search through which all the possible region 
combinations are created and tested to find the best combination, which is feasible only 
when there are a limited number of regions in a cluster. For an exhaustive search, if there are 
N regions then the number of region combinations can rapidly become intractable since we 
must test the following number of combinations: 













N

k k
N

nscombinatioN
1 , where  !!

!
knk

n
k
N












.
 
       

(7)
 

The summation over the number of regions is due to the fact that we do not know how 
many regions will be required to produce the best combination of blobs, and therefore every 
combination of every possible number of regions must be tested. For each of these possible 
number of regions, k, there are N choose k possible ways to select these regions from the 
complete set of N regions.  
For all of the search methods, particlarly for the exhaustive search, the number of possible 
region combinations can quickly become intractible, where for clusters consisting of as few 
as twenty regions a brute force search of every possible combination would require roughly 
one million combinations, and if the number of regions only increased modestly to twenty-
five, the number of combinations would exceed 33 million. Fortunately, the total number of 
possible region combinations that must be explored is considerably less than this value 
which is actually an upper limit based on complete connectivity of all regions in the image. 
In reality the regions in an image are only locally connected which can easily be visualized 
using an adjacency graph. For region combiniing, only region combinations which satisfy an 
adjacency constraint must be tested. Fig. 7 (b) shows the adjacency graph for the cluster on 
Fig. 7 (a), and originally shown in Fig. 5. Here there are 22 regions in the cluster which for 
an exhasutive search of all possible combinations of all regions would result in 4.2 million 
combinations, however, the relatively sparse connectivity of the adjacency graph allows the 
sequential search algorithm to complete the analysis of this cluster with testing only 200 
region combinations and correctly extracting the building of interest.   
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The summation over the number of regions is due to the fact that we do not know how 
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Fig. 7. Graph representation of cluster from Fig. 5 (d): (a) image of cluster, and (b) graph 
representation of adjacency of cluster regions. 

The adjacency of the regions creates a local connectivity in the graph, and it is this median 
local connectivity of the graph which determines the number of possible region 
combinations that must be explored. There are n posible selections for the first region to be 
selected, but then rather than (n-1) options for the second region, there are only m which is 
equal to the local connectivity of the first region. The number of possible regions for the 
third region then varies as (m-1), etc. For the fourth region, the number of possible regions 
varies from 2*(m-1) when the first three regions form a chain to (m-2) when they are all in a 
tight cluster adjacent to the first region. While the actual number of possible region 
selections cannot be calculated in closed form, the average number of region combinations 
which must be tested for each pass of the algorithm is: 
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Which is clearly significantly smaller than that estimated by N-choose-k. 
 
Genetic Algorithm-based Region Combining  
Genetic algorithms are a natural candidate for wrapper-based segmentation, since GAs can 
“successfully deal with combinatorial problems” (Kim, et al., 2000).  Three key design issues 
must be addressed when using GAs: (i) the representation of the problem into a 
chromosome, (ii) the definition of a fitness function, and (iii) the the selection of cross-over 
and mutation strategies (Goldberg, 1989). Since we are using the GA for region selection, 
only the fact that a region is to be used in the segmentation must be encoded, which greatly 
simplifies the use of a GA for the wrapper-based segmenter versus other low-level 
segmentation approaches such as that described in (Bhandarkar & Zhang, 1999). The 
resultant encoding is a simple binary representation where the gene is set to one if the 
region is used, and set to zero if the region is not used.  

 

The output from every iteration i of the GA-based region combiner algorithm is the set of 
regions for each member k of the population,  ikX  and the associated probability of correct 

classification for that member of the population, )|}({ CikXP conditioned on the given 

pattern class, C.   
The genetic algorithm uses this probability of correct classification as the fitness function for 
evaluating the population members for possible reproduction using a fitness-proportional 
selection scheme (Goldberg, 1989). The wrapper uses the fourth or second power of the 
probability of correct classification as the fitness proportionality measure, Fitness(k), 
according to: 
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where N is the size of the population. The fourth power is employed if the variance of the 
distances is below a threshold, and the second power is employed as the population 
becomes more varied, to slightly reduce the dominating effects of a single highly fit parent. 
Not raising the classification distances to a higher power resulted in inadequate variation in 
the proportionality factors, thus leading to a nearly random selection scheme.  
Pairs of parents are selected for mating using the roulette wheel selection mechanism, where 
each set of parents then has a probability crossoverP  of executing a cross-over to generate the 
children; otherwise the parents proceed intact, where we set 850.Pcrossover  . For the 
applications for which the wrapper has been employed, the region-labeling algorithm 
generates on average 20 regions, resulting in the chromosome having only 20 individual 
genes. Due to this relatively short sequence, a simple single-point cross-over scheme for the 
genetic operator has proven adequate. For each mating pair of parents chosen for cross-over, 
the cross-over point is randomly selected. 
After the children are produced via the cross-over processing, the children experience 
mutation with a probability of any gene mutating being 050.Pmutate  . Lastly, an elitist 
selection strategy is employed where the fittest 10% of the population prior to mating (this 
corresponds to the parents with highest fitness) are retained in the population (Back, 1996). 
In order to ensure a diverse population of segmentation candidates is maintained two 
additional schemes are used to increase the diversity of the population. In the first scheme, if 
the variance of the fitness of the population falls below a threshold (i.e. the members of the 
population are becoming too similar), an additional mutation event is applied on the entire 
population, where this time 250.Pmutate  . In the second scheme, if the fitness of the best 
member of the population has not improved in the last N iterations, where N=25, an 
additional mutation event is applied on the entire population with 250.Pmutate  .   
Sequential Search-based Region Combining  
The sequential feature selection methods can be implemented in either a forward selection 
mode or a backward selection mode as can be seen from Fig. 6 under the heuristic methods. 
The forward selection mode begins with the empty set (an empty image) and then adds 
regions until the classification accuracy is maximized. The backward selection mode, on the 
other hand, begins with the complete image and removes regions until the classification 
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tight cluster adjacent to the first region. While the actual number of possible region 
selections cannot be calculated in closed form, the average number of region combinations 
which must be tested for each pass of the algorithm is: 

     
     

     kmmmm

kmmmm
mmmm

n
RAGk

N















...21
...,

,1...11
 ,1...11

,   

(8)
 

 
Which is clearly significantly smaller than that estimated by N-choose-k. 
 
Genetic Algorithm-based Region Combining  
Genetic algorithms are a natural candidate for wrapper-based segmentation, since GAs can 
“successfully deal with combinatorial problems” (Kim, et al., 2000).  Three key design issues 
must be addressed when using GAs: (i) the representation of the problem into a 
chromosome, (ii) the definition of a fitness function, and (iii) the the selection of cross-over 
and mutation strategies (Goldberg, 1989). Since we are using the GA for region selection, 
only the fact that a region is to be used in the segmentation must be encoded, which greatly 
simplifies the use of a GA for the wrapper-based segmenter versus other low-level 
segmentation approaches such as that described in (Bhandarkar & Zhang, 1999). The 
resultant encoding is a simple binary representation where the gene is set to one if the 
region is used, and set to zero if the region is not used.  

 

The output from every iteration i of the GA-based region combiner algorithm is the set of 
regions for each member k of the population,  ikX  and the associated probability of correct 

classification for that member of the population, )|}({ CikXP conditioned on the given 

pattern class, C.   
The genetic algorithm uses this probability of correct classification as the fitness function for 
evaluating the population members for possible reproduction using a fitness-proportional 
selection scheme (Goldberg, 1989). The wrapper uses the fourth or second power of the 
probability of correct classification as the fitness proportionality measure, Fitness(k), 
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where N is the size of the population. The fourth power is employed if the variance of the 
distances is below a threshold, and the second power is employed as the population 
becomes more varied, to slightly reduce the dominating effects of a single highly fit parent. 
Not raising the classification distances to a higher power resulted in inadequate variation in 
the proportionality factors, thus leading to a nearly random selection scheme.  
Pairs of parents are selected for mating using the roulette wheel selection mechanism, where 
each set of parents then has a probability crossoverP  of executing a cross-over to generate the 
children; otherwise the parents proceed intact, where we set 850.Pcrossover  . For the 
applications for which the wrapper has been employed, the region-labeling algorithm 
generates on average 20 regions, resulting in the chromosome having only 20 individual 
genes. Due to this relatively short sequence, a simple single-point cross-over scheme for the 
genetic operator has proven adequate. For each mating pair of parents chosen for cross-over, 
the cross-over point is randomly selected. 
After the children are produced via the cross-over processing, the children experience 
mutation with a probability of any gene mutating being 050.Pmutate  . Lastly, an elitist 
selection strategy is employed where the fittest 10% of the population prior to mating (this 
corresponds to the parents with highest fitness) are retained in the population (Back, 1996). 
In order to ensure a diverse population of segmentation candidates is maintained two 
additional schemes are used to increase the diversity of the population. In the first scheme, if 
the variance of the fitness of the population falls below a threshold (i.e. the members of the 
population are becoming too similar), an additional mutation event is applied on the entire 
population, where this time 250.Pmutate  . In the second scheme, if the fitness of the best 
member of the population has not improved in the last N iterations, where N=25, an 
additional mutation event is applied on the entire population with 250.Pmutate  .   
Sequential Search-based Region Combining  
The sequential feature selection methods can be implemented in either a forward selection 
mode or a backward selection mode as can be seen from Fig. 6 under the heuristic methods. 
The forward selection mode begins with the empty set (an empty image) and then adds 
regions until the classification accuracy is maximized. The backward selection mode, on the 
other hand, begins with the complete image and removes regions until the classification 
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accuracy is maximized. For the wrapper segmentation framework the forward selection is 
employed since the objects of interest are visually a fraction of the entire image. The forward 
selection algorithm that has been implemented is called the plus-L-minus-R algorithm, which 
has been identified as one of the more powerful heuristic methods for feature selection 
(Kudo & Sklansky, 2000). It begins with an initial set of regions, }{ 0X  and then adds up to L 
regions per iteration and then after adding these L regions, tries region combinations where 
it subtracts up to R regions. The complete addition and then removal of regions is one 
iteration of the algorithm. The details of the algorithm are shown in Table 1. For the plus-L-
minus-R implementation of the forward sequential search algorithm, the selection of L and R 
depends on the specific application and characteristics of the objects of interest within the 
images, for the airbag application where there were many regions that comprised the image 
we employed L=5 and R=3, while for the tumor and the detection applications we employed 
L=3 and R=2. The intitial number of regions to use is also an open parameter, which was 
five for the airbag application and two for the other two applications since the objects being 
processed were much smaller than the size of the image. 
 

1) For a given class C, create an initial set of regions 0X , the empty set. 
2) Region Addition: At each stage k in the processing, test each region in the set of 

unselected regions and add region lx  if )|}({)|}({ CXPCxXP klk  , where 

)|}({ CXP k  is the classification accuracy for the region set  kX , given class C. The 

output of this stage is a new subset of regions     )(
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is the region with the ith best improvement in classification accuracy up to L 

regions. 
3) Region Removal: Test each region in the current selected region set, }{ 1kX , and 

remove each region 
rx

 from the set if )|}({)|}({ 1 CXPCxXP krk  , where 

)|}({ CXP k is the classification accuracy for the region set  kX given class C. 
Continue testing and removing regions until all the regions in the current subset  kX  
are tested, or until R regions have been removed. 

4) Record )|}({ CXP k , and the corresponding subset of regions kX , and return to step 
(2) unless the last region has been processed. 

Table 1. Plus-L- minus-R forward sequential search algorithm for region combining. 

 
3.2.3 Classification 
Every possible combination of regions must be classified based on the class of interest to 
determine the goodness of the segmentation, however, prior to each classification, the 
features for the region combination must be computed. Recall to this point only the 
geometric moments have been employed to allow the features for each region combination 
to be quickly computed by adding or subtracting the moments for each region included in 
the combination. Recall from Equation (6), the geometric moments feature vector for a 
region combination is simply the sum of the feature vectors for every region that comprises 

 

the combination. This raw geometric moment vector is then converted to the desired 
invariant moments prior to classification. As a minimum the central moments must be used 
to make the object search translation invariant across the images and are computed by 
(Teague, 1980): 
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Depending on the desires of the user, the features of the object can also be made central 
scale invariant, rotation invariant, affine invariant and even projection (perspective) 
invariant (Suk & Flusser, 2004). More complex invariances, however, require more complex 
processing which impacts the throughput of the system. Also the more invariant the 
measures, the less discriminating the moments features can often be (Suk & Flusser, 2004). 
For the airbag suppression and the tumor applications, the sizes of the tumors were critical 
information so only central (translational invariant) moments were used. However, for the 
aerial surveillance application, the range to the objects of interest varied, and hence their 
size varied, which required central scale invariant moments. It is also important to note that 
not all objects require all invariances, for example when searching for bears, buildings, etc. 
as there is not a need to be fully rotationally invariant. Also the author has found that 
rotational invariance can be accomplished more cost effectively by adding a rotation 
generation function when creating the training database to create rotated examples of the 
training samples.   
One key decision that must be made when employing moments is to decide the order of the 
moments being retained. The applications to be highlighted in Section 4 have varied from 
only fifth order for an aerial surviellance application designed to detect buildings to up to 
twenty-fifth order for detecting occupants in an automotive airbag application. The tumor 
application was in the middle of this range with tenth order. 
While it is possible to use any of a number of possible classifiers in our wrapper method that 
provides a real-valued measure of the classification accuracy (or inversely classification 
distance), the k-nearest neighbor classifier has been used for the following reasons: (i) ease 
of implementation, (ii) non-parametric nature, (iii) demonstrated performance over a broad 
class of problems, and (iv) asymptotic convergence to the Bayes error rate (Jain et al., 2000) 
(Duda et al., 2000). The best results typically occur when the nearest neighbor classifier (k=1) 
is used. Additionally all of the moment values are used in the classification process (i.e. no 
feature selection is employed), since the complete set of features appears to be required to 
provide a good representation of the object shape. One last decision to be made for 
classification regards whether the features are normalized or not. The effects of 
normalization also varied with application, where we found that for the airbag suppression, 
un-normalized moments worked best, while the tumor and surveillance applications 
performed best when the features were normalized. This may be due to the fact that for the 
airbag suppression, the shapes were more complex and un-normalized features more fully 
captured and preserved the shape information that is providing the semantic information to 
the segmentation process. 
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accuracy is maximized. For the wrapper segmentation framework the forward selection is 
employed since the objects of interest are visually a fraction of the entire image. The forward 
selection algorithm that has been implemented is called the plus-L-minus-R algorithm, which 
has been identified as one of the more powerful heuristic methods for feature selection 
(Kudo & Sklansky, 2000). It begins with an initial set of regions, }{ 0X  and then adds up to L 
regions per iteration and then after adding these L regions, tries region combinations where 
it subtracts up to R regions. The complete addition and then removal of regions is one 
iteration of the algorithm. The details of the algorithm are shown in Table 1. For the plus-L-
minus-R implementation of the forward sequential search algorithm, the selection of L and R 
depends on the specific application and characteristics of the objects of interest within the 
images, for the airbag application where there were many regions that comprised the image 
we employed L=5 and R=3, while for the tumor and the detection applications we employed 
L=3 and R=2. The intitial number of regions to use is also an open parameter, which was 
five for the airbag application and two for the other two applications since the objects being 
processed were much smaller than the size of the image. 
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)|}({ CXP k is the classification accuracy for the region set  kX given class C. 
Continue testing and removing regions until all the regions in the current subset  kX  
are tested, or until R regions have been removed. 

4) Record )|}({ CXP k , and the corresponding subset of regions kX , and return to step 
(2) unless the last region has been processed. 

Table 1. Plus-L- minus-R forward sequential search algorithm for region combining. 

 
3.2.3 Classification 
Every possible combination of regions must be classified based on the class of interest to 
determine the goodness of the segmentation, however, prior to each classification, the 
features for the region combination must be computed. Recall to this point only the 
geometric moments have been employed to allow the features for each region combination 
to be quickly computed by adding or subtracting the moments for each region included in 
the combination. Recall from Equation (6), the geometric moments feature vector for a 
region combination is simply the sum of the feature vectors for every region that comprises 

 

the combination. This raw geometric moment vector is then converted to the desired 
invariant moments prior to classification. As a minimum the central moments must be used 
to make the object search translation invariant across the images and are computed by 
(Teague, 1980): 
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Depending on the desires of the user, the features of the object can also be made central 
scale invariant, rotation invariant, affine invariant and even projection (perspective) 
invariant (Suk & Flusser, 2004). More complex invariances, however, require more complex 
processing which impacts the throughput of the system. Also the more invariant the 
measures, the less discriminating the moments features can often be (Suk & Flusser, 2004). 
For the airbag suppression and the tumor applications, the sizes of the tumors were critical 
information so only central (translational invariant) moments were used. However, for the 
aerial surveillance application, the range to the objects of interest varied, and hence their 
size varied, which required central scale invariant moments. It is also important to note that 
not all objects require all invariances, for example when searching for bears, buildings, etc. 
as there is not a need to be fully rotationally invariant. Also the author has found that 
rotational invariance can be accomplished more cost effectively by adding a rotation 
generation function when creating the training database to create rotated examples of the 
training samples.   
One key decision that must be made when employing moments is to decide the order of the 
moments being retained. The applications to be highlighted in Section 4 have varied from 
only fifth order for an aerial surviellance application designed to detect buildings to up to 
twenty-fifth order for detecting occupants in an automotive airbag application. The tumor 
application was in the middle of this range with tenth order. 
While it is possible to use any of a number of possible classifiers in our wrapper method that 
provides a real-valued measure of the classification accuracy (or inversely classification 
distance), the k-nearest neighbor classifier has been used for the following reasons: (i) ease 
of implementation, (ii) non-parametric nature, (iii) demonstrated performance over a broad 
class of problems, and (iv) asymptotic convergence to the Bayes error rate (Jain et al., 2000) 
(Duda et al., 2000). The best results typically occur when the nearest neighbor classifier (k=1) 
is used. Additionally all of the moment values are used in the classification process (i.e. no 
feature selection is employed), since the complete set of features appears to be required to 
provide a good representation of the object shape. One last decision to be made for 
classification regards whether the features are normalized or not. The effects of 
normalization also varied with application, where we found that for the airbag suppression, 
un-normalized moments worked best, while the tumor and surveillance applications 
performed best when the features were normalized. This may be due to the fact that for the 
airbag suppression, the shapes were more complex and un-normalized features more fully 
captured and preserved the shape information that is providing the semantic information to 
the segmentation process. 
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4. Results 
 

The wrapper framework has been demonstrated on three distinct applications, a vision 
system for automotive safety, an MRI analysis tool for automated breast cancer detection, 
and an aerial surveillance application. There has been considerable attention paid to 
developing ‘smart’ airbags that can determine not only if they should be deployed in a crash 
event, but also with what force they should be deployed. In May 2001 the U.S National 
Highway Transportation and Safety Administration (NHTSA) defined the Federal Motor 
Vehicle Safety Standard (FMVSS) 208 that mandated automatic airbag suppression when an 
infant is in the passenger seat. The detection of an infant in the seat defines a 2-class 
recognition problem where the classes are: (i) infant, and (ii) adults. An example of an input 
adult image, the preliminary segmentation after background removal and the resultant 
labeled image are provided in Fig. 8 (Farmer & Jain, 2005).  For this particular application 
the background removal occured prior to low-level labeling since there was contextual 
information available regarding the knowledge of the empty vehicle which facilitated the 
removal of significant amounts of background information except the occupant and the seat. 
This system was tested using both the heuristic plus-L-minus-R algorithm and the Genetic 
Algorithm. For both algorithms, the central moments are converted to central-Legendre 
moment of order (n+m) for each region combination using (Teague, 1980): 
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where mlC  are the coefficients defined by the Legendre polynomial generating function and 

lk  is the central moment of order (l+k). Note for this application, the moments cannot be 
scale invariant since the size of the object is a critical factor in determining its class.  

   
(a) (b) (c) 

Fig. 8. Preliminary segmentation results for adult occupant, (a) adult image, (b) preliminary 
segmented adult, and (c) region labeled adult image (Farmer & Jain, 2005). 
 
The classification results are provided in the confusion matrix in Table 2 for the plus-L-
minus-R and in Table 3 for the genetic algorithm. The overall accuracy of the system 
provided by the plus-L-minus-R algorithm is Pcorrect(overall) is 91% with Pcorrect(infant) being 
98.8% and Pcorrect(adult) being only 53.2% and with examples of correct segmentations 
shown in . Notice without shape information, accurate segmentation of these objects from 
the images would have been impossible since there is no low-level homogeniety constraint 
to differentiatethe object of interest from the background. Unfortunately, for the plus-L-
minus-R algorithm the adult results are disappointing due to the high variability of the test 
images, which can be seen from an example incorrect segmentation in , where the occupant 
was moving forward and hence was not in the standard seating position. The plus-L-minus-R 
had trouble converging to the right answer on these conditions, but the testing of the GA on 
similar dataset improved the adult performance at a slight cost to the infant classification 

 

accuracy, as shown by its performance highlighted in Table 3. In summary Pcorrect(overall) is 
88% with Pcorrect(infant) being 89.2% and Pcorrect(adult) being a much improved 83.4% 
(Farmer & Shugars, 2006).  This performance improvement is due to the fact that the region 
selection space is a complicated search space with many local optima, and genetic 
algorithms have been shown to be more effective in these spaces (Kudo & Sklansky, 2000).

 True Infant True Adult 
Classified as Infant 1631 19 
Classified as Adult 166 189 

Table 2. Confusion matrix for the two-class suppression problem using plus-L-minus-R 
(Farmer & Jain, 2005). 

 True Infant True Adult 
Classified as Infant 793 34 
Classified as Adult 96 171 

Table 3. Confusion matrix for the two-class suppression problem using a Genetic 
Algorithm (Farmer & Shugars, 2006). 

   

(a) (b) (c) 

   
(d) (e) (f) 

Fig. 9. Segmentation of an occupant images: (a) infant image, (b) preliminary infant 
segmentation, (c) final wrapper-based infant segmentation, (d) adult image, (e) 
preliminary adult segmentation, and (f) final wrapper-based adult segmentation (Farmer 
& Jain, 2005). 

   
(a) (b) (c) 

Fig. 10. Incorrect segmentation of an adult image: (a) adult image, (b) preliminary 
segmentation, and (c) final wrapper-based segmentation (Farmer & Jain, 2005). 

 
The wrapper framework has also been applied to breast tumor detection (Rabei et al. 2007).  
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been identified as 
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accuracy, as shown by its performance highlighted in Table 3. In summary Pcorrect(overall) is 
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Fig. 9. Segmentation of an occupant images: (a) infant image, (b) preliminary infant 
segmentation, (c) final wrapper-based infant segmentation, (d) adult image, (e) 
preliminary adult segmentation, and (f) final wrapper-based adult segmentation (Farmer 
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Fig. 10. Incorrect segmentation of an adult image: (a) adult image, (b) preliminary 
segmentation, and (c) final wrapper-based segmentation (Farmer & Jain, 2005). 

 
The wrapper framework has also been applied to breast tumor detection (Rabei et al. 2007).  
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has been identified as 
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a valuable complementary technique for breast imaging. Unfortunately, while these multi-
temporal image sequences provide new information, integrating and evaluating the much 
wider range of information is challenging task for human observers. The wrapper 
framework was used to direct the segmentation based on the underlying shape and 
temporal characteristics of the object of interest (Rabei et al. 2007). Examination of temporal 
kinetic patterns as measured for small regions of interest is a common method for 
characterizing lesion masses. These dynamic parameters cannot be computed for each pixel 
in every breast slice, due to processing complexity. Traditionally, these measures are 
computed by sampling pixels within a grid superimposed on the image, which can reduce 
sensitivity to detection of small tumors since much of the tissue within the grid cell is 
normal. The wrapper approach utilized the regions selected by the region combining and 
computed the dynamic parameters for each of these groupings, as can be seen in Fig. 11 
(Rabei et al. 2007). These values are then used with the region shape information for tumor 
detection. The overall accuracy of the system is roughly 92% with the false positive 
diagnoses rate for normal patients as having either malignant or benign tumors of 4.5%, and 
a misdiagnosis rate for normal patients as either having malignant, benign, or suspicious 
growths of 7.5% as shown in Table 4 (Rabei et al. 2007). 

  
 

(a) (b) (c) 
Fig. 11. Intermediate breast tumor processing results, (a) input image, (b) labled image with 
background removed showing regions for combination, and (c) sequence of region 
combined images for dynamic analysis (Rabei et al. 2007). 
 
Thus far, the wrapper has been demonstrated on a two-class problem for the airbag control 
system and a four-class problem for the tumor recognition system. The last application for 
which the wrapper framework has been applied is an aerial surveillance application 
addressing wide-area surveillance of disaster areas such as during hurricane Katrina, with 
an example wide-area image shown in Fig. 12. This is an object detection problem, which 
can be considered a single-class problem.  The goal of the system is to detect manmade 
structures in wide-area imagery to ease the workload of image analysts who are searching 
for possibly stranded people in very remote rural areas. In this application, due to the 
immense sizes of the images, the first step in processing is a mosaicing process that divides 
the incoming image into a 4x4 grid, and each mosaic in the grid is then processed in parallel 
to reduce the processing time allowing it to benefit from multi-core architectures.  
 

 True 
Normal 

True 
Benign 

True 
Suspicious 

True 
Malignant 

True 
Normal 

925 23 31 21 

True 
Benign 

4 205 12 4 

True 
Suspicious 

7 19 343 6 

True 
Malignant 

3 2 4 91 

Table 4. Results of wrapper framework applied to breast tumor detection (Rabei et al. 2007). 
 
One other difference in processing is that the mode filtering step shown in Fig. 4 is bypassed 
since the objects tend to be relatively small in these massive images and the mode filtering 
distorted the shape characteristics of the objects of interest.  The detection results for the 
wrapper on the image shown in Fig. 12 (b) are provided in Table 5, where the detection 
results are quite respectable. The quality of the segmentations and detections can be seen 
beginning with typical initial clusters and the resultant detections are provided in Fig. 13 
and Fig. 14. These figures show the detected clusters in (a), the resultant combinations of 
regions that define the segmentations in (b), the region in the color image showing the object 
detection in (c), and the training sample that was used for the detection in (d). 

   
(a) (b) (c) 

Fig. 12. Surveillance images, (a) original wide-area image with buildings ,(b) zoom of 
highlighted region, and (c) image with no buildings. 

 Combinations 
Detected as Objects 

Combinations Detected 
as non-Objects 

Actual Objects 
 

5 0 

Actual Clusters not 
Containing Object 

2 7 

Table 5. Wrapper Results on Image in Fig. 12(b). 
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computed the dynamic parameters for each of these groupings, as can be seen in Fig. 11 
(Rabei et al. 2007). These values are then used with the region shape information for tumor 
detection. The overall accuracy of the system is roughly 92% with the false positive 
diagnoses rate for normal patients as having either malignant or benign tumors of 4.5%, and 
a misdiagnosis rate for normal patients as either having malignant, benign, or suspicious 
growths of 7.5% as shown in Table 4 (Rabei et al. 2007). 

  
 

(a) (b) (c) 
Fig. 11. Intermediate breast tumor processing results, (a) input image, (b) labled image with 
background removed showing regions for combination, and (c) sequence of region 
combined images for dynamic analysis (Rabei et al. 2007). 
 
Thus far, the wrapper has been demonstrated on a two-class problem for the airbag control 
system and a four-class problem for the tumor recognition system. The last application for 
which the wrapper framework has been applied is an aerial surveillance application 
addressing wide-area surveillance of disaster areas such as during hurricane Katrina, with 
an example wide-area image shown in Fig. 12. This is an object detection problem, which 
can be considered a single-class problem.  The goal of the system is to detect manmade 
structures in wide-area imagery to ease the workload of image analysts who are searching 
for possibly stranded people in very remote rural areas. In this application, due to the 
immense sizes of the images, the first step in processing is a mosaicing process that divides 
the incoming image into a 4x4 grid, and each mosaic in the grid is then processed in parallel 
to reduce the processing time allowing it to benefit from multi-core architectures.  
 

 True 
Normal 

True 
Benign 

True 
Suspicious 

True 
Malignant 

True 
Normal 

925 23 31 21 

True 
Benign 

4 205 12 4 

True 
Suspicious 

7 19 343 6 

True 
Malignant 

3 2 4 91 

Table 4. Results of wrapper framework applied to breast tumor detection (Rabei et al. 2007). 
 
One other difference in processing is that the mode filtering step shown in Fig. 4 is bypassed 
since the objects tend to be relatively small in these massive images and the mode filtering 
distorted the shape characteristics of the objects of interest.  The detection results for the 
wrapper on the image shown in Fig. 12 (b) are provided in Table 5, where the detection 
results are quite respectable. The quality of the segmentations and detections can be seen 
beginning with typical initial clusters and the resultant detections are provided in Fig. 13 
and Fig. 14. These figures show the detected clusters in (a), the resultant combinations of 
regions that define the segmentations in (b), the region in the color image showing the object 
detection in (c), and the training sample that was used for the detection in (d). 

   
(a) (b) (c) 

Fig. 12. Surveillance images, (a) original wide-area image with buildings ,(b) zoom of 
highlighted region, and (c) image with no buildings. 

 Combinations 
Detected as Objects 

Combinations Detected 
as non-Objects 

Actual Objects 
 

5 0 

Actual Clusters not 
Containing Object 

2 7 

Table 5. Wrapper Results on Image in Fig. 12(b). 

 



Pattern Recognition170

 

    
(a) (b) (c) (d) 

Fig. 13. Best match for cluster: (a) Original blob cluster, (b) final blob combination, (c) image 
region and (d) best training sample. 
 

    
(a) (b) (c) (d) 

Fig. 14. Best match for cluster: (a) Original blob cluster, (b) final blob combination, (c) image 
region and (d) best training sample. 
 
We also processed the entire image in Fig. 12 (a) and registered detections of buildings 
simply within each mosaic, so for each image there would be a total of sixteen possible 
detections. For analysis of this wide-area problem we quantify system performance in terms 
of recall and precision which are defined as: 





















alarms false detectionscorrect 
detectionscorrect Precision

detections missed detectionscorrect 
detectionscorrect Recall

       
(13) 

Unfortunately, the basic performance was not very impressive, with seven regions falsely 
having buildings detected, three with positive detections, and one missed detection, 
resulting in a Recall = .75 and Precision = 0.3.  
There are two characteristics of the image segments where the wrapper framework had false 
detections. The first is where there are manmade entities such as parking lots and 
intersections of multiple roadways, which since the goal of the application is to detect 
manmade structures can only partially be considered false detections. The second cause of 
false detections occurs when the initial segmentation is severely over-segmented (we term 
this hyper-segmentation) which occurs when the image of interest has strong texture 
characteristics as shown in Fig. 15. For example, in these hyper-segmented regions there 
were on the order of 10100 to 10200 possible region combinations which are extraordinary. 
This high region count, and hence high number of region combinations explains the high 
false detection rate, since Borenstein and Mailk (Borenstein & Malik, 2006) pointed out that 
the segmented regions cannot be too small or else any object is possible to create. In this 
application, the hyper-segmentation can be avoided by implementing a texture and color-
based low-level segmentation, which is beyond the scope of this paper. These conditions are 
easy to detect since they result in significant numbers of regions (typically over 400-600 
where the normal number is less than 200). Thus the wrapper framework can also provide 
quality feedback regarding the initial segmentation, and redirect either the parameter 

 

selection or in this case the actual low-level feature set to use for labeling. When the hyper-
segmented regions were removed from the calculation, the results are: Recall = 0.75, 
Precision = 0.6. This performance is more reasonable for a system that is designed to reduce 
operator workload. 
 

    
(a) (b) (c) (d) 

Fig. 15. Problematic low-level segmentations, (a) hyper-segmentation due to significant 
texture from Mosaic (2, 4) from the Fig. 12 (a), showing texture, (b) the resultant color-based 
labelling using EM, (c) original image for showing under-segmentation, and (d) under-
segmentation due to similarity in color of objects and the background roadway.  

 
5. Conclusion 
 

This chapter proposes an alternative paradigm for object segmentation that follows the 
wrapper methods of feature selection, where in this case the segmentation and the 
classification are wrapped together, and the classifier provides the metric for selecting the 
best segmentation. Rather than considering this method as yet another segmentation 
algorithm, the wrapper method is actually an alternative image segmentation framework, 
within which existing image segmentation algorithms may be executed. Unlike previous 
work in image segmentation, the proposed system makes no assumptions regarding the 
homogeneity of the object of interest. It attempts to bridge the semantic gap in image 
segmentation by considering the shape of the desired object, rather than relying on lower 
level features such as color or texture.  The approach has been implemented with two 
different region selection algorithms, the heuristic Plus-L Minus-R algorithm and a genetic 
algorithm, while for small region combinations an exhaustive search is applied. The 
wrapper framework has been demonstrated on three very different applications, a vision-
based automotive occupant sensing system, a breast tumor recognition system using MRI, 
and an aerial surveillance application for disaster assessment. In all cases, the resultant 
segmentations were often of high quality and would have been impossible without the 
semantic information provided by the shape of the object of interest. In the surveillance 
application, the results were more dependent on the low-level segmentation, caused by 
hyper-segmentation due to high texture images. Future work will address integrating more 
powerful low-level segmenters other than the EM algorithm. Current research work is 
directed at developing a complete content-based image query system using the wrapper 
framework to support the search through an image database of user defined shapes of 
interest.  Shape-based Content-based Image Retrieval (CBIR) is currently a very active area 
of research and the wrapper framework may provide an effective means for integrating 
shape information into the search process. 
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1. Introduction  

Image registration is of interest to scientists and engineers of various fields: computer 
vision, pattern recognition, and robotics ( Trucco & Plakas, 2006 ). One of the remarkable 
problems both in theory and in technique is how to cope with the dynamic geometric-
warps. For small objects and large camera-to-scene, i.e., the background appearance of the 
target is enough far, the projective transformation effect of the target is negligible. A 
satisfactory tracking result can be achieved by means of approximating the geometric warps 
with the affine transformation. However, in many special and practical applications, such as 
image mosaics in computer graphics and vision guidance in the military field, the projective 
transformation should be considered. It is well known that the projective transformation 
exactly models the motion relationship between images of the identical planar object scene, 
and can describe the pan and the tilt of the camera, which the affine transformation cannot 
do (Mann & Picard, 1997). The projective map model has eight independent parameters 
which have widely varying sensitivities and the transformation is highly nonlinear (Michael 
Gleicher, 1997), all of which affect to design the registration algorithms with efficiency, 
accuracy and robustness.  
Lucas-Kanade image registration method was first proposed in 1981. Within the classical 
space transformation-based tracking framework proposed by Hager et al (Hager & 
Belhumeur, 1998), a projective image registration approach based on the matrix 
parameterization was presented (Buenaposada & Baumela, 2002) in terms of the forward-
addition algorithm on the vector space, which is called the VECTOR-GN algorithm in this 
paper . The inverse-composition algorithm was proposed (Baker & Matthews, 2004) not only 
to compute the Hessian matrix and the gradient matrix offline but also to improve the 
efficiency by improving the iterative structure. However, these strategies can not utilize the 
projective Lie group structure sufficiently and leave room to improve the performance of the 
image registration algorithms. 
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The geometric optimization algorithm based on the manifolds, a novel approach to solve the 
constrained problem, was proposed in the 1970s-1980s ( Gabay, 1982). The fundamental idea 
of this approach is to regard the constrained sets as one underlying manifold and to exploit 
the geometry of the underlying parameter space. That is to develop a strategy which views 
constrained problems as to be equivalent to unconstrained problems posed on the constraint 
sets. Philosophically, this approach is geometrically more intuitive, conceptually simpler 
and mathematically more elegant. Various problem have been solved by applying the 
optimization algorithms on various manifolds. Especially, the optimization algorithms 
based on Lie Groups (Owren & Welfert, 1996) and Riemannian manifolds (Yaguang, 1999) 
have already been applied to robot control and machine learning. Recent years have also 
witnessed the rich achievements in the fields of signal processing, computer vision and 
pattern recognition. Smith generalized some optimization algorithms on the vector space to 
Riemannian manifolds and studied the adaptive filter problem of nonlinear signal (Smith, 
1993). Yean considered the optimization algorithm on SE(n, R) about the 2D-3D pose 
estimation in computer vision (Yean, 2005). Grenander proposed his famous General Pattern 
theory, of which the deformable template idea (Grenander, et al., 1998) is that the object is 
represented by the template and the infinite varieties of the pose and location associated 
with its occurrences are represented via transformations which act on the template. These 
transformations form one transitive group acting on the space of all possible transformed 
templates, which becomes a Lie group orbit. Hence, the problem on the automated target 
recognition and tracking switches into the parameter optimization problem on the Lie 
Group manifolds. 
Exploiting the deep connection between the Lie group and its associated Lie algebra which 
is called the Lie group exponential map, the geometric optimization approach based on Lie 
Groups theory switches the constrained nonlinear problems into equivalently unconstrained 
problems, thereby significantly reducing the computational complexity. A novel 
homograhy-based target image registration and tracking approach based on the Lie algebra 
parameterization which is called the LEXP-GN algorithm in this paper was proposed 
(Eduardo & Jaime, 2007). The performance, such as the tracking precision and rate, is better 
than that of the tracking method based on the matrix parameterization. 
Noticeably, there exists a bi-invariant Riemannian metric on a compact Lie group (such as 
SO(n,R)) and the geodesic through the identity element of group is one-parameter group. 
Hence, the Lie group exponential map agrees with the Riemannian exponential map. 
However, a noncompact Lie group (such as ( , )SE n R , SL(n,R)  and GA(n,R) ) has not a bi-
invariant Riemannian metric and the Riemannian exponential map based on the geodesic is 
usually different from the exponential map based on the Lie group structure. Therefore, the 
geometric optimization algorithms on the noncompact Lie groups based on the Lie group 
exponential map have its limitations. To our knowledge, it seems that there is not very 
much research on the noncompact Lie group optimization. Mahony and Manton provided 
an instructive interpretation of the Newton optimization method on the noncompact Lie 
groups from the Cartan-Schouten connection views of Riemannian geometry (Mahony & 
Manton, 2002). However, the Newton method needs to compute the complicated Hessian 
matrix and is usually not feasible to be applied to the real time application. 
The core of our registration algorithm is the optimization problem on the special linear 
group SL(3,R). Recently, Seok, et al studied the optimization algorithm on SL(3,R) about the 
medical images registration problems (Seok, et al, 2007). Based on the Riemannian 

 

exponential map obtained from the geodesic equation, we propose a second-order efficient 
target tracking algorithm within the intrinsic geometric optimization framework. The 
comparative experiments with VECTOR-GN and LEXP-GN indicate the improvement on 
the tracking rate and precision. 
The rest of the chapter is organized as follows. After a brief introduction to the Lie group 
exponential map and the Riemannian exponential map, the connection between them is 
studied on section 2, with the geometric optimization framework. Section 3 investigates the 
second-order projective image registration algorithm based on the Riemannian exponential 
map within the intrinsic optimization framework. Some comparative results are shown for 
illustration and verification in section 4. Finally, section 5 concludes the investigation and 
proposes some further work.  Some necessary supplementary material will be given in 
section 6. 

 
2. Mathematical background 

The exponential map and the intrinsic geometric optimization algorithm build the basis for 
our efficient projective registration method. The tools used here come primly from Lie 
group and Riemannian geometry. To enable further discussion, we need to take a small 
detour into geometry on them. Further information can be found in the famous textbooks  
( Helgason, 1978;  Berger,  2003). 

 
2.1 Lie group exponential map 
A Lie group is a group endowed with the smooth manifold structure, and its group 
multiplicative operation is denoted by  . The tangent space at the identity element e of Lie 
group M  is denoted by eT M . Let assume , e em M X T M . The left-invariant vector 
field X , which determines a left-invariant flow ( , ) ( ) x tt m X m , can be obtained by the left-
translation *( )m m eX L X . The one-parameter group, an integral curve at e , is denoted by 
( ) X t . The vector space ( ,[ , ]) eT M equipped with a bilinear bracket operation is a Lie 

algebra denoted by ( ) M . It is known that the left-invariant vector field, the left-invariant 
flow, the tangent space at the identity element, one-parameter group and the Lie algebra are 
equivalent in essence. 
Definition 1.  Lie group exponential map Lexp : ( ) ,( , ) Lexp( ) ( )     XM R M X t tX t  
For convenience, we usually define the Lie group exponential map, Lexp : ( ) M M , as 
follows 
 

Lexp( ) (1)XX       (1) 
 
Lemma 1. There exists an open neighborhood W of 0 in Lie algebra ( )M  and an open 
neighborhood U of e  in M  such that Lexp  is an analytic diffeomorphism of W onto U . 
From Lemma 1, we can define its inverse function known as the logarithm map which 
returns logX y  such that Lexp(X)=y . (See Fig. 1). 
The space of all nn  nonsingular real matrices forms a Lie group, called the general linear 
group denoted by GL( , )n R . Its algebra is usually denoted by gl( , )n R , the set of all real 
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square matrices. Being a sub-group of GL( , )n R , the special linear group SL( , )n R  is the 
space of all real nn  matrices H satisfying det 1H  . Its Lie algebra denoted by sl( , )n R  
consists of the real matrices of trace zero. What we concern in this paper is SL(3, )R  whose 
Lie algebra is sl(3, )R  with the following basis vectors. 

1 2 3 4

5 6 7 8

0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 -1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0 1 0

e e e e

e e e e

       
                 
              

       
                 
              

 

 
For matrix Lie groups, the group operation is matrix multiplication. The Lie bracket 
operation is  ,A B AB BA   and the Lie exponential map of a matrix ),( RnA gl  is 
computed by the formula 
 

=0
Lexp =exp =
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n
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AA A
n

       (2) 

 

  
Fig. 1. Lie group exponential map and its inverse map 

 
2.2 Riemannian exponential map 
Let M be a smooth manifold of m  dimensions. For every point p M , if an Euclidean inner 
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Riemannian manifold of m  dimensions and g  is called its Riemannian metric 
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Let : [ , ]a b M  be a smooth curve in M . Its length is defined as  
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A smooth curve ( )t  is called a geodesic on Riemannian manifold if the family of tangent 
vector field '( ) t  is parallel with respect to ( ) t . The geodesic has an important property 
that it is the minimal length curve of the following energy function 

2'( ( )) ( )
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Let ( ) ( ; , )t t p v  , [0,1]t  is a geodesic on Riemannian manifold satisfying (0) p  , 
'(0)  v , and ( )pB   be an open ball on ( )pT M whose center is origin and radius is  . The 

Riemannian exponential map at p  is defined as follows. 
Definition 2.  Riemannian exponential map: Rexp : ( )p pB M  , Rexp ( ) ( ; , )p tv t p v . 
In what follows, we denote the map Rexpe , the Riemannian exponential map from the 
tangent space eT M  at the identity element e  of the Lie group M , by Rexpp , 

Rexpp( ) Rexp ( ) (1)ev v       (5) 
Lemma 2.  Let ( , )M g  be a Riemannian manifold of dimensions. For any point p M , there 
exists an open neighborhood V of origin such that Rexp  is an analytic diffeomorphism of 
V  onto Rexpp( )U V .  
From Lemma 2,  if we define Rexp ( )p v q , its inverse function known as the 
logarithm, can be  defined as =Rlog ( )pv q  such that, (0) , (1)p q    and (0) v  . (See 
Fig. 2) 

 
Fig. 2. Riemannian exponential map and its inverse map 
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2.3 Relationship between Lie group exponential and Riemannian map 
Definition 3: Let G  be a Lie group, g  be a Riemannian metric onG , g  is a  left-invariant 
(right-invariant) Riemannian metric if its left-translation gL  (right-translation gR ) is an 
isometric transformation on Riemannian manifolds. A metric is bi-invariant if and only if 
the metric is both left-invariant and right-invariant. 
Lemma 3. There exists a bi-invariant Riemannian metric on a compact Lie group and the 
geodesics at the identity element e  are one-parameter subgroups. 
Lemma 3 shows that the Riemannian exponential map at the identity defined by the bi-
invariant Riemannian metric agrees with the Lie group exponential map, that is, for any 
tangent ( )v M  
 

Lexp( ) Rexpp( )v v     (6) 
 
Let us consider the general linear group GL(n,R) . For every point p  on the tangent space 

pT M ,  inner product     is defined as follows 
 

, ( )TA B Tr AB       (7) 
 
where , pA B T M , and ( )Tr  is the trace of a matrix. Hence, the length of a tangent vector is 
defined 
 

2 ( )Tv Tr vv      (8) 
 
Now, we begin to consider the Riemannian exponential map on a noncompact Lie group. 
First, we propose the following theorem on the minimal geodesics with respect to the right -
invariant Riemannian metric on general linear group manifolds. Please pay attention to the 
point g  on the Riemannian manifold, which is not the Riemannian metric. 
Theorem 1. Let ( ), [0,1]g t t  be a minimal geodesic connecting , GL( , )g h n R . The 

tangent vectors minimizing the energy function 
21

0
( )v t dt  and 

satisfying   ( ) ( ) ( ), (0) , (1)dg t dt v t g t g g g h are the solutions of the following matrix 
differential equation 
 

( ) ( ) ( ) ( ) ( )
[ ( ), ( )]

T T

T

dv t dt v t v t v t v t
v t v t

 


    (9) 

A proof of Theorem 1 is given in 6.1. 
From Theorem 1, it follows that the equation of the minimal geodesic on GL( , )n R  is  
 

  ( ) exp(( (0) (0) ) )exp( (0) )T Tg t v v t v t g    (10) 
 

 

Therefore, the Riemannian exponential map, the equation of the minimal geodesic equation 
on ( , )GL n R which emanates from the identity with a velocity v  is expressed 
 

Rexpp( ) exp(( ))exp( )T Tv v v v       (11) 
 
Now, we consider the exponential map on the subgroups of GL( , )n R . The special orthogon
al matrix SO( , )n R  is a compact group, and its algebra so( , )n R  are skew symmetric matrice
s with zero trace. It follows that, for every so( , )v n R , we have   Tv v , yielding 

 
Rexpp( ) exp(( ))exp( ) exp( )T Tv v v v v       (12) 

 
We can see that the Riemannian exponential map is the same as the Lie group exponential 
map for the compact groups, which completely consists with the Lemma 3. For the 
noncompact group SE( , )n R , its geodesics can be obtained by lifting the geodesics from 
SO( , )n R  and nR  ( Zefran & Kumar, 1998). However, for the noncompact group SL( , )n R , 
every sl( , )v n R , Rexpp( ) Lexp( )v v . We construct the optimization algorithm with the 
Riemannian exponential map   Rexpp( ) exp( )exp( )T Tv v v v , sl(3, )v R  in this paper 

 
2.4 Framework for geometric optimization 
If a Lie group is embedded in Euclidean space to be a sub-manifold, the optimization 
problem on it can often become a classical constrained optimization. The conventional 
approach of dealing with the structure of the group is to use Lagrange multipliers. Based on 
the geometric optimization theory, we use local canonical coordinates to represent 
parameters and intrinsically take care of the geometric structure of Lie Groups to allow the 
use of unconstrained optimization routines (Vercauteren & Malis, 2007). 
Let x  be a point in the neighborhood of t M . From Theorem 1, there exists 
   ( )n

i ii
v e M  such that  
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i ii
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nv v v v ;  ( 1, , )ie i n  is the basis of Lie algebra ( )M .Then, the Taylor 
series of a smooth function  ( )  on Lie group M  is obtained 
 

       31( Lexp( )) ( ) ( )
2

T
t tt t J v v H v O v   (14) 

where    


    

 0( Lexp( ))|t vi
i

J t
v

 and    


    

 0( Lexp( ))|t vij
i j

H t
v v

 

The Taylor series (14) allows us to construct various optimization algorithms on Lie groups 
by generalizing algorithms on vector space. For example, the classical Newton-Raphson 
method adopts the following intrinsic update step 
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The Taylor series (14) allows us to construct various optimization algorithms on Lie groups 
by generalizing algorithms on vector space. For example, the classical Newton-Raphson 
method adopts the following intrinsic update step 
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t tH v J t . 

Unfortunately, in many cases, the Hessian matrix 
tH  is often difficult or impossible to 

compute. Even worse is that the convergence problem may arise when it is not definite 
positive. Hence, Benhimane et al constructed the intrinsic Gauss-Newton algorithm by 
preserving the linear part and discarding the quadric item of Taylor series ( Benhimane & 
Malis 2007). Motivated by the second-order minimization method based on the Lie algebra 
parameterization, we take place of the Lie group exponential map with the Riemannian 
exponential map to construct an efficient second-order minimization algorithm based on the 
geodesics on manifolds, which is called REXPP-ESM algorithm in this paper. This algorithm 
can also find back the Hessian matrix information discarded by LEXP-GN algorithm within 
the intrinsic optimization framework to further improve the registration performance. The 
performance of the REXPP-ESM will be explained in 4.2. 
Lemma 4.  Any manifold of dimension d  can be embedded in 2 1dE  (Berger, 2003). 
From Lemma 4, we know that for a Lie group, there naturally exists an embedding map 
 : nG R ，  ( )t t  such that it is a sub-manifold in Euclidean space. Especially, the 
spatial transform groups (e.g. rigid body, affine, projective.) used in the target recognition 
and tracking are often represented and computed by common matrixes in homogeneous 
coordinates. 

 
3. Projective registration with manifold optimization 

3.1 Problem Statement 
Suppose the camera is not be calibrated and the tracked object has a flat appearance. When 
the target is moving in the space, the relation between images can be described by projective 
transformation. The projective transform group is the group of the matrices of the form  
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, where R  is a 2×2 nonsingular matrix, t  is a column vector for the translation 

and ( ,1)Tv  is the projection of the line at infinity. We choose the scale factor to normalize the 
projective group matrices T  such that the determinants of T  are equal to 1. Then the 
matrices T  belong to the special linear group SL(3, )R . This normalization cannot change 
the degree of parametric freedom and is reasonable in real applications [21].  
From Lemma 4, we can suppose the homogeneous coordinate of point p  be ( , ,1)Tx y  and 
the embedding map in Euclidean space of SL(3, )R  be : ( )t t  . Define a group action 
from SL(3, )R  on p : : SL(3, )w R p p  . The projective transformation is represented as 
follows 
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Let ( )I p  be the brightness value of the template and ( ( )( ))I w t p  be the intensity of 
projective-transformed target in the input image. The algorithm assumes the gray value is 
invariable at the same target position in two consecutive frames and calculates the projective 
transformation parameters to know the current position where the target is in the current 
image by solving the following function 
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3.2 Optimum parameters for projective registration 
To solve the projective parameters is in fact to perform optimization on SL(3, )R . Based on 

the Lie algebra parameterization, 8
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We pay attention to fact that when the images are aligned with the optimal spatial 
transformation in target tracking, the template and the warped image as well as their 
gradient should be very close to each other, i.e. *

p pI t I   . An efficient tracking 
algorithm will be constructed by utilizing this information to recover the information 
discarded with Gauss-Newton method by means of expanding the Jacobian matrix at the 
optimal transformation *t , hence avoiding computing the Hessian matrix at the same time. 
A first-order Taylor series around 0 of pf

tJ in (20) can lead to 
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Incorporating this expression into (19), we can get a true second-order approximation 
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The following is to compute the Jacobian matrix (0)pf
tJ  and ( )pf

tJ v  corresponding to the 
derivative of at 0 and v . 
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For every line of the matrix (0)pf

tJ , 
1 3

(T
p I t


    is corresponding to the spatial derivative of 

the current warped image using the projective transformation t ; 
3 9

pwJ


 
   is the Jacobian 

matrix for projective transformation (13), and  9 8e 
 is the Jacobian matrix where ( )ie  is 

the matrix ie  reshaped as a vector ( the entries are picked line per line ). Id is identical 

transformation. The two Jacobians pwJ  and e  are constants to be computed once and for all 

while the Jacobian (0)pf
tJ  has to be computed at each iteration since it depends on the 

updated value of projective parameters.  
However，the Jacobian matrix ( )pf

tJ v  is complicated and usually depends on t . Hence, 

we do not directly compute ( )pf
tJ v . If replacing the gradient of the optimally warped image 

* *expp( )tI t I t v    by its equivalent gradient of the template image, we can get a simple 
linear approximation of * *( )f

t t tJ v v  as follows 
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A proof of（23）is give in 6.2. 
Let tJ be the following matrix 
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By incorporating (24) into (21), we have 
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This cost function has a local or global minimum at v  
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where tJ  is the pseudo-inverse of tJ . Hence, the intrinsic iterative update is 
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4. Experimental Results and Analysis 

4.1 Experimental Results 
To validate the feasibility and efficiency of our algorithm, we compare our REXPP-ESM 
algorithm with VECTOR-GN algorithm and LEXP-GN algorithm. All the algorithms are 
implemented in matlab and tested in the computer with Intel PIV 2.4GHZ and 512 Memory. 
Since the 8 parameters in the projective warp have different units, we compute the RMS 
(root-mean-square) error of the corresponding points between the template and target 
image rather than the RMS of parameters. In addition, it should be emphasized that neither 
preliminary image filtering nor multi-scale pyramid implementations nor other robust 
techniques has been used for this evaluation. 
 

  
    (a)    (b) 
Fig. 3. Input image and template. (a) Input image. (b) Template. 
 
Experiment 1: We utilize the experiment data provided by Baker etc. in CMU and the same 
experiment setting to compare the three algorithms 
(http://www.ri.cmu.edu/people/bakers_simon.html). We experimented with the image in 
Fig. 3(a) and manually selected a 100×100 pixel template (see Fig. 3(b)) in the center of the 
image. We randomly perturbed the four corner points of the template 1000 times with 
additive white Gaussian noise of a certain standard variance   from one pixel to ten pixels 
and fitted for the projective warp parameters that these perturbed points define (for each 
standard variance, we generated 100 randomly inputs). We say that an algorithm converged 
if the RMS error in the canonical point locations is less than 3.0 pixels after 15 iterations. We 
computed the percentage of times that each algorithm converged for each standard 
variance. The results are shown in Fig. 4(a) that shows when the perturbation to the 
canonical point locations is less than about 3.0 pixels, all the three algorithms converge 
almost always. With the increase of the  , the frequency of convergence for LEXP-GN 
algorithm rapidly decreases. While 10  , the frequency of convergence for VECTOR-GN 
algorithm, LEXP-GN algorithm and our REXPP-ESM algorithm is 30%, 49% and 60% 
respectively. For 100 times experiments of 6  , all experiment test data are shown in Fig. 
4(b). Our REXPP-ESM algorithm requires 8 iterations to coverage while LEXP-GN requires 9 
iterations and VECTOR-GN requires 14 iterations. 
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   (a)      (b) 
Fig. 4. Comparison between REXPP-ESM and other two methods. (a) Frequency of 
convergence. (b) Average converge rates 
 
Experiment 2:  We show three experiment results for three typical image sequences using 
the three algorithms. The size of each frame in the first sequence is 512× 512（
http://esm.gforge.inria.fr/ESMdownloads.html）and the size of the tracked region is 150×
150. The tracked region shows projective transformation. The VECTOR-GN algorithm, 
LEXP-GN algorithm and REXPP-ESM algorithm converge after 11, 7 and 6 iterations 
respectively. Fig. 5 shows some tracking results of them. The 161st and 187th frames have 
larger deformation. The VECTOR-GN algorithm cannot converge and the tracker slides off 
the tracking region. LEXP-GN algorithms cannot lock the tracking region at 161st frame. 
However, our REXPP-ESM algorithm can be implemented very well on all the frames. The 
second virtual house sequence includes one hundred still frames 
(http://vasc.ri.cmu.edu/idb/html/motion/index.htm). The size of each frame is 512×480. 
The tracked target is the window of the house and the size of template is 52×40. The 
tracked region shows larger projective transformation. The VECTOR-GN algorithm, LEXP-
GN algorithm and REXPP-ESM algorithm converge after 7, 5 and 4 iterations respectively. 
Fig. 6 shows some tracking results of them. The sequences after 80th frame have larger 
deformation. The VECTOR-GN algorithm cannot converge and LEXP-GN algorithms 
cannot lock the tracking region at 91st frame either. However, our EXPP-ESM algorithm can 
be implemented very well on all the frames. The third car sequence contains 150 frames .The 
size of each frame is 768×576. The tracked target is the back of the running car and the 
tracked region shows larger enlargement warp. The VECTOR-GN algorithm, LEXP-GN 
algorithm and REXPP-ESM algorithm converge after 6, 4 and 3 iterations respectively. Fig. 7 
show some tracking results of them. The sequences after 130th frame have larger 
deformation. The VECTOR-GN algorithm cannot converge and the tracker suffers form the 
drifts from the tracking region. LEXP-GN algorithm cannot lock the tracking region at 150th 

 

frame. However, our REXPP-ESM algorithm can be implemented very well on all the 
frames. The table 1 summarizes the comparative performance of the three algorithms. 

     
 

     
 

     
Fig. 5. Comparison of the VECTOR-GN (first row), LEXP-GN (second row) and REXPP-ESM 
(third row). The sequences contain 200 frames. From left to right in each column is No. 1, 50, 
100, 161, 187 frame in wooden box sequences. See text for details.  
 

     
 

     
 

     
Fig. 6. Comparison of the VECTOR-GN (first row), LEXP-GN (second row) and REXPP-ESM 
(third row). The sequences contain 100 frames. From left to right in each column is No. 31, 60, 
80, 90, 100 frame in virtual houses box sequences. See text for details. 
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Fig. 7. Comparison of the VECTOR-GN (first row), LEXP-GN (second row) and REXPP-ESM 
(third row). The sequences contain 150 frames. From left to right in each column is No. 1, 60, 
130, 150 frame in virtual houses box sequences. See text for details. 

 
4.2 Analysis  
From the results of the two experiments, we conclude that our algorithm utilizes the 
minimum geodesics and avoids computing Hessian matrix can make our REXPP-ESM 
algorithm is much superior to the VECTOR-GN algorithm and is slightly better than the 
LEXP-GN algorithm in the convergent frequency and convergence rate. Firstly, it is evident 
that the VECTOR-GN algorithm performs not well because it can not exploit the projective 
parameters intrinsic manifold structure. Secondly, it should be noted that when the distance 
between the two points are much close to the identity element, the REXPP-ESM 
performance is almost identical with the LEXP-GN because now the geodesic on 
SL(3,R) can be replaced by Lie exponential map. This can be obtained from the Fig. 4(a) of 
the first experiment where its data are synthesized when the perturbation is very small, 
namely, the projective warp is not remarkable. Although we adopt the second-order 
optimization, our REXPP-ESM doesn’t perform much better than LEXP-GN. In real video 
sequences, although the deformation of the two continuous frames is usually not big, the 
drawbacks of the VECTOR-GN algorithm make it very easy to get local minimum while 
LEXP-GN and our REXPP-ESM perform well similarly. When the warps are bigger on some 
frames, our REXPP-ESM performs better than LEXP-GN, especially on the coverage rate. 
The reason for this is that our REXPP-ESM algorithm marches along the shortest distance 
during the optimization process than that of LEXP-GN. We confirm that some deep theory 
on Riemannian geometry should be introduced to explain it and leave it to work in the 
future. 
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on the minimum geodesics and constructed the registration and tracking algorithm without 
computing the Hessian matrix. The experimental results compared with the classical vector 
space algorithm and the Gauss-Newton optimization algorithm based on the Lie group 
exponential map show that the accuracy and the convergent rate demonstrate some evident 
improvements.  It is emphasized that both Lie group exponential map and the Riemannian 
exponential map are based on the local linearization and are easy to diverge if the initial 
value and the iterative step size are not chosen improperly. Besides, we also investigate that 
the representative methods of the projective parameters have important effect on the 
experiment results and should be considered seriously. 
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Fig. 7. Comparison of the VECTOR-GN (first row), LEXP-GN (second row) and REXPP-ESM 
(third row). The sequences contain 150 frames. From left to right in each column is No. 1, 60, 
130, 150 frame in virtual houses box sequences. See text for details. 
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Comparing（29）with（30）gives the equation 
 

( , ) ( ) [ ( ), ( )]dv t d t v t t         (31) 
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with using integration by parts and the boundary conditions on the perturbation (0) 0   

and (1) 0  . Since this is zero over all perturbations ( )t ，then we have 
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6.2 Proof of (23) 
Paying attention to the definition of the directional derivative and using  compound 
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where   is a noise term of image to be discarded. 
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where   is a noise term of image to be discarded. 
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1. Introduction  

This chapter is concerned with the class imbalance problem, which has been recognized as a 
crucial problem in machine learning and data mining.  The problem occurs when there are 
significantly fewer training instances of one class compared to another class.  Most machine 
learning algorithms work well with balanced data sets since they aim to optimize the overall 
classification accuracy or a related measure. For imbalanced data sets, the decision 
boundary established by standard machine learning algorithms tends to be biased towards 
the majority class; therefore, the minority class instances are more likely to be misclassified. 
There are many problems that arise from learning with imbalanced data sets. The first 
problem concerns measures of performance. Evaluation metrics are known to play a vital 
role in machine learning. They are used to guide the learning algorithm towards the desired 
solution. Therefore, if the evaluation metric does not take the minority class into 
consideration, the learning algorithm will not be able to cope with class imbalance very well. 
With standard evaluation metrics, such as the overall classification accuracy, the minority 
class has less impact compared to the majority class. The second problem is related to lack of 
data. In an imbalanced training set, a class may have very few samples. As a result, it is 
difficult to construct accurate decision boundaries between classes. For a class consisting of 
multiple clusters, some clusters may contain a small number of samples compared to other 
clusters; therefore, the lack of data can occur within the class itself. The third problem in 
learning from imbalanced data is noise. Noisy data have a serious impact on minority 
classes than on majority classes. Furthermore, standard machine learning algorithms tend to 
treat samples from a minority class as noise.  
In this chapter, we review the existing approaches for solving the class imbalance problem, 
and discuss the various metrics used to evaluate the performance of classifiers. Furthermore, 
we introduce a new approach to dealing with the class imbalance problem by combining 
both unsupervised and supervised learning. The rest of the chapter is organized as follows. 
Section 2 describes the problems caused by class imbalance. Section 3 reviews current state-
of-the-art techniques for tackling these problems. Section 4 describes existing classification 
performance measures for imbalanced data. Section 5 describes our proposed learning 
approach to handle the class imbalance problem. Section 6 presents experimental results, 
and Section 7 gives concluding remarks. 

10
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2. Class Imbalance Problems   

Class imbalance occurs when there are significantly fewer training instances of one class 
compared to other classes. In some applications, class imbalance is an intrinsic property. For 
example, in credit card usage data there are very few cases of fraud transactions as 
compared to the number of normal transactions. However, imbalanced data can also occur 
in areas that do not have an inherent imbalance problem. Instead, the imbalance is mainly 
caused by limitations in collecting data, such as cost, privacy, and the large effort required to 
obtain a representative data set. Class imbalance presents several difficulties in learning, 
including imbalanced in class distribution, lack of data, and concept complexity.  These 
factors are explained in more detail in the following subsections. 

 
2.1 Imbalance in class distribution  
The class imbalance problems can arise either from between classes (inter-class) or within a 
single class (intra-class). We first discuss issues related with inter-class imbalance, where the 
number of examples of one class is much larger than the number of examples of another 
class, namely the minority class. The degree of imbalance can be represented by the ratio of 
sample size of the minority class to that of the majority class. Most classification techniques 
such as decision tree, discriminant analysis and neural networks assume that the training 
samples are evenly distributed amongst different classes. However, in real-world 
applications, the ratio of minority to majority samples can be as low as 1 to 100, 1 to 1000, or 
1 to 10,000 (Chawla et al., 2004). Hence, the standard classifiers are affected by the prevalent 
classes and tend to ignore or treat the small classes as noise. Weiss and Provost  investigated 
the relationship between the imbalance ratio of training samples in each class and classifier 
performances, in terms of overall accuracy and area under the ROC curve (AUC) (Weiss and 
Provost, 2003). They used a decision-tree classifier and tested it on a number of data sets 
from the UCI Repository (Asuncion and Newman, 2007). Their experimental results 
indicated that the ratio of samples in each class  depends on the evaluation metrics used. 
When the performance is measured using classification accuracy, the best ratio is near the 
natural ratio; on the other hand, when the AUC measure is used, the best ratio is near the 
balanced ratio. Visa and Ralescu also reported similar results using fuzzy classifiers (Visa 
and Ralescu, 2005). However, we should note that the imbalance ratio between classes is not 
the only factor that reduces classification performance; other factors such as training size 
and concept complexity also affect performance.  
In tasks that involve learning a concept or detecting an event, data imbalance can appear 
within a single class. The within-class imbalance problem occurs when a class consists of 
several sub-clusters or sub-concepts and these sub-clusters do not have the same number of 
samples (Japkowicz, 2001).  The within-class and between-class imbalances together are 
known as the problem of small disjuncts (Holte et al., 1989), in which classifiers are biased 
towards  recognizing large disjuncts correctly, but overfitting and misclassifying samples 
represented by small disjucts.  In most classification tasks, the presence of within-class 
imbalance is implicit. It is known to have negative effects on the performance of standard 
classifiers and increases the complexity of concept learning (Yoon and Kwek, 2007). 
However, most existing methods for class imbalance focus mainly on rectifying the 
between-class imbalance, and ignore the case where imbalance occurs within each class.  

 

 

2.2 Lack of data  
One of the primary problem when learning with imbalanced data sets is the associated lack 
of data where the number of samples is small (Weiss, 2004). In a given classification task, the 
size of data set has an important role in building a good classifier. Lack of examples, 
therefore, makes it difficult to uncover regularities within the small classes. Fig. 1 illustrates 
an example of the problem that can be caused by lack of data. Fig. 1 (a) shows the decision 
boundary (dashed line) obtained when using sufficient data for training, whereas Fig. 1 (b) 
shows the result when using a small number of samples. When there is sufficient data, the 
estimated decision boundary (dashed line) approximates well the true decision boundary 
(solid line); whereas, if there is a lack of data, the estimated decision boundary can be very 
far from the true boundary. In fact, it has been shown that as the size of training set 
increases, the error rate caused by imbalanced training data decreases (Japkowicz and 
Stephen, 2002). Weiss and Provost conducted experiments on twenty six data sets, taken 
from the UCI repository, to investigate the relationship between the degree of class 
imbalance and training set sizes (Weiss and Provost, 2003). They showed that when more 
training data become available, the classifiers are less sensitive to the level of imbalance 
between classes. This suggests that with sufficient amount of training data, the classification 
system may not be affected by high imbalance ratio. 

 
Fig. 1. The effect of lack of data on class imbalance problem; the solid line represents the true 
decision boundary and dashed line represents the estimated decision boundary.  

 
2.3 Concept complexity  
Concept complexity is an important factor in a classifier ability to deal with imbalanced 
problems. Concept complexity in data corresponds to the level of separability of classes 
within the data. Japkowicz and Stephen reported that for simple data sets that are linearly 
separable, classifier performances are not susceptible to any amount of imbalance 
(Japkowicz and Stephen, 2002). Indeed, as the degree of data complexity increases, the class 
imbalance factor starts impacting the classifier generalization ability. High complexity refers 
to inseparable data sets with highly overlapped classes, complex boundaries and high noise 
level. When samples of different classes overlap in the feature space, finding the optimum 
class boundary becomes hard. In fact, most accuracy-driven algorithms bias toward the 

(a) 

+
+

+ 

+

+ 

+
+

+

+ +

+

__
_

_

_

_

_

_

___

_

_

_ 

_ 

_  _ 

_ _ 
_ 

__  _
_

_
_ 

_ 
_
_

_

 

(b) 

+ 
+ + 

_
_ 

_ 

_

_

_

_
_ 

_

 



Learning Pattern Classification Tasks with Imbalanced Data Sets 195

 

2. Class Imbalance Problems   

Class imbalance occurs when there are significantly fewer training instances of one class 
compared to other classes. In some applications, class imbalance is an intrinsic property. For 
example, in credit card usage data there are very few cases of fraud transactions as 
compared to the number of normal transactions. However, imbalanced data can also occur 
in areas that do not have an inherent imbalance problem. Instead, the imbalance is mainly 
caused by limitations in collecting data, such as cost, privacy, and the large effort required to 
obtain a representative data set. Class imbalance presents several difficulties in learning, 
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natural ratio; on the other hand, when the AUC measure is used, the best ratio is near the 
balanced ratio. Visa and Ralescu also reported similar results using fuzzy classifiers (Visa 
and Ralescu, 2005). However, we should note that the imbalance ratio between classes is not 
the only factor that reduces classification performance; other factors such as training size 
and concept complexity also affect performance.  
In tasks that involve learning a concept or detecting an event, data imbalance can appear 
within a single class. The within-class imbalance problem occurs when a class consists of 
several sub-clusters or sub-concepts and these sub-clusters do not have the same number of 
samples (Japkowicz, 2001).  The within-class and between-class imbalances together are 
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towards  recognizing large disjuncts correctly, but overfitting and misclassifying samples 
represented by small disjucts.  In most classification tasks, the presence of within-class 
imbalance is implicit. It is known to have negative effects on the performance of standard 
classifiers and increases the complexity of concept learning (Yoon and Kwek, 2007). 
However, most existing methods for class imbalance focus mainly on rectifying the 
between-class imbalance, and ignore the case where imbalance occurs within each class.  

 

 

2.2 Lack of data  
One of the primary problem when learning with imbalanced data sets is the associated lack 
of data where the number of samples is small (Weiss, 2004). In a given classification task, the 
size of data set has an important role in building a good classifier. Lack of examples, 
therefore, makes it difficult to uncover regularities within the small classes. Fig. 1 illustrates 
an example of the problem that can be caused by lack of data. Fig. 1 (a) shows the decision 
boundary (dashed line) obtained when using sufficient data for training, whereas Fig. 1 (b) 
shows the result when using a small number of samples. When there is sufficient data, the 
estimated decision boundary (dashed line) approximates well the true decision boundary 
(solid line); whereas, if there is a lack of data, the estimated decision boundary can be very 
far from the true boundary. In fact, it has been shown that as the size of training set 
increases, the error rate caused by imbalanced training data decreases (Japkowicz and 
Stephen, 2002). Weiss and Provost conducted experiments on twenty six data sets, taken 
from the UCI repository, to investigate the relationship between the degree of class 
imbalance and training set sizes (Weiss and Provost, 2003). They showed that when more 
training data become available, the classifiers are less sensitive to the level of imbalance 
between classes. This suggests that with sufficient amount of training data, the classification 
system may not be affected by high imbalance ratio. 

 
Fig. 1. The effect of lack of data on class imbalance problem; the solid line represents the true 
decision boundary and dashed line represents the estimated decision boundary.  

 
2.3 Concept complexity  
Concept complexity is an important factor in a classifier ability to deal with imbalanced 
problems. Concept complexity in data corresponds to the level of separability of classes 
within the data. Japkowicz and Stephen reported that for simple data sets that are linearly 
separable, classifier performances are not susceptible to any amount of imbalance 
(Japkowicz and Stephen, 2002). Indeed, as the degree of data complexity increases, the class 
imbalance factor starts impacting the classifier generalization ability. High complexity refers 
to inseparable data sets with highly overlapped classes, complex boundaries and high noise 
level. When samples of different classes overlap in the feature space, finding the optimum 
class boundary becomes hard. In fact, most accuracy-driven algorithms bias toward the 
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prevalent class. That is, they improve the overall accuracy by assigning the overlapped area 
to the majority class, and ignore or treat the small class as noise (Murphey et al., 2007).   
The class imbalance problem is more significant when the data sets have a high level of 
noise. Noise in data sets can emerge from various sources, such as data samples are poorly 
acquired or incorrectly labeled, or extracted features are not sufficient for classification. It is 
known that noisy data affect many machine learning algorithms; however, Weiss showed 
that noise has even more serious impact when learning with imbalanced data (Weiss, 2004). 
The problem occurs when samples from the small class are mistakenly included in the 
training data for the majority class, and vice versa. For the prevalent class, noise samples 
have less impact on the learning process. In contrast, for the small class it takes only a few 
noise samples to influence the learned sub-concept. For a given data set that is complex and 
imbalanced, the challenge is how to train a classifier that correctly recognizes samples of 
different classes with high accuracy. 
 
3. Existing approaches 

To address the problems associated with imbalanced data sets, many studies have been 
conducted to improve traditional learning algorithms. In this section, we review various 
approaches, which have been proposed both at the data level, such as re-sampling and 
combinations, and at the algorithmic level, such as recognition-based approach, cost-
sensitive learning and boosting. 

 
3.1 Recognition-based approach 
As discussed previously, certain discriminative learners such as neural networks, decision 
trees, support vector machines and fuzzy classifiers tend to recognize the majority class 
instances since they are trained to achieve the overall accuracy, to which the minority class 
contributes very little. A recognition-based or one-class learning approach is another 
alternative solution where the classifier is modeled on the examples of the target class (the 
small class) in the absence of examples of the non-target class.  One of the early systems that 
utilize this recognition-based approach was proposed in (Japkowicz et al., 1995). It uses 
neural networks and attempts to learn only from the target class examples and thus 
recognizing the target concept, rather than to differentiating between majority and minority 
instances of a concept. One-class learning approach is also applied to autoencoder-based 
classifiers (Eavis and Japkowicz, 2000), SVMs (Raskutti and Kowalczyk, 2004), and ensemble 
one-class classifiers (Spinosa and Carvalho, 2005). Here similar patterns from positive 
instances of a concept are learnt, classifiers are then presented with unseen samples, 
classification is accomplished by imposing a threshold on the similarity value. A too high 
threshold will result in misclassifying positive samples, while a too low threshold will 
include more negative samples. Since threshold draws the boundaries that separate the two 
classes, choosing an effective threshold is crucial in one-class learning. Japkowicz shows that 
one-class learning approach to solving the imbalanced class problem is better than 
discriminative (two-class learning) approach (Japkowicz, 2001). However, recognition-based 
approach cannot apply to many machine learning algorithms such as, decision tree, Naive 
Bayes, and associative classifications. These classifiers are not constructed from only 
samples of one-class.  
 

 

3.2 Cost-sensitive learning 
In many applications such as medical diagnosis, fraud detection, intrusion prevention and 
risk management, the primary interest is in fact in the small classes. In these applications, it 
is not only the data distributions that are skewed, but so are the misclassification costs. Most 
classical learning algorithms assume that all misclassification errors cost equally, and ignore 
the difference between types of misclassification errors. One practical solution to this 
problem is to use cost-sensitive learning methods (Elkan, 2001).  
A cost-sensitive learning technique takes costs, such as misclassification cost, into 
consideration during model construction and produces a classifier that has the lowest cost. 
Let  denote the cost of estimating an example from class  as class . In a two class 
problem,  signifies the cost of misclassifying a positive sample as the negative 
sample, and  denotes the cost of the contrary case. Cost-sensitive learning methods 
take advantage of the fact that it is more expensive to misclassify a true positive instance 
than a true negative instance, that is . For a two-class problem, a cost-
sensitive learning method assigns a greater cost to false negatives than to false positives, 
hence resulting in a performance improvement with respect to the positive class.  
Existing cost-sensitive learning for dealing with imbalanced data sets can be divided into 
two different categories. The first category consists of learning algorithms that are designed 
to optimize a cost-sensitive function directly. One example is cost-sensitive decision tree, 
proposed in (Ling and Li, 2004) that directly takes costs into model building. The 
misclassification costs are used to choose the best attribute as a root of the tree. The second 
category is a collection of existing cost-insensitive learning algorithms that are converted 
into cost-sensitive ones. This category, also known as cost-sensitive meta-learning, can be 
further divided into sampling, weighting, thresholding, and ensemble learning.  Methods in 
the weighting group (Alejo et al., 2007), convert sample-dependent costs into sample 
weights; in other words, they assign heavier weights to the minority training instances.  
Different weighting strategies have been reported: Nguyen and Ho proposed to weight 
samples of the minority class based on the local data distributions (Nguyen and Ho, 2005),  
and others suggested to weight training samples based on posterior probability (Tao et al., 
2005). Zhou and Lui conducted a rigorous comparison on the effects of oversampling, and 
under-sampling, threshold-moving and ensemble classifiers in training cost-sensitive neural 
networks (Zhou and Liu, 2006).  They find that in training cost-sensitive neural networks, 
threshold-moving and ensemble learning are relatively good choices in both two-class and 
multi-class tasks.  However, like many other solutions, they also have some drawbacks. 
Cost-sensitive learning approach assumes the misclassification costs are known. In practice, 
specific cost information is often unavailable because costs often depend on a number of 
factors that are not easily compared. Moreover, Weiss found that cost-sensitive classifiers 
may lead to over fitting during training (Weiss, 2004).   

 
3.3 Sampling 
One of the common approaches to class imbalance problem is sampling. The key idea is to 
pre-process training data to minimize any discrepancy between the classes. In other words, 
sampling methods modify the prior distributions of the majority and minority class in the 
training set to obtain a more balanced number of instances in each class.  
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prevalent class. That is, they improve the overall accuracy by assigning the overlapped area 
to the majority class, and ignore or treat the small class as noise (Murphey et al., 2007).   
The class imbalance problem is more significant when the data sets have a high level of 
noise. Noise in data sets can emerge from various sources, such as data samples are poorly 
acquired or incorrectly labeled, or extracted features are not sufficient for classification. It is 
known that noisy data affect many machine learning algorithms; however, Weiss showed 
that noise has even more serious impact when learning with imbalanced data (Weiss, 2004). 
The problem occurs when samples from the small class are mistakenly included in the 
training data for the majority class, and vice versa. For the prevalent class, noise samples 
have less impact on the learning process. In contrast, for the small class it takes only a few 
noise samples to influence the learned sub-concept. For a given data set that is complex and 
imbalanced, the challenge is how to train a classifier that correctly recognizes samples of 
different classes with high accuracy. 
 
3. Existing approaches 

To address the problems associated with imbalanced data sets, many studies have been 
conducted to improve traditional learning algorithms. In this section, we review various 
approaches, which have been proposed both at the data level, such as re-sampling and 
combinations, and at the algorithmic level, such as recognition-based approach, cost-
sensitive learning and boosting. 

 
3.1 Recognition-based approach 
As discussed previously, certain discriminative learners such as neural networks, decision 
trees, support vector machines and fuzzy classifiers tend to recognize the majority class 
instances since they are trained to achieve the overall accuracy, to which the minority class 
contributes very little. A recognition-based or one-class learning approach is another 
alternative solution where the classifier is modeled on the examples of the target class (the 
small class) in the absence of examples of the non-target class.  One of the early systems that 
utilize this recognition-based approach was proposed in (Japkowicz et al., 1995). It uses 
neural networks and attempts to learn only from the target class examples and thus 
recognizing the target concept, rather than to differentiating between majority and minority 
instances of a concept. One-class learning approach is also applied to autoencoder-based 
classifiers (Eavis and Japkowicz, 2000), SVMs (Raskutti and Kowalczyk, 2004), and ensemble 
one-class classifiers (Spinosa and Carvalho, 2005). Here similar patterns from positive 
instances of a concept are learnt, classifiers are then presented with unseen samples, 
classification is accomplished by imposing a threshold on the similarity value. A too high 
threshold will result in misclassifying positive samples, while a too low threshold will 
include more negative samples. Since threshold draws the boundaries that separate the two 
classes, choosing an effective threshold is crucial in one-class learning. Japkowicz shows that 
one-class learning approach to solving the imbalanced class problem is better than 
discriminative (two-class learning) approach (Japkowicz, 2001). However, recognition-based 
approach cannot apply to many machine learning algorithms such as, decision tree, Naive 
Bayes, and associative classifications. These classifiers are not constructed from only 
samples of one-class.  
 

 

3.2 Cost-sensitive learning 
In many applications such as medical diagnosis, fraud detection, intrusion prevention and 
risk management, the primary interest is in fact in the small classes. In these applications, it 
is not only the data distributions that are skewed, but so are the misclassification costs. Most 
classical learning algorithms assume that all misclassification errors cost equally, and ignore 
the difference between types of misclassification errors. One practical solution to this 
problem is to use cost-sensitive learning methods (Elkan, 2001).  
A cost-sensitive learning technique takes costs, such as misclassification cost, into 
consideration during model construction and produces a classifier that has the lowest cost. 
Let  denote the cost of estimating an example from class  as class . In a two class 
problem,  signifies the cost of misclassifying a positive sample as the negative 
sample, and  denotes the cost of the contrary case. Cost-sensitive learning methods 
take advantage of the fact that it is more expensive to misclassify a true positive instance 
than a true negative instance, that is . For a two-class problem, a cost-
sensitive learning method assigns a greater cost to false negatives than to false positives, 
hence resulting in a performance improvement with respect to the positive class.  
Existing cost-sensitive learning for dealing with imbalanced data sets can be divided into 
two different categories. The first category consists of learning algorithms that are designed 
to optimize a cost-sensitive function directly. One example is cost-sensitive decision tree, 
proposed in (Ling and Li, 2004) that directly takes costs into model building. The 
misclassification costs are used to choose the best attribute as a root of the tree. The second 
category is a collection of existing cost-insensitive learning algorithms that are converted 
into cost-sensitive ones. This category, also known as cost-sensitive meta-learning, can be 
further divided into sampling, weighting, thresholding, and ensemble learning.  Methods in 
the weighting group (Alejo et al., 2007), convert sample-dependent costs into sample 
weights; in other words, they assign heavier weights to the minority training instances.  
Different weighting strategies have been reported: Nguyen and Ho proposed to weight 
samples of the minority class based on the local data distributions (Nguyen and Ho, 2005),  
and others suggested to weight training samples based on posterior probability (Tao et al., 
2005). Zhou and Lui conducted a rigorous comparison on the effects of oversampling, and 
under-sampling, threshold-moving and ensemble classifiers in training cost-sensitive neural 
networks (Zhou and Liu, 2006).  They find that in training cost-sensitive neural networks, 
threshold-moving and ensemble learning are relatively good choices in both two-class and 
multi-class tasks.  However, like many other solutions, they also have some drawbacks. 
Cost-sensitive learning approach assumes the misclassification costs are known. In practice, 
specific cost information is often unavailable because costs often depend on a number of 
factors that are not easily compared. Moreover, Weiss found that cost-sensitive classifiers 
may lead to over fitting during training (Weiss, 2004).   

 
3.3 Sampling 
One of the common approaches to class imbalance problem is sampling. The key idea is to 
pre-process training data to minimize any discrepancy between the classes. In other words, 
sampling methods modify the prior distributions of the majority and minority class in the 
training set to obtain a more balanced number of instances in each class.  
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Basic sampling methods. The two basic methods of reducing class imbalance in training 
data are under-sampling and over-sampling. Under-sampling extracts a smaller set of 
majority instances while preserving all the minority instances. Under-sampling is suitable 
for large-scale applications where the number of majority samples is very large and 
lessening the training instances reduces the training time and storage. However, a drawback 
with under-sampling is that discarding instances may lead to loss of informative majority 
class instances and degrade classifier performance.  
In contrast, over-sampling increases the number of minority instances by replicating them 
(Chawla et al., 2002, Japkowicz and Stephen, 2002). The advantage is that no information is 
lost, all instances are employed. However, over-sampling also has its own drawbacks. By 
creating additional training instances, over-sampling leads to a higher computational cost. 
Moreover, if some of the small class samples contain labeling errors, adding them will 
actually deteriorate the classification performance on the small class (Chawla et al., 2004). 
Lastly, over-sampling duplicates majority instances rather than introducing new data, so it 
does not address the underlying lack of data.  
Despite the fact that sampling methods are widely used for tackling class imbalance 
problems, there is no established way to determine the suitable class distribution for a given 
data set (Weiss and Provost, 2003). The optimal class distribution is dependent on the 
performance measures and varies from one dataset to another. However, effectively 
sampling training instances can improve and overcome some of the weaknesses discussed 
above. Next, we describe some of the advanced sampling methods that are reported to be 
superior to random over-sampling and under-sampling. 
Advanced sampling methods 
In advanced sampling, instances are added or removed adaptively. Advanced sampling 
methods may also combine under-sampling and over-sampling techniques. One of the 
popular over-sampling approaches is SMOTE (Synthetic Minority Over-sampling 
TEchnique), which attempts to add information to the training set by introducing new, non-
replicated minority class examples (Chawla et al., 2002). Generative over-sampling, 
proposed in (Liu et al., 2007), is a variation of SMOTE. It creates new data points by learning 
from available training data. In other words, a probability distribution is selected to model 
the available minority class examples. Then new data points are generated from this model. 
A drawback of this method is that when the number of examples of the minority class is not 
adequate, the probability distribution estimates that model the actual data distributions may 
not be accurate.    
In an under-sampling scheme, instead of eliminating instances randomly, Yu and co-
workers proposed a different method to re-sampling the majority class instances (Yu et al., 
2007).  The authors proposed to use vector quantization, which is a lossy compression 
method, on the majority class to build a set of representative local models and use them for 
training the SVM.  Another informative re-sampling technique is cluster-based under-
sampling (Yen and Lee, 2009). In this technique, clustering is employed for selecting the 
representative training samples to improve the predictive accuracy for the minority class.  
Yen and Lee reported that this approach empirically outperforms other under-sampling 
techniques. Yoon and Kwek also proposed to use clustering to reduce the imbalanced ratio, 
called Class Purity Maximization (CPM) (Yoon and Kwek, 2005). CPM partitions the data 
space into clusters, and filters out regions in the data space that consist of high majority class 

 

purity. Hence, only regions containing minority samples are used to build a predictive 
model. CPM reduces the imbalance ratio and makes the learning task more tractable.  
Active learning is also another solution to class imbalance problem. Ertekin et al. proposed 
using active learning to select informative samples of the training set (Ertekin et al., 2007).  
Similarly to re-sampling, active learning query technique creates balanced training sets at 
the early stages of the learning process. This technique focuses on query instances near the 
classification boundary rather than selecting randomly any instance. Active learning gives 
the learners the ability to select examples adaptively. Furthermore, the risk of losing 
important information is reduced, compared with the under-sampling approach. Active 
learning does not create extra data as in oversampling. 

 
3.4 Ensemble-learning methods 
Another alternative solution for the class imbalance problem is ensemble-learning, in which 
multiple classifiers are trained from the original data and their predictions are combined to 
classify new instances. Boosting (Freund and Schapire 1996) and bagging (Breiman, 1996)  
are two widely known ensemble-based approaches. Boosting algorithms, such as AdaBoost 
(Leskovec and Shawe-Taylor, 2003), improve performance of weak classifiers by forcing the 
learners to focus more on the difficult examples. Boosting algorithms have been adapted to 
address the problem with small classes. At each boosting iteration, the distribution of 
training data is altered by updating the weight associated with each sample. Examples of 
algorithms that use boosting to address the class imbalance problems are SMOTEBoost 
(Chawla et al., 2002), DataBoost-IM (Guo and Viktor, 2004), and cost-sensitive booting (Sun 
et al., 2007).  Both DataBoost-IM and SMOTEBoost improve boosting by combining data 
generation and boosting procedures. To avoid over fitting, SMOTEBoost alters the data 
distribution by adding new minority class samples using the SMOTE algorithm (Chawla et 
al., 2002). 
DataBoot-IM, proposed by (Guo and Viktor, 2004), generates data to balance not only the 
class distribution but also the total weight within the class. Through experiments on 
seventeen data sets, the authors showed that DataBoost method does not sacrifice one class 
over the other but improve the predictive accuracies of both majority and minority classes. 
A cost-sensitive booting algorithm for classification of imbalanced data was proposed in 
(Sun et al., 2007), in which misclassification costs are integrated into AdaBoost learning. The 
AdaBoost weight-update strategy is altered so that the weights of misclassified samples 
from the small class increase at a higher rate compared to those of the prevalent class. The 
weights of correctly classified samples from the small class reduce at a lower rate, compared 
to those from the prevalent class. 
Bagging is one of the ensemble-based meta-learning algorithms. Most current bagging  
methods use a similar learning procedure: re-sampling subsets from a given training set, 
building multiple base classifiers on those subsets, and combining their predictions to make 
final prediction (Breiman, 1996). Several algorithms based on a variety of sampling 
strategies are proposed, for example roughly balanced (RB) bagging (Hido and Kashima, 
2008), underBagging (Liu et al., 2006), overBagging and SMOTEBagging (Wang and Yao, 
2009). In underBagging, each subset from the training set is created by under-sampling the 
majority classes randomly to build a classifier. RB bagging is a variation to underBagging: it 
makes use of both minority samples and under-sampling majority samples. However, RB 
bagging uses an effective under-sampling technique based on negative binomial 
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Basic sampling methods. The two basic methods of reducing class imbalance in training 
data are under-sampling and over-sampling. Under-sampling extracts a smaller set of 
majority instances while preserving all the minority instances. Under-sampling is suitable 
for large-scale applications where the number of majority samples is very large and 
lessening the training instances reduces the training time and storage. However, a drawback 
with under-sampling is that discarding instances may lead to loss of informative majority 
class instances and degrade classifier performance.  
In contrast, over-sampling increases the number of minority instances by replicating them 
(Chawla et al., 2002, Japkowicz and Stephen, 2002). The advantage is that no information is 
lost, all instances are employed. However, over-sampling also has its own drawbacks. By 
creating additional training instances, over-sampling leads to a higher computational cost. 
Moreover, if some of the small class samples contain labeling errors, adding them will 
actually deteriorate the classification performance on the small class (Chawla et al., 2004). 
Lastly, over-sampling duplicates majority instances rather than introducing new data, so it 
does not address the underlying lack of data.  
Despite the fact that sampling methods are widely used for tackling class imbalance 
problems, there is no established way to determine the suitable class distribution for a given 
data set (Weiss and Provost, 2003). The optimal class distribution is dependent on the 
performance measures and varies from one dataset to another. However, effectively 
sampling training instances can improve and overcome some of the weaknesses discussed 
above. Next, we describe some of the advanced sampling methods that are reported to be 
superior to random over-sampling and under-sampling. 
Advanced sampling methods 
In advanced sampling, instances are added or removed adaptively. Advanced sampling 
methods may also combine under-sampling and over-sampling techniques. One of the 
popular over-sampling approaches is SMOTE (Synthetic Minority Over-sampling 
TEchnique), which attempts to add information to the training set by introducing new, non-
replicated minority class examples (Chawla et al., 2002). Generative over-sampling, 
proposed in (Liu et al., 2007), is a variation of SMOTE. It creates new data points by learning 
from available training data. In other words, a probability distribution is selected to model 
the available minority class examples. Then new data points are generated from this model. 
A drawback of this method is that when the number of examples of the minority class is not 
adequate, the probability distribution estimates that model the actual data distributions may 
not be accurate.    
In an under-sampling scheme, instead of eliminating instances randomly, Yu and co-
workers proposed a different method to re-sampling the majority class instances (Yu et al., 
2007).  The authors proposed to use vector quantization, which is a lossy compression 
method, on the majority class to build a set of representative local models and use them for 
training the SVM.  Another informative re-sampling technique is cluster-based under-
sampling (Yen and Lee, 2009). In this technique, clustering is employed for selecting the 
representative training samples to improve the predictive accuracy for the minority class.  
Yen and Lee reported that this approach empirically outperforms other under-sampling 
techniques. Yoon and Kwek also proposed to use clustering to reduce the imbalanced ratio, 
called Class Purity Maximization (CPM) (Yoon and Kwek, 2005). CPM partitions the data 
space into clusters, and filters out regions in the data space that consist of high majority class 

 

purity. Hence, only regions containing minority samples are used to build a predictive 
model. CPM reduces the imbalance ratio and makes the learning task more tractable.  
Active learning is also another solution to class imbalance problem. Ertekin et al. proposed 
using active learning to select informative samples of the training set (Ertekin et al., 2007).  
Similarly to re-sampling, active learning query technique creates balanced training sets at 
the early stages of the learning process. This technique focuses on query instances near the 
classification boundary rather than selecting randomly any instance. Active learning gives 
the learners the ability to select examples adaptively. Furthermore, the risk of losing 
important information is reduced, compared with the under-sampling approach. Active 
learning does not create extra data as in oversampling. 

 
3.4 Ensemble-learning methods 
Another alternative solution for the class imbalance problem is ensemble-learning, in which 
multiple classifiers are trained from the original data and their predictions are combined to 
classify new instances. Boosting (Freund and Schapire 1996) and bagging (Breiman, 1996)  
are two widely known ensemble-based approaches. Boosting algorithms, such as AdaBoost 
(Leskovec and Shawe-Taylor, 2003), improve performance of weak classifiers by forcing the 
learners to focus more on the difficult examples. Boosting algorithms have been adapted to 
address the problem with small classes. At each boosting iteration, the distribution of 
training data is altered by updating the weight associated with each sample. Examples of 
algorithms that use boosting to address the class imbalance problems are SMOTEBoost 
(Chawla et al., 2002), DataBoost-IM (Guo and Viktor, 2004), and cost-sensitive booting (Sun 
et al., 2007).  Both DataBoost-IM and SMOTEBoost improve boosting by combining data 
generation and boosting procedures. To avoid over fitting, SMOTEBoost alters the data 
distribution by adding new minority class samples using the SMOTE algorithm (Chawla et 
al., 2002). 
DataBoot-IM, proposed by (Guo and Viktor, 2004), generates data to balance not only the 
class distribution but also the total weight within the class. Through experiments on 
seventeen data sets, the authors showed that DataBoost method does not sacrifice one class 
over the other but improve the predictive accuracies of both majority and minority classes. 
A cost-sensitive booting algorithm for classification of imbalanced data was proposed in 
(Sun et al., 2007), in which misclassification costs are integrated into AdaBoost learning. The 
AdaBoost weight-update strategy is altered so that the weights of misclassified samples 
from the small class increase at a higher rate compared to those of the prevalent class. The 
weights of correctly classified samples from the small class reduce at a lower rate, compared 
to those from the prevalent class. 
Bagging is one of the ensemble-based meta-learning algorithms. Most current bagging  
methods use a similar learning procedure: re-sampling subsets from a given training set, 
building multiple base classifiers on those subsets, and combining their predictions to make 
final prediction (Breiman, 1996). Several algorithms based on a variety of sampling 
strategies are proposed, for example roughly balanced (RB) bagging (Hido and Kashima, 
2008), underBagging (Liu et al., 2006), overBagging and SMOTEBagging (Wang and Yao, 
2009). In underBagging, each subset from the training set is created by under-sampling the 
majority classes randomly to build a classifier. RB bagging is a variation to underBagging: it 
makes use of both minority samples and under-sampling majority samples. However, RB 
bagging uses an effective under-sampling technique based on negative binomial 
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distributions.  In comparison, overBagging forms subsets simply by over-sampling the 
minority classes randomly. SMOTEBagging (Wang and Yao, 2009) differs from 
underBagging and overBagging in that it involves generating synthetic instances during 
subset construction. The main advantage of bagging is that it maintains the class 
distribution of the training set on which bagging is applied. However, bagging relies on a 
simple strategy that is very limited for dealing with class imbalance problem, except from 
changing the bag size and sampling step.  

 
4. Classifier performance measures 

Evaluation metrics play an important role in machine learning. They are used to evaluate 
and guide the learning algorithms.  If the choices of metrics do not value the minority class, 
then the learning algorithms will not be able to handle the imbalance problem very well. 
The commonly used metric for these purposes is the overall classification rate (i.e. accuracy). 
However, on an imbalanced data set, the overall classification rate is no longer a suitable 
metric, since the small class has less effect on accuracy as compared to the prevalent class. 
Weiss and Provost conducted an empirical study on twenty-six data sets, and showed that 
using the overall accuracy measure leads to poor performance for the minority class (Weiss 
and Provost, 2003). Therefore, other metrics have been developed to assess classifiers 
performance for imbalanced data sets. A variety of common metrics are defined based on 
the confusion matrix (also called a contingency table). A two-by-two confusion matrix is 
shown in Table 1. 

  True class 

  Positive Negative 

Prediction 
class 

Positive True Positives 
(TP) 

False Positives 
(FP) 

Negative False Negatives 
(FN) 

True Negatives 
(TN) 

Table 1. Confusion matrix for a two-class classification task. 
 
Among the various evaluation criteria, the measures that are most relevant to imbalanced 
data are precision, recall, F-measure, sensitivity, specificity, geometric mean, ROC curve, 
AUC, and precision-recall curve. These metrics share a commonality in that they are all 
class-independent measures. 
Precision, recall and F-measure.  These metrics arise from the fields of information retrieval. 
They are used when performance of positive class (the minority class) is considered, since 
both precision and recall are defined with respect to the positive class.  

 Precision of a classifier is the percentage of positive predictions made by the 
classifier that are correct. 

 
Precison = TP

TP + FP
 

 Recall is the percentage of true positive patterns that are correctly detected by the 
classifier.  

 

 
Recall = TP

TP + FN
 

 F-measure is defined as the harmonic mean of recall and precision (Fawcett, 2006). 
A high F-measure value signifies a high value for both precision and recall.  

 
F-measure = 2   Recall   Precision

Recall + Precision
  

Sensitivity, Specificity and Geometric mean.  These measures are utilized when 
performance of both classes is concerned and expected to be high simultaneously. The 
geometric mean (G-mean) metric was suggested in (Kubat and Matwin, 1997) and has been 
used by several researchers for evaluating classifiers on imbalanced data sets (Ertekin et al., 
2007, Karagiannopoulos et al., 2007, Su and Hsiao, 2007). G-mean indicates the balance 
between classification performances on the majority and minority class. This metric takes 
into account both the sensitivity, (the accuracy on the positive examples) and the specificity 
(the accuracy on the negative examples): 

 Sensitivity = Recall   

 
Specificity = 1   FP

Total Negatives
 

 G-means  Sensitivity   Specificity  
 
ROC and AUC. The receiver operating characteristic (ROC) and the area under the ROC 
curve (AUC) are the two most common measures for assessing the overall classification 
performance (Weiss, 2004). The ROC is a graph showing the relationship between benefits 
(correct detection rate or true positive rate) and costs (false detection rate or false positive 
rate) as the decision threshold varies. The ROC curve shows that for any classifier, the true 
positive rate cannot increase without also increasing the false positive rate. The true positive 
rate is the same as recall, and the false detection rate is equal to 

 
FDR = FP

Total Negatives
 . 

 
A ROC curve gives a visual indication if a classifier is superior to another classifier, over a 
wide range of operating points. However, a single metric is sometimes preferred when 
comparing different classifiers. The area under the ROC curve (AUC) is employed to 
summarize the performance of a classifier into a single metric. The AUC does not place 
more weight on one class over the another. The larger the AUC, the better is the classifier 
performance.   
Precision-Recall (PR) curve. Precision-recall curve is used in information retrieval in a 
similar fashion as the ROC curve. The PR curve depicts the relationship between precision 
and recall as the classification threshold varies.  
Apart from the above evaluation metrics, a number of new evaluation metrics have been 
proposed to take small class size into account when evaluating the end result.  For 
imbalanced data sets, not only the class distribution but also the misclassification costs are 
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distributions.  In comparison, overBagging forms subsets simply by over-sampling the 
minority classes randomly. SMOTEBagging (Wang and Yao, 2009) differs from 
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  True class 

  Positive Negative 

Prediction 
class 
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(TP) 

False Positives 
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Negative False Negatives 
(FN) 

True Negatives 
(TN) 

Table 1. Confusion matrix for a two-class classification task. 
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skewed. Hence, Weng and Poon introduced a new metric, weighted-AUC, that can take into 
account the cost bias when evaluating classifier performance (Weng and Poon, 2008). Some 
other authors had suggested that the ROC curve alone is not sufficient, and the effect of 
imbalance class distribution should be analyzed when comparing different learning 
algorithms (Landgrebe et al., 2004). Therefore, they proposed to use costs that are dependent 
on class distribution such as positive fraction together with ROC curve. The positive fraction 
is defined as the fraction of objects that are positively labeled.  
Other metrics such as rank metrics, rank prop and soft ranks are proposed for training and 
model selection (Caruanan, 2000). These metrics prevent learners from mainly optimizing 
classification performance on the dominant class. Comparisons of several evaluation metrics 
were conducted by Liu and Shriberg and found that a single measure such as precision, 
recall, F-measure, sensitivity, specificity, G-mean or AUC provide limited information, since 
each measure is designed to assess one particular property or decision point (Liu and 
Shriberg, 2007). Hence, to analyze and compare learning algorithms involving class 
imbalance, it is necessary to combine different metrics and performance curves such as ROC 
and PR.   

 
5. The proposed learning approach for imbalanced data set 

In this chapter, we introduce a new learning approach that aim to tackling the class 
imbalance problem. In our approach, we first propose a new under-sampling method based 
on clustering. Here, a clustering technique is employed to partition the training instances of 
each class independently into a smaller set of training prototype patterns. Then a weight is 
assigned to each training prototype to address the class imbalance problem.. The weighting 
strategy is introduced in the cost function such that the class distributions become roughly 
even. In the extreme imbalance cases, where the number of minority instances is small, we 
apply unsupervised learning to resample only the majority instances, and select cluster 
centers as prototype samples, and keep all the small class samples. 
The proposed learning approach, which combines unsupervised and supervised learning to 
deal with the class imbalance problem, can be applied on any classifier model. In this 
chapter, we apply the proposed learning approach to train feed-forward neural networks, 
which is a classification model that has been used extensively in pattern recognition. Based 
on the proposed learning approach, we derive and analyze the resilient back-propagation 
training algorithm for feed-forward neural networks. The algorithm is implemented and 
tested on some benchmark data sets.  

 
5.1 Under-sampling based on clustering 
Suppose that a multi-layer feed-forward neural network is to be trained on a given training 
data set D of size M 

  

where  is the i-th input pattern and  is the corresponding desired output vector. Let  
be a vector consisting of all free network parameters, including weights and biases. The 
objective of supervised learning is to find a vector  that minimizes a cost function. A 
common objective function is the mean square error (MSE), defined as  

 

, (1) 

where N is the number of neurons in the output layer, and  is the network output. 
 
When the numbers of training instances of different classes are uneven, the contribution 
from each class to the objective function is not equal. In a two-class problem, the majority 
class has a significant effect in the optimization process. Hence, we propose a more efficient 
algorithm for training feed-forward neural networks. In this approach, a pre-processing step 
is introduced to obtain a more balanced number of samples in each class. To this end, 
unsupervised clustering is applied to training samples to extract cluster centers that yield a 
compact representation of the majority classes.  
Here, clustering is applied independently to each class. Therefore, each cluster contains 
samples from the same class, and each class can have several clusters. We deal with 
imbalanced data sets by assigning the same number of clusters to each class. When the 
number of minority samples is small, we only apply unsupervised clustering to resample 
the majority instances, and retain all the minority samples. After clustering, the data set is 
reduced to K exemplars; each is represented by a cluster centroid  and cluster size . Here, 
the cluster size  is simply the number of training samples in the cluster. Next, we present 
the resilient back-propagation training algorithm that integrates the cluster centroids and 
sizes into the learning rule. 

 
5.2 Modified training algorithm 

In the supervised learning stage, training samples are replaced by a set of cluster centroids, 
which is then presented to the network along with the target outputs. To compensate for the 
information lost during the clustering process, weights for each class are introduced in the 
cost function, which is modified as follows. 

 , (2) 

where  is the i-th element of the target or desired output vector , and  is the cluster 
weight. The cluster weight is defined as follow, 

 (3) 

where  is number of classes in the training set,  is the size of class i, and  is the 
degree of membership of cluster k in class i: 

     (4) 

Numerous optimization algorithms for minimizing E can be derived to train feed-forward 
neural networks, such as gradient descent (GD), gradient descent with momentum and 
variable learning rate (GDMV), resilient back-propagation (RPROP), and Levenberg-
Marwquardt (LM). We have implemented and analyzed these algorithms based on our 
proposed learning approach (Nguyen et al., 2008). In this chapter, we only perform the 
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skewed. Hence, Weng and Poon introduced a new metric, weighted-AUC, that can take into 
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on the proposed learning approach, we derive and analyze the resilient back-propagation 
training algorithm for feed-forward neural networks. The algorithm is implemented and 
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be a vector consisting of all free network parameters, including weights and biases. The 
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common objective function is the mean square error (MSE), defined as  
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class has a significant effect in the optimization process. Hence, we propose a more efficient 
algorithm for training feed-forward neural networks. In this approach, a pre-processing step 
is introduced to obtain a more balanced number of samples in each class. To this end, 
unsupervised clustering is applied to training samples to extract cluster centers that yield a 
compact representation of the majority classes.  
Here, clustering is applied independently to each class. Therefore, each cluster contains 
samples from the same class, and each class can have several clusters. We deal with 
imbalanced data sets by assigning the same number of clusters to each class. When the 
number of minority samples is small, we only apply unsupervised clustering to resample 
the majority instances, and retain all the minority samples. After clustering, the data set is 
reduced to K exemplars; each is represented by a cluster centroid  and cluster size . Here, 
the cluster size  is simply the number of training samples in the cluster. Next, we present 
the resilient back-propagation training algorithm that integrates the cluster centroids and 
sizes into the learning rule. 

 
5.2 Modified training algorithm 

In the supervised learning stage, training samples are replaced by a set of cluster centroids, 
which is then presented to the network along with the target outputs. To compensate for the 
information lost during the clustering process, weights for each class are introduced in the 
cost function, which is modified as follows. 
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where  is the i-th element of the target or desired output vector , and  is the cluster 
weight. The cluster weight is defined as follow, 
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where  is number of classes in the training set,  is the size of class i, and  is the 
degree of membership of cluster k in class i: 
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Numerous optimization algorithms for minimizing E can be derived to train feed-forward 
neural networks, such as gradient descent (GD), gradient descent with momentum and 
variable learning rate (GDMV), resilient back-propagation (RPROP), and Levenberg-
Marwquardt (LM). We have implemented and analyzed these algorithms based on our 
proposed learning approach (Nguyen et al., 2008). In this chapter, we only perform the 



Pattern Recognition204

 

analysis on the resilient back-propagation method (RPROP) to train the feed-forward neural 
network, refer to (Nguyen et al., 2008) for other training methods. The RPROP training 
algorithm updates network weights and biases according to . 
Because details of the standard RPROP algorithms can be found in  (Riedmiller and Braun, 
1993), we only summarize its main characteristics here. 

Resilient back-propagation: Weight update depends only on the sign of the gradient 

 where    i(t)  is on adaptive step specific to weight . 

 
6. Experiments  

In this section, we apply the proposed learning approach to four benchmark problems, 
taken from UCI database repository (Asuncion and Newman, 2007). The benchmarks used 
are the liver disorder, hepatitis, Wisconsin diagnostic breast cancer, and Pima Indian 
diabetes data sets. These data sets are summarized in Table 2. Our aim is to study the 
generalization capability of the proposed approach in tackling the class imbalance problem, 
compared to the standard approach for training feed-forward neural networks.  
The comparison is based on a five-fold cross validation in the classification tasks. For each 
fold, the data set is partitioned into 60% for training set, 20% for validation set and 20% for 
test set. Several networks are trained and the best performing network on the validation set 
is selected to be evaluated on the test set. The average classification rate on the test set, over 
the five folds, is used as an estimate of generalization performance. Since the overall 
classification rate is not the most suitable tool for imbalanced data, other measures are also 
used, including the geometric mean and F-measure. 

Data sets Size Features Class 
distribution 

Imbalanced ratio 
(Majority/Minority) 

Liver 345 6 145/200 1.38 
Hepatitis 155 19 32/123 3.84 
Pima diabetes 768 8 268/500 1.87 
Wisconsin 
Breast cancer 699 10 241/458 1.90 

Table 2. Summary of data sets used in the experiments. 
 
The comparison results of different training algorithms over all data sets are shown in Table 
3. The modified training (Mod-RPROP) and the standard training (RPROP) achieve almost 
similar classification rates (CRs). For examples, in the hepatitis data set, CRs of RPROP and 
Mod-RPROP are 92.00% and 92.67%, respectively. However, the modified algorithm has 
higher values of G-mean and F-measure than its counterpart. In the hepatitis data set, the G-
mean values of RPROP and Mod-RPROP are 90.80% and 91.65%, and the F-measure value 
of RPROP and Mod-RPROP are 80.48% and 82.57%, respectively. This finding suggests that 
the modified training algorithm exhibits good classification rates for all classes.  
Fig. 2 shows the classification rates of each class over all data sets. The classification rates of 
positive class (or the sensitivity) as well as classification rates of negative class (or the 
specificity) are increased. For example, the sensitivity of Mod-RPROP increases by 1.38% in 

 

liver data set, and 1.13% in Pima data set, compared to the standard RPROP. In terms of 
specificity, the Mod-RPROP maintains the accuracies and in some occasions improves them.  
 

Data sets 
Overall CR F-measure G-means 

RPROP Mod-
RPROP RPROP Mod-

RPROP RPROP Mod-
RPROP 

Liver 73.91 74.78 66.53 67.66 70.80 71.79 
Hepatitis 92.00 92.67 80.48 82.57 90.80 91.65 
Pima 
Diabetes 80.65 82.22 70.70 72.11 77.60 78.38 

Breast Cancer 98.13 98.27 97.35 97.56 98.18 98.39 
Table 3. Comparision of standard and reduced training algorithms on benchmark data sets. 
 

Data sets 
Specificity  Sensitivity 

RPROP Mod-
RPROP RPROP Mod-

RPROP 
Liver 79.00 79.50 63.45 64.83 
Hepatitis 88.33 90.00 93.33 93.33 
Pima 
Diabetes 79.40 79.80 75.85 76.98 

Breast Cancer 98.02 98.02 98.33 98.75 
Table 4. Classification rates of each class on benchmark data sets. 
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Fig. 2. Comparison of the standard RPROP and Mod-RPROP trainging algorithms on four 
data sets in terms of (a) classification rates of negative class and (b) classification rates of 
positive class.  

 
7. Conclusion 

In this chapter, we discussed the problems that arise when learning with imbalanced data 
sets, including between classes imbalance, within-class imbalance, the lack of data, and 
concept complexity. Then we reviewed various methods and techniques that address the 
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analysis on the resilient back-propagation method (RPROP) to train the feed-forward neural 
network, refer to (Nguyen et al., 2008) for other training methods. The RPROP training 
algorithm updates network weights and biases according to . 
Because details of the standard RPROP algorithms can be found in  (Riedmiller and Braun, 
1993), we only summarize its main characteristics here. 

Resilient back-propagation: Weight update depends only on the sign of the gradient 
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Fig. 2. Comparison of the standard RPROP and Mod-RPROP trainging algorithms on four 
data sets in terms of (a) classification rates of negative class and (b) classification rates of 
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7. Conclusion 

In this chapter, we discussed the problems that arise when learning with imbalanced data 
sets, including between classes imbalance, within-class imbalance, the lack of data, and 
concept complexity. Then we reviewed various methods and techniques that address the 
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class imbalance problems, both at the data level (re-sampling and combinations) and the 
algorithmic level (recognition-based approach, cost-sensitive learning and boosting). We 
also discussed a number of evaluation metrics that have been developed to assess classifier 
performance on imbalanced data sets. Then we presented a new approach that combines 
unsupervised clustering and supervised learning to handle imbalanced data set and applied 
this learning approach for training feed-forward neural networks. The proposed approach 
can be applied to existing training algorithms. Experimental results show that the proposed 
approach can effectively improve the classification accuracy of the minority classes, while 
maintaining the overall classification performance. 

 
8. References 

Alejo, R., García, V., Sotoca, J., Mollineda, R. & Sánchez, J. (2007). Improving the 
Performance of the RBF Neural Networks Trained with Imbalanced Samples, In 
Proceedings of Computational and Ambient Intelligence, 9th International Work-
Conference on Artificial Neural Networks, pp. 162-169, San Sebastian, Spain, 2007.  

Asuncion, A. & Newman, D. J. (2007) UCI Machine Learning Repository. 
Breiman, L. (1996) Bagging Predictors. Machine learning, 24, 123-140. 
Caruanan, R. (2000). Learning from Imbalanced Data: Rank Metrics and Extra Tasks, The 

AAAI Workshop on Learning from Imbalanced Data Sets, pp. 51-57, 2000.  
Chawla, N., Japkowicz, N. & Kotez, A. (2004) Editorial: Special Issue on Learning from 

Imbalanced Data. Sigkdd Explorations, 6, 1-6. 
Chawla, N. V., Bowyer, K., Hall, L. & Kegelmeyer, W. P. (2002) SMOTE: Synthetic Minority 

Over-sampling TEchnique. Artificial Intelligence Research, 16, 321-357. 
Chong, E. K. P. & Zak, S. H. (1996) An Introduction to Optimization, New York, John Wiley 

and Sons, Inc. 
Eavis, T. & Japkowicz, N. (2000). A Recognition-Based Alternative to Discrimination-Based 

Multi-layer Perceptrons, The 13th Biennial Conference of the Canadian Society on 
Computational Studies of Intelligence, pp. 280-292, London, UK, 2000, Springer-
Verlag.  

Elkan, C. (2001). The Foundations of Cost-sensitive Learning, In Proceedings of the Seventeenth 
International Joint Conference on Artificial Intelligence, pp. 73-978, 2001.  

Ertekin, S., Huang, J., Bottou, L. & Giles, C. L. (2007). Learning on the Border: Active 
Learning in Imbalanced Data Classification, In Proceedings of the Sixteenth ACM 
Conference on Information and Knowledge Management, pp. 127-136, Lisbon, Portugal, 
2007, ACM Press.  

Fawcett, T. (2006) An Introduction to ROC Analysis. Pattern Recognition Letters, 27, 861-874. 
Guo, H. & Viktor, H. L. (2004) Learning from Imbalanced Data Dets with Boosting and Data 

Generation: the DataBoost-IM Approach. ACM SIGKDD Explorations Newsletter, 6, 
30-39. 

Hagan, M. T. & Menhaj, M. B. (1994) Training Feedforward Networks with the Marquardt 
Algorithm. IEEE Transactions on Neural Networks, 5, 989-993. 

Hido, S. & Kashima, H. (2008). Roughly Balanced Bagging for Imbalanced Data., In 
Proceedings of the SIAM International Conference on Data Mining, pp. 143-152, Atlanta, 
Georgia, USA, 2008.  

 

Holte, R., Acker, L. & Porter, B. (1989). Concept Learning and the Problem of Small 
Disjuncts, In Proceedings of the Eleventh International Joint Conference on Artificial 
Intelligence, pp., Austin, TX, USA, 1989, Morgan Kaufmann.  

Japkowicz, N. (2001). Concept-Learning in the Presence of Between-Class and Within-Class 
Imbalances, In Proceedings of the 14th Biennial Conference of the Canadian Society on 
Computational Studies of Intelligence, pp., London, UK, 2001, Springer-Verlag.  

Japkowicz, N., Mayers, C. & Gluck, M. (1995). A Novelty Detection Approach to 
Classification In Proceedings of the Fourteenth Joint Conference on Artificial Intelligence, 
pp. 518-523, 1995.  

Japkowicz, N. & Stephen, S. (2002) The Class Imbalance Problem: A Systematic Study. 
Intelligent Data Analysis, 6, 429-449. 

Karagiannopoulos, M. G., Anyfantis, D. S., Kotsiantis, S. B. & Pintelas, P. E. (2007). Local 
Cost Sensitive Learning for Handling Imbalanced Data Sets, In Proceedings of 
Mediterranean Conference on Control and Automation, pp. 1-6, 2007.  

Kubat, M. & Matwin, S. (1997). Addressing the Curse of Imbalanced Training Set: One-sides 
Selection, In Proceedings of the Fourteenth International Conference on Machine 
Learning, pp. 179-186, 1997, Morgan Kaufmann.  

Landgrebe, T., Pacli'k, P., Tax, D. J. M., Verzakov, S. & Duin, R. P. W. (2004). Cost-based 
Classifier Evaluation for Imbalanced Problems, In Proceedings of The 10th 
International Workshop on Structural and Syntactic Pattern Recognition and the 5th 
International Workshop on Statistical Techniques in Pattern Recognition, pp. 762-770, 
Lisbon, Portugal, 2004, Springer Verlag, Berlin.  

Leskovec, J. & Shawe-Taylor, J. (2003). Linear Programming Boosting for Uneven Datasets, 
In Proceedings of The twentieth International Conference on Machine Learning pp. 456-
463, 2003, AAI Press.  

Ling, C. X. & Li, C. (2004). Decision Trees with Minimal Costs, In Proceedings of the Twenty-
first International Conference on Machine Learning, pp. 69, Banff, Alberta, Canada, 
2004, ACM.  

Liu, A., Ghosh, J. & Martin, C. (2007). Generative Oversampling for Mining Imbalanced 
Datasets, In Proceedings of The 2007 International Conference on Data Mining, pp., Las 
Vegas, Nevada, USA, 2007, CSREA Press.  

Liu, Y., Chawla, N. V., Harper, M., Shriberg, E. & Stolcke , A. (2006) A Study in Machine 
Learning from Imbalanced Data for Sentence Boundary Detection in Speech. 
Computer Speech and Language, 20, 468-494. 

Liu, Y. & Shriberg, E. (2007). Comparing Evaluation Metrics for Sentence Boundary 
Detection, In Proceedings of IEEE International Conference on Acoustics, Speech and 
Signal Processing, pp. 185-188, 2007.  

Murphey, Y. L., Wang, H., Ou, G. & Feldkamp, L. (2007). OAHO: and Effective Algorithm 
for Multi-class Learning from Imbalanced Data, Proceedings of the International Joint 
Conference on Neural Networks, pp. 406-411, Orlando, Florida, USA, 2007, IEEE.  

Nguyen, C. & Ho, T. (2005). An Imbalanced Data Rule Learner, In Proceedings of The 9th 
European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 
617-624, Porto, Portugal, 2005.  

Nguyen, G. H., Bouzerdoum, A. & Phung, S. L. (2008). A Supervised Learning Approach for 
Imbalanced Data Sets, In Proceeding of International Conference on Pattern Recognition, 
pp. 1-4, Florida, USA, 2008.  



Learning Pattern Classification Tasks with Imbalanced Data Sets 207

 

class imbalance problems, both at the data level (re-sampling and combinations) and the 
algorithmic level (recognition-based approach, cost-sensitive learning and boosting). We 
also discussed a number of evaluation metrics that have been developed to assess classifier 
performance on imbalanced data sets. Then we presented a new approach that combines 
unsupervised clustering and supervised learning to handle imbalanced data set and applied 
this learning approach for training feed-forward neural networks. The proposed approach 
can be applied to existing training algorithms. Experimental results show that the proposed 
approach can effectively improve the classification accuracy of the minority classes, while 
maintaining the overall classification performance. 
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1. Introduction 
¶ 
Kernel-based methods, such as SVM classifier, have been proven to have more 
predominance of generalization and better performance of classification than traditional 
methods. As the main point of these technologies, kernel functions can increase the 
computational power of traditional linear learning machines by projecting the data into a 
high dimensional feature space, and can transform a non-linear problem into a linear 
problem (John, S.T. & Nello, C. 2004). 
Although kernel functions have been widely used in pattern recognition, they have some 
weaknesses. Traditional kernel functions only accept one-dimensional vector as their input 
data. But some real-world data such as image data are often two-dimensional matrices, 
which can not be directly accepted by the kernel functions unless doing some preprocessing 
work. One way is to abstract features. One or more features that can denote some 
information of the image object are combined into a one-dimensional vector, and then a 
two-dimensional problem becomes a simple one-dimensional problem. This is the common 
way to do with the image objects. There are many categories of ways to abstract features 
(Sergios, T. & Konstantinos, K., 2006), including invariant moment, PCA, ICA, statistic 
analysis, texture analysis, shape analysis, etc, which are not introduced in detail in this 
paper. But every feature can only be efficient to some special object. How to select the 
appropriate ones is always a difficult problem. The other way is to decrease the dimensions 
of data. The simplest method is to treat the image data as a one-dimensional vector. C. 
Kaynak (1995) divides 32×32 bitmaps of handwritten digits into nonoverlapping blocks of 4
×4 and counts the number of on-pixels in each block. Then he gets a vector of 64 elements 
and uses it as the feature vector. This way can only be efficient with data of small size. In 
fact, many statistic analysis approach of the first way do the same thing. They treat the 
image as a set of non-relevant pixels and the structural information of two-dimensional data 
are lost. 
In this chapter, we propose a new kind of kernel function that can directly accept image data 
as input data. Section 2 introduces the traditional RBF kernel function in brief and educes 
our idea. In Section 3, we describe our kernel function in detail, which is based on the RBF 
kernel function. In Section 4, the new kernel function is compared with the old approaches 
on UCI Optical Handwritten Digits dataset and COIL dataset. 

¶ 
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2. Traditional Kernel Functions 
¶ 

Our idea comes from the traditional kernel Functions. First, let us see the three types of old 
ones which are generally used. 
Polynomial: 
¶ 

d
poly rvuvuK )(),( +⋅= σ  (1) 

  

RBF: 
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Sigmoid: 
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Here, u  and v  are one-dimensional vectors, σ  and r  are parameters. Out purpose is to 
construct a new form of kernel function where u  and v  can be two-dimensional data.  
In (1) and (3), the operation between u  and v  is inner product, which can not operate on 
image data generally. And we don’t pay attention to them. 

In (2), the operation is vu − , which always indicates the distance between two vectors. 

And we know that distance between two objects can be considered as the similarity of them. 
So we get an idea that if the distance or similarity of two image data can be calculated, we 

can use it to replace the vu −  and the new RBF kernel function can be written as (4). 

RBF2D: 
¶ 
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Here, A and B are two-dimensional data of target in images, and ),( BAd  is the distance or 
similarity of them. RBF2D is the new kernel function proposed in this paper that can accept 
image data. 
The particular expression of RBF2D and ),( BAd  will be introduced in Section 3. 

  
3. RBF2D 
  

Note that in (4) A and B only appear in the form of ),( BAd , so before we get the 

expression of RBF2D, we should get ),( BAd  at first. 
  

3.1 Distance between Image Data 
Image data are in the form of matrix. The distance between two matrices can be computed 
using Frobenius Norm (Horn R.A. & Johnson C.R., 1985) generally.  
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Here, A and B are NM ×  matrices. And From the formula, we can see that, all elements in 
A and B are out-of-order, only statistical information is reserved. There is one serious 
problem with this method. Unlike in a vector or a data set, an element in a matrix has 
relation to not only the one on the left side and the one on the right side, but also those 
above it and below it, even those in other directions, as be shown in Figure 1. 
¶ 

p0 p2p1

p4

p3 p6p5

p7 p8

 
Fig. 1. An element p0 in a matrix and its neighbors p1~p8 
  

Especially for image data, most targets are objects of some shape or structure and cover a 
region in the image. Structural information is the same important as the statistical one. So 
we should define a new form of  ),( BAd  which involves structural information. 
Zhou Wang (2004) proposes SSIM. He uses correlation between the two images to quantify 
the structural similarity. Luminance, contrast, and structure information are included in 
SSIM. The result shows that SSIM is efficient in quantifying the visibility of differences 
between a distorted image and a reference image. But the image is treated as a whole entity 
in SSIM. This will make the algorithm unstable in the following conditions. 
¶ 

  
Fig. 2. The same object under different luminance conditions 
¶ 
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The two images in Figure 2 are the same object under different luminance conditions. 
Because the object has an anomaly surface, they look different in luminance, and SSIM 
doesn’t work. For solving this problem, we propose our method which is block-based. 
Although the two images look different in every block at the corresponding position (in 
Figure 3), we can increase their similarity after some simple preprocessing work, which will 
not work on the whole image. 
¶ 

  
Fig. 3. The same object under different luminance conditions with blocks 
¶ 
So, out definition of ),( BAd  based on blocks has the following form, in (6). 
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Here, nA  and nB  are the data matrices of the nth  block. nω  is the weight of 
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which can involve the luminance, structure information. This is the main part of our work, 
and we will discuss it in the following sections. blockN  is the count of the blocks.  

The expression is similar to vu − , because it will be used in RBF2D which is based on 

RBF kernel function (in Equation 7). We make 
2

Fnn BA −  the main part of it and other 

information as the weight. 
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Weight nω  is the combination of luminance difference weight, content difference weight, 
self complexity weight, and position weight. The Following sections will discuss each part 
of ),( BAd  in detail. 

3.1.1 
2

Fnn BA −  

  
This part has the same computational formula (in Equation 5) as vu − . For image targets, 

it indicates the energy difference and it is the base of our distance measure. 

 
3.1.2 Luminance Difference Weight.  
We suppose nC  is the luminance difference of nA  and nB . 
¶ 
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Then we suppose that if the two images are similar, their luminance difference will be a 
smaller value than that of two images which are not alike. The mean value of nC   
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¶ 

can estimate the degree of how much their luminance difference is. If they are equal, 
0=cµ ; else, 0≠cµ . The bigger the absolute value of cµ  is, the much difference the two 

images have. Then the weight lumω  is a function of cµ .  
As a weight function, we hope that its value is between 0 and 1, and when the two images 
have the same luminance level, its value is 0. So we give the following expression 
  

)exp(1
1C
c

lum
µ

ω −−=
 

(10) 

  

where the constant 1C  is included to avoid lumω  increasing too fast. For 8-bit grayscale or 

24-bit true-color images, the maximum of each pixel is 255, we choose =1C 10~20 which is 
calculated using the image data sets on internet. 
 
3.1.3 Content Difference Weight.  
For images, content is more important than luminance. The two images in Figure 2 have 
different luminance level, but obviously they are the same object. We consider that the 
luminance difference between two images of the same object will be less complex than that 
of different objects. We suppose nC  is the luminance difference of nA  and nB . And the 

standard deviation of nC  
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can estimate the degree of how much their luminance difference is. If they are equal, 
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where the constant 1C  is included to avoid lumω  increasing too fast. For 8-bit grayscale or 

24-bit true-color images, the maximum of each pixel is 255, we choose =1C 10~20 which is 
calculated using the image data sets on internet. 
 
3.1.3 Content Difference Weight.  
For images, content is more important than luminance. The two images in Figure 2 have 
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standard deviation of nC  
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can estimate the degree of how much the difference is.  
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where the constant 2C  can avoid conω  increasing too fast. For 8-bit grayscale or 24-bit true-

color images, we choose =2C 50~70 which is calculated using the image data sets on 
internet. 
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Where 
nAσ  and 

nBσ  can estimate their complexity, and 3C  is same as 1C , 2C . We choose 

=3C 40~60 for 8-bit grayscale or 24-bit true-color images. 

  
3.1.5 Position Weight.  
First, We think that the position of each block has relation to its contribution for the distance 

),( BAd . The block close to the center will have greater weight. Second, the target is 
generally at the center of the image, while there may be some background objects around it. 
The block close to the edge may have more background information. To avoid these blocks’ 
effect, they will be set smaller weight. So we hope posω  has Gauss form (in Figure 4, 

Equation 14), where the constant s is the value that is predefined for the block at the corner. 
r  is the distance between the block and the center. 0r  is half of the diagonal length. We 
choose s=0.5 in our study. 
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Fig. 4. The Relationship between Position Weight and its Position 
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Finally, all parts of nω  are ready and we give 
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where parameter m (0<m<1) is the weight of lumω  and conω . Because we think lumω  is 

from the whole view while conω  is from the detail view. Parameter m  is set to control the 

proportion how much they contribute to nω . 
From all above discussions in Section 3.1, we know that 

  
10 << nω  (16) 

  

It can be used as a weight. Then our ),( BAd  is accomplished finally. 

  
3.2 Blocking Option 
The size of each block and how the blocks are organized are also important to our RBF2D 
kernel function. But we will not discuss them in detail in this chapter. We only give our 
solution in this paper. 

  
3.2.1 Size 
We find that the size of each block can have effect on the performance of our image kernel. 
As shown in figure 5, if the blocks are too big, then the blocking operation is nonsense 
because the problem that we want to avoid when using the whole image will be met again. 
On the other side, if the blocks are too small, they can not contain the structural information 
that we hope they would have done. 
¶ 
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Fig. 5. Blocking mode which have different sizes 
¶ 

 So, the size of block will be decided by the minimun shape in the image that can have some 
information. 

  
3.2.2 Organization 
We propose three image kernels based on their different organization forms of blocks. 

(1) Normal Image Kernel. Blocks are organized as shown in figure 5. This is the simplest 
way. But its calculation efficiency is low and will be unstable when the edge of some 
block happens to overlap with that of the object. 

(2) Redundant Image Kernel. We add redundancy part between two neighbors based on 
Normal Image Kernel. This image kernel is more stable but its calculation efficiency is 
even lower. 

(3) Discrete Image Kernel. We use ROI (Regions of Interest) technology to decide some 
discrete blocks while other regions of the image will be ignored. This method has 
many advantages. First, the number of blocks which are calculated is small than the 
other two image kernel, its calculation efficiency is high. Second, the position of each 
block on one image is decided by its information distribution. The corresponding 
blocks on the other image is decided using image matching processing. So the 
positions of the object in the two images can have some difference, while the same 
thing will reduce the performance of the other two image kernels. The experiment 
result shows that the Discrete Image Kernel can work on the images in which the 
object can have different stances or be sheltered partly. 

 
4. Experiment Results 
  

4.1 UCI Optical Handwritten Digits Dataset 
This dataset include about 5500 normalized bitmaps of handwritten digits gathered from 43 
different people. Image size is 3232× .  
¶ 

 

 
Fig. 6. UCI Optical Handwritten Digits Dataset 
  
C. Kaynak divided these images into blocks of 44×  and counted the pixels in each block. 
Then he got an input matrix of 88× . His classifier was KNN based on Frobenius Norm and 
the final ratio of recognition is 97%~98% for each digits. 
We choose digit ‘1’ and digit ‘7’ as our targets because they have similar appearance. 20% of 
total 400 samples are training set, others are testing set. The experiment will be repeated 10 
times, and training set was selected randomly. And because the images are 1-bit bitmaps, 
we choose 1C =1, 2C =1, 3C =1, m=0.5, s=0.5. Blocks’ size is 44× . And finally our ratio of 
recognition is 99%~100%. 
¶ 

 

 
Fig. 7. SVs of RBF2D-based SVM 
¶ 

       
Fig. 8. Some samples which are difficult to recognized for Kaynak’s method 
¶ 
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From Figure 7 and Figure 8, we can see that the samples which are difficult to recognized for 
Kaynak’s method are always the SVs of our SVM based on RBF2D. So our ratio can reach 
100% when they are all in train set and treated as SVs. 

  
4.2 COIL dataset 
COIL data set includes 1000 objects and each object has 24 8-bit grayscale images under 
different luminance conditions. The size of each image is 144×192. We choose 3 objects. 
They are shown in Figure 9. 
¶ 

   
Fig. 9. Three Objects from COIL Data set 
¶ 
There are not enough samples. We only use our kernel function to calculate the gram matrix 
of the objects, because the learning mechanism of kernel-based classifiers is generally based 
on it. In our experiment, we set 1C =20, 2C =70, 3C =60, m=0.5, s=0.5. Blocks’ size is 

2424× . The gram matrix is shown in Figure 10. 
There are totally 72 samples, 24 for each object. From figure 6, it is obvious that only the two 
sample of the same object have the value close to 1, while others are close to 0. A kernel-
based classifier (like SVM) can easily find the SVs of each class using linear programming 
algorithm or quadratic programming algorithm. 
¶ 
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Fig. 10. The Gram Matrix of three Objects 
 
 
 

 

4.2.1 COIL Objects with different angle of view 
In Coil-100 dataset, the objects have different angles of view. We choose two as our targets. 
¶ 

 

 
(a) 315°            (b) 320°            (c) 325°            (d) 330°            (e) 335°             (f) 340° 

Fig. 11. The Two Objects With Different Angel of View 
  
There are only 12 images of the two objects. To expand the sample size, we add +2,+1 
displacement to each object at four directions (up, down, left, right). And we get totally 12×
25=300 samples. We select 50% as train set and the others as test set and use Redundant 
Image Kernel and Discrete Image Kernel introduced in section 3. Classifier is the standard 
SVM. 
For testing the performance, we also add noise to the images. 
¶ 

 

 
(a) no noise             (b) 10db                 (c) 0db             (d) -10db            (e) -20db 

Fig. 12. Images with noise 
  
The experiment results are shown in table 1. 
¶ 

 Redundant Image Kernel Discrete Image Kernel 
no noise 100% 34% 100% 3.3% 
10 db 100% 100% 100% 30% 
0 db 90% 100% 96% 66% 
-10 db 85% 100% 90% 100% 
-20 db 47% 100% 58% 100% 

Table 1. Result of experiment, left is ratio of recognition, right is SVs/Samples 
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First, let’s see the ratio of recognition. Discrete image kernel  is the same as redundant image 
kernel. They can work until the noise level is reduced below -20 db. As introduced in 
sections before, discrete image kernel only uses part of the image, so its speed is higher. 
Second, let’s see the numbers of SVs. For redundant image kernel, all samples become SVs 
when the noise level is 10db. In this condition, every sample is SV and have to be saved so 
as to be used in testing processing. The classifier will have bad performance. While the 
discrete image kernel can work until noise is reduced below -10db. 
To explain this problem, Figure 13 shows gram metrices of two kernels when there is no 
noise. 
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Fig. 13. Gram Metrix of two image kernel, left is Discrete Image Kernel, right is Redundant 
Image Kernel 
  
From the gram metrix of  two kernels, we can find that the difference of the two objects in 
discrete image kernel is more distinct and easier to use. 

 
4.2.2 COIL Objects with sheltering 
In this section, we will add some shelter to object images which are shown in figure 14. 
¶ 

      

      
Fig. 14. Images with sheltering, shelter ratio is 7.8%,15.6%,23.4%,31.3%,39.1%,46.9%(from left 
to right) 
  
The methods and parameters are the same as section 4.2.1. We use Redundant Image Kernel 
and Discrete Image Kernel introduced in section 3. Classifier is the standard SVM. 
Train set is the full object image as in 4.2.1, while we add sheltering on test set, and use the 
new test set to test the two image kernel. 

 

For each shelter ratio, the experimint is repeated once. 
The result is shown in table 2. 

 7.8% 15.6% 23.4% 31.3% 39.1% 46.9% 
Discrete Image Kernel Yes Yes Yes Yes Yes No 
Redundant Image Kernel Yes Yes No No No No 

Table 2. Result of experiment, yes = can work, no = can’t work 
¶ 
We can find that the discrete image kernel can work unless the shelter ratio reaches 40%, 
while the redundant image kernel can only work under 20%. 
For Redundant Image Kernel, the object is sheltered means that the image has changed. 
While for Discrete Image Kernel, the algorithm only use part of the blocks (in figure 15). 
¶ 

    
(a)                             (b)                                 (c)                               (d) 

   
(e)                             (f)                                 (g) 

Fig. 15. The Selected Blocks in Discrete Image Kernel. shelter ratio is (a) 0%, (b) 7.8%, (c) 
15.6%, (d) 23.4%, (e) 31.3%, (f) 39.1%, (g) 46.9% 
¶ 
The seven image in figure 15 can be grouped into four categories. 

(1) Figure 15(a). There is no sheltering in this condition. So (a) can be treat as a reference. 
(2) Figure 15(b)~(c). Although the object has been sheltered, but all the selected blocks are 

the same as (a), so Discrete Image Kernel can work without any performance decrease. 
(3) Figure 15(d)~(f). Here the object is sheltered partly and the selected are the same as (a) 

mostly. Only 1~2 blocks are changed, and they can not affect the total result. 
(4) Figure 15(g). Mostly a large number of selected blocks are changed, and the result is 

unstable. 

¶ 
5. Conclusion 
  
In this chapter, we have summarized the deficiency of traditional kernel functions on image 
recognition and proposed the distance measure of images and RBF2D kernel function which 
can accept two-dimensional image data as input data without abstracting the features that 
we often do nowadays.  
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can accept two-dimensional image data as input data without abstracting the features that 
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We compare them to the old method using the UCI Optical Handwritten Digits dataset. The 
result indicates that RBF2D have good performance on image target.  
Also we do some experiment to test the new image kernel when object are viewed from 
different angle, with noise, and even sheltered. The results show that our new image kernel 
can work in all these conditions. 
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1. Introduction  
 

Undoubtedly, Markov Random Fields (MRF) define a powerful mathematical tool for 
contextual modelling of spatial data. With advances in probability and statistics 
(Hammersley & Clifford, 1971), as the development of Markov Chain Monte Carlo (MCMC) 
simulation techniques (Metropolis et al., 1953; Geman & Geman, 1984; Swendsen & Wang, 
1987; Wolff, 1989) and relaxation algorithms for combinatorial optimization (Besag, 1986; 
Marroquin et al., 1987; Yu & Berthod, 1995), MRF's became a central topic in fields including 
image processing, computer vision and pattern recognition. In this chapter, we are 
concerned with the multispectral image contextual classification problem. A Bayesian 
approach is used to combine two MRF models: a Gaussian Markov Random Field (GMRF) 
for the observations (likelihood) and a Potts model for the a priori knowledge. Hence, the 
problem is stated according to a Maximum a Posteriori (MAP) framework. 
One of the main difficulties in contextual classification using a MAP-MRF approach relies on 
the MRF parameter estimation stage. Traditional methods, as Maximum Likelihood (ML), 
cannot be applied due to the existence of a partition function in the joint Gibbs distribution, 
which is computationally intractable. A solution proposed by Besag to surmount this 
problem is to use the local conditional density functions (LCDF) to perform maximum 
pseudo-likelihood (MPL) estimation (Besag, 1974). The main motivation for employing this 
approach is that MPL estimation is a computationally feasible method. Besides, from a 
statistical perspective, MPL estimators have a series of desirable and interesting properties, 
such as consistency and asymptotic normality (Jensen & Künsh, 1994). However, a serious 
limitation of contextual classification has been the use of extremely restricted 
neighbourhood systems. Actually, traditional methods often consider only first-order 
neighbourhood systems. 
The main motivation for this chapter is to discuss the incorporation of higher-order 
neighbourhood systems in MRF models, since among several drawbacks existing in 
classification problems, the lack of an accurate contextual modelling is definitely a major 
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one, especially when we are dealing with real image data, often degraded by noise. And, 
with the introduction of higher-order systems, novel, robust and suitable parameter 
estimation methods are also required. This chapter presents a novel framework for Bayesian 
image contextual classification through the definition of statistical inference and parameter 
estimation techniques in higher-order systems. Pseudo-likelihood equations for both Potts 
and GMRF models are presented and analysed using asymptotic evaluations and MCMC 
simulation algorithms. Two combinatorial optimization algorithms for MAP-MRF 
contextual classification are described and compared: Iterated Conditional Modes (ICM) and 
Maximizer of the Posterior Marginals (MPM). Experiments on real Nuclear Magnetic 
Resonance (NMR) images illustrate the proposed methodology. 
The remaining of this chapter is organized as follows: Section 2 introduces the reader to the 
combined GMRF + Potts MRF model for contextual classification and discusses how to 
perform parameter estimation using the maximum pseudo-likelihood approach. In Section 3 
we present asymptotic evaluations to assess the accuracy of MPL estimation by means of 
approximations for the MPL estimators’ variances. Section 4 introduces the combinatorial 
optimization algorithms for contextual classification. Section 5 discusses metrics for 
quantitative performance evaluation, more precisely Cohen’s Kappa coefficient. Section 6 
shows results of the proposed classification methodology on real multispectral magnetic 
resonance images. Finally, Section 7 presents the conclusions and final remarks.  

 
2. MAP-MRF Contextual Classification 
 

Let ( )p
wx  be the label field representing the classification map at the p-th iteration, y  the 

observed multispectral image, θ  the vector of GMRF hyperparameters, Φ  the vector of 
GMRF spectral parameters for each class ( mμ , mΣ ) and   the Potts MRF model 
hyperparameter. Considering a multispectral GMRF model for the observations and a Potts 
model for the a priori knowledge, according to the Bayes’ rule, the current label of pixel 

 ,i j  can be iteratively updated by choosing the label that maximizes the functional 
(Yamazaki & Gingras, 1996): 
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where ˆctθ  is a diagonal matrix whose elements are the horizontal, vertical and diagonals 

hyperparameters (4 x 4), 1, ,ct K  , where K  is the number of bands, ˆTθ  is a matrix 

build by stacking the ˆctθ  diagonal matrices from each image band (4 x 4K), that is, 
ˆ 1 2ˆ ˆ ˆ, , ,T ct ct ctK   

  θ   and 
ijy  is a vector whose elements are defined as the sum of the 

 

two neighbouring elements on each direction (horizontal, vertical and diagonals) for all the 
image bands (4K x 1). 

 
2.1 MPL Estimation for GMRF model parameters 
As the proposed model for contextual classification of multispectral images assumes 
independency between different image bands, it is quite reasonable to perform MPL 
estimation in each image band separately. Assuming this hypothesis and considering a 
second-order neighbourhood system, the pseudo-likelihood equation for the GMRF 
hyperparameters becomes (Won & Gray, 2004): 
 

        ,

22
2

1 12log , , log 2 1 2
2 2i j W

T
ij ijPL y   


       θ θ Ψ θI  (2) 

 

where W  represents an image band,  1 2 3 4, , ,T    θ  is the hyperparameters vector 

and        1 1 1 1 1 1 1 1 1 1 1 1, , ,ij i j i j ij ij i j i j i j i jy y y y y y y y                 Ψ . Fortunately, 

the MPL estimator of θ  admits a closed solution, given by (Won & Gray, 2004): 
 

  
1

( , ) ( , )

ˆ ˆ T T
ij ij ij ij

i j W i j W
y 



 

         
      

θ Ψ Ψ Ψ    (3) 

 

where ̂  is the sample mean of the image pixels, 
( , )

1
ijij ij k lN 

 Ψ Ψ Ψ  and N is the 

number of image pixels. 

 
2.2 MPL Estimation for Potts MRF model parameter 
One of the most widely used prior models in Bayesian image modelling is the Potts MRF 
pair-wise interaction (PWI) model. Two fundamental characteristics of the Potts model 
considered here are: it is both isotropic and stationary. According to (Hammersley & 
Clifford, 1971), the Potts MRF model can be equivalently defined in two manners: by a joint 
Gibbs distribution (global model) or by a set of local conditional density functions (LCDF's). 

For a general s-th order neighbourhood system s , we define the former by the following 
expression: 
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where  ijU l  is the number of neighbours of the i-th element having label equal to l,   is 

the spatial dependency parameter (known as inverse temperature),  , 1,2, ,m l G M   , 
with M  denoting the number of classes. So, the pseudo-likelihood equation for the Potts 
model is given by: 
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Taking the logarithms, differentiating on the parameter and setting the result to zero, leads 
to the following expression, which is the basis for the derivation of the proposed equations: 
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where m  denotes the observed value for the ij-th element of the field. 
Looking at equation (6) it is possible to see that its first term is independent of the 
parameter. Thus, it is possible to expand the second term of (6) in all possible spatial 
configuration patterns that provide different contributions to the pseudo-likelihood 
equation regarding a pre-defined neighbourhood system. For example, in first order 
systems, the enumeration of these configuration patterns is straightforward, since there are 
only five cases, from zero agreement (situation of four different labels) to total agreement 
(situation of four identical labels), as shown in Figure 1.  
 

 
Fig. 1. Contextual configuration patterns for Potts MRF model in first-order neighbourhood 
systems 
 
These configuration patterns can represented by vectors, as presented in relations (7), 
indicating the number of occurrences of each element around the central element. In the 
Potts model location information is irrelevant since it is an isotropic model: 
 
 1 2 3 41,1,1,1 ;    2,1,1,0 ;    2,2,0,0 ;    3,1,0,0 ;    4,0,0,0 ;                      0v v v v v  (7) 
 

Let N be the number of elements in the neighbourhood system s . For each 1, ,L N  , 
let: 
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and   Nn L  the number of elements of the set  NA L . Then, the number of configuration 

patterns for the neighbourhood system s  is      1 2N N Nn n n L     . 
Thus, the problem of finding the possible contextual configuration patterns can be solved 
automatically. The solution vectors can be found by exhaustive searching, by isolating one 
variable and searching on the subspace spanned by the remainder variables. Table 1 
presents the number of configuration patterns for several neighbourhood systems. 
 

Neighbourhood System Number of configuration patterns (  ) 
First order 5 
Second order 22 
Third order 77 
Fourth order 637 
Fifth order 1575 

Table 1. Number of possible contextual configuration patterns for five neighbourhood 
systems  
 
Now, given the complete set of contextual configuration patterns for a neighbourhood 
system, it is possible to expand the second term of equation (6). We can regard its numerator 
as an inner product of two vectors ijU  and ijω , where  ijU  represents the contextual 

configuration vector for the current pixel (i.e., 5,2,1,0,0,0,0,0  ijU  in case of a second-

order system) and ijω  is a vector such that     expij ijn U n  . Similarly, the 

denominator is the inner product of ijω  with the identity column vector  1,1, ,1r  . So, 

the second term of equation (6) can be expanded as a summation of   terms, each one 
associated with a possible configuration pattern. However, as it involves a summation for all 
elements of the MRF, we define constants , 1, ,iK i   , representing the number of 
number of occurrences of each possible configuration patters along the entire image. 
Basically, the idea is that the set of all iK  coefficients defines a contextual histogram, that is, 
instead of indicating the distribution of individual pixel gray levels, this set shows the 
distribution of spatial patterns defined in terms of the adopted neighbourhood system. For 
instance, in image analysis applications, smooth images, with many homogeneous regions, 
tend to present more concentration of configuration patterns with similar labels. On the 
other hand, heterogeneous regions tend to present concentration of configuration patterns 
with higher variation in the labels. Figures 2, 3 and 4 show an example with the Lena image. 
It is worthwhile noting that in a physical interpretation we are using the proposed equations 
to estimate a quantity called inverse temperature in a system of particles arranged on a 2-D 
lattice using only pair-wise interactions. The proposed pseudo-likelihood equation for 
second-order neighbourhood systems is given by equation (9) (Levada et al., 2008a). 
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Similarly, for third-order systems, the equation is obtained by expanding (6) on the 77 
configuration patterns derived by solving (8) for N=12. The proposed pseudo-likelihood 
equation for third-order systems is given by equation (10) (Levada et al., 2008b). 
 

 
Fig. 2. Smooth regions present more homogeneous contextual configuration patterns 

 
Fig. 3. Noisy regions present more heterogeneous contextual configuration patterns 
 

  
Fig. 4. Comparison between the distribution of contextual configuration patterns for both 
smooth and noisy Lena images ( 0k  stands for total agreement and 22k  for zero agreement). 
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The derived transcendental equations do not have closed solution, so in order to solve them 
a root-finding algorithm is required. In all experiments along this chapter, the MPL 
estimator is obtained by Brent’s method (Brent, 1973), a numerical method that does not 
require the computation (not even the existence) of derivatives or analytical gradients. In 
this case, the computation of derivatives of the objective function would be prohibitive, 
given the large extension of the expressions. Basically, the advantages of this method can be 
summarized by: it uses a combination of bisection, secant and inverse quadratic 
interpolation methods, leading to a very robust approach and also it has super-linear 
convergence rate. 

 
3. Statistical Inference and Asymptotic Evaluation on Markov Random Fields 
  

Unbiasedness is not granted by either maximum likelihood (ML) or maximum pseudo-
likelihood (MPL) estimation. Actually, according to statistical inference theory, there is no 
method that guarantees the existence of unbiased estimators for a fixed N-size sample. 
Often, in the exponential family, ML estimators coincide with UMVU (Uniform Minimum 
Variance Unbiased) estimators because they are functions of complete sufficient statistics (if a 
ML estimator is unique then it is a function of sufficient statistics). Besides, there are several 
characteristics that make ML estimation a reference method (Lehman, 1983; Bickel, 1991; 
Casella, 2002). Making the sample size grow infinitely ( N   ), ML estimator becomes 
asymptotically unbiased and efficient. Unfortunately, there is no result showing that the 
same occurs in MPL estimation. In this section, we show how to approximate the asymptotic 
variances of Potts and GMRF model parameters in terms of expressions for the observed 
Fisher information using both first and second derivatives.  
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The derived transcendental equations do not have closed solution, so in order to solve them 
a root-finding algorithm is required. In all experiments along this chapter, the MPL 
estimator is obtained by Brent’s method (Brent, 1973), a numerical method that does not 
require the computation (not even the existence) of derivatives or analytical gradients. In 
this case, the computation of derivatives of the objective function would be prohibitive, 
given the large extension of the expressions. Basically, the advantages of this method can be 
summarized by: it uses a combination of bisection, secant and inverse quadratic 
interpolation methods, leading to a very robust approach and also it has super-linear 
convergence rate. 

 
3. Statistical Inference and Asymptotic Evaluation on Markov Random Fields 
  

Unbiasedness is not granted by either maximum likelihood (ML) or maximum pseudo-
likelihood (MPL) estimation. Actually, according to statistical inference theory, there is no 
method that guarantees the existence of unbiased estimators for a fixed N-size sample. 
Often, in the exponential family, ML estimators coincide with UMVU (Uniform Minimum 
Variance Unbiased) estimators because they are functions of complete sufficient statistics (if a 
ML estimator is unique then it is a function of sufficient statistics). Besides, there are several 
characteristics that make ML estimation a reference method (Lehman, 1983; Bickel, 1991; 
Casella, 2002). Making the sample size grow infinitely ( N   ), ML estimator becomes 
asymptotically unbiased and efficient. Unfortunately, there is no result showing that the 
same occurs in MPL estimation. In this section, we show how to approximate the asymptotic 
variances of Potts and GMRF model parameters in terms of expressions for the observed 
Fisher information using both first and second derivatives.  
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3.1 Observed Fisher Information 
Often, in practice, it is not possible to calculate the expected Fisher information  I  . In such 

cases, we can adopt the observed Fisher information,  obsI    instead. Furthermore, it has 
been shown (Efron & Hinkley, 1978) that the use of the observed information number is 
superior to the expected information number, as it appears in the Cramér–Rao lower bound. 
The observed Fisher information, in terms of the pseudo-likelihood function, is defined by 
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and can be estimated by the following, justified by the Law of Large Numbers: 
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since    1ˆ
obsI E I     , making    1ˆ

obsI I  . Similarly,  obsI   can be estimated using 
the second derivative of the pseudo-likelihood function: 
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3.2 On the Asymptotic Variances of GMRF model MPL estimators  
The asymptotic covariance matrix for MPL estimators is given by (Liang and Yu, 2003): 
 

        1 1C H J H θ θ θ θ  (14) 
 
where  J θ  and  H θ  are functions of the Jacobian (first order partial derivatives) and 
Hessian (second order partial derivatives) matrices respectively: 
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with  ;F X θ  denoting the logarithm of the pseudo-likelihood function.  

Considering that the GMRF hyperparameters 1 2 3 4, , ,     are uncorrelated, we have a 
diagonal covariance matrix, given by: 
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with asymptotic variances given by: 
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3.1 Observed Fisher Information 
Often, in practice, it is not possible to calculate the expected Fisher information  I  . In such 

cases, we can adopt the observed Fisher information,  obsI    instead. Furthermore, it has 
been shown (Efron & Hinkley, 1978) that the use of the observed information number is 
superior to the expected information number, as it appears in the Cramér–Rao lower bound. 
The observed Fisher information, in terms of the pseudo-likelihood function, is defined by 
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and can be estimated by the following, justified by the Law of Large Numbers: 
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since    1ˆ
obsI E I     , making    1ˆ

obsI I  . Similarly,  obsI   can be estimated using 
the second derivative of the pseudo-likelihood function: 
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3.2 On the Asymptotic Variances of GMRF model MPL estimators  
The asymptotic covariance matrix for MPL estimators is given by (Liang and Yu, 2003): 
 

        1 1C H J H θ θ θ θ  (14) 
 
where  J θ  and  H θ  are functions of the Jacobian (first order partial derivatives) and 
Hessian (second order partial derivatives) matrices respectively: 
 

 
   

   

2 ;

;

H E F X

J Var F X





   

   

θ θ

θ θ
 (15) 

 
with  ;F X θ  denoting the logarithm of the pseudo-likelihood function.  

Considering that the GMRF hyperparameters 1 2 3 4, , ,     are uncorrelated, we have a 
diagonal covariance matrix, given by: 
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with asymptotic variances given by: 
 



Pattern Recognition232

 

  
 

 
2

2
2

log

log

k
kk

k

Var PL
c

E PL









 
  
 
 
  

θ
θ

θ
 (17) 

 
for 1, , 4k   . Rewriting the above equation using the definition of variance leads to: 
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since the expected value of the log PL equation is zero: 
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Thus, from the LCDF of the GMRF model and after some simple algebraic manipulations, 

we obtain the following expression for  1ˆ
obsI θ  (Levada et al., 2008c): 
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where k
ij  denotes the k-th element of ijΨ , 1, , 4k   . Similarly, for  2ˆ

obsI θ  we have: 
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The proposed approximation allows the calculation of the asymptotic variance of maximum 
pseudo-likelihood estimators of the GMRF model in computationally feasible way. From 
previous works on statistical inference it can be shown that MPL estimators are 
asymptotically normal distributed. Therefore, with the proposed method, it is possible to 
completely characterize the asymptotic behavior of the MPL estimators of the GMRF model, 
allowing interval estimation, hypothesis testing and quantitative analysis on the model 

 

parameters in a variety of research areas, including image processing and pattern 
recognition (Levada et al., 2008d). 
In order to demonstrate the application of the asymptotic variance estimation in stochastic 
image modeling, we present the results obtained in experiments using Markov Chain Monte 
Carlo simulation methods (Dubes & Jain, 1989; Winkler, 2006) by comparing the values of 
ˆ

MPLθ  and asymptotic variances regarding second order neighbourhood systems using 
synthetic images,  representing several GMRF model outcomes. For the experiments below, 
we adopted the Metropolis algorithm (Metropolis et al., 1953), a single spin flip MCMC 
method, to simulate occurrences of GRMF model using different known parameter vectors. 
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A major difficulty in GMRF models is the selection of parameters θ  for which the 
correlation matrix is positive definite, introducing one more problem in parameter 
estimation. With discrete MRF’s almost any parameter in the parametric space lead to a 
mathematically valid model. However, only a portion of the parametric space generates 
valid GMRF models. The region of validity is known only for first-order systems, but not for 
higher-order GMRF’s (Dubes & Jain, 1989). In fact, even parameters estimated by standard 
procedures may not be in the region of validity and simulations may not work properly. 
Table 2 shows the MPL estimators, estimated asymptotic variances, 90% confidence 
intervals regarding the GMRF model parameters for the synthetic image indicated in Figure 
1a. Similarly, Table 3 shows the same obtained results for the images shown in Figure 1b. 
The results on MCMC simulation images show that, in all cases, the true parameter value is 
contained in the obtained intervals, assessing the accuracy of the proposed methodology for 
asymptotic variance estimation. 
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for 1, , 4k   . Rewriting the above equation using the definition of variance leads to: 
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since the expected value of the log PL equation is zero: 
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Thus, from the LCDF of the GMRF model and after some simple algebraic manipulations, 

we obtain the following expression for  1ˆ
obsI θ  (Levada et al., 2008c): 
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where k
ij  denotes the k-th element of ijΨ , 1, , 4k   . Similarly, for  2ˆ
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The proposed approximation allows the calculation of the asymptotic variance of maximum 
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higher-order GMRF’s (Dubes & Jain, 1989). In fact, even parameters estimated by standard 
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intervals regarding the GMRF model parameters for the synthetic image indicated in Figure 
1a. Similarly, Table 3 shows the same obtained results for the images shown in Figure 1b. 
The results on MCMC simulation images show that, in all cases, the true parameter value is 
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asymptotic variance estimation. 
 
 
 
 
 
 



Pattern Recognition234

 

K k  ˆ
k  ˆ k  90% CI 

1 0.25 0.2217 0.0390 [0.1799 0.3077] 
2 0.3 0.2758 0.0387 [0.2398 0.3667] 
3 -0.1 -0.1145 0.0394 [-0.1711 -0.0479] 
4 0.2 0.1743 0.0386 [0.1150 0.2416] 

Table 2. MPL estimators, asymptotic variances and 90% confidence intervals for GMRF 
hyperparameters on simulated images (1a).  
 

K k  ˆ
k  ˆ k  90% CI 

1 0.2 0.1908 0.0506 [0.1079 0.2738] 
2 0.15 0.1605 0.0524 [0.0746 0.2464] 
3 0.07 0.0716 0.0482 [-0.0074 0.1506] 
4 0.05 0.0523 0.0418 [-0.0146 0.1192] 

Table 3. MPL estimators, asymptotic variances and 90% confidence intervals for GMRF 
hyperparameters on simulated images (1b).  

 
3.3 On the Asymptotic Variance of Potts MRF model MPL estimator 
Similarly to the GMRF model, we define an approximation for the asymptotic variance of 

Potts model MPL estimators through expressions for  1ˆ
obsI θ  and  2ˆ

obsI θ . From the LCDF 
of the Potts model (4) we have: 
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which, after some few algebraic manipulations, becomes (Levada et al, 2008a): 
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Calculating the observed Fisher information using the second derivative of the pseudo-
likelihood function leads to the following: 
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Simplifying equation (24), we have the final expression for  2ˆ
obsI θ (Levada et al, 2008b): 
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This approximation allows the calculation of the asymptotic variance of the maximum 
pseudo-likelihood estimator of the Potts MRF model. In order to demonstrate the 
application of the asymptotic variance in testing and evaluating the proposed pseudo-
likelihood equation, some results obtained in experiments with Markov Chain Monte Carlo 
simulation methods are presented. The results show the values of ˆ

MPL , asymptotic 
variances, test statistics and p-values for several synthetic images generated using MCMC 
algorithms on  second and third order neighbourhood systems. The objective is to validate 
the following hypothesis: 
 
 H: the proposed pseudo-likelihood equations provide results that are statistically 
 equivalent to the real parameter values, that is: 
 
 ˆ: MPLH    (26) 
 
Using the consistency property of MPL estimators and adopting the derived approximation 
for the asymptotic variance it is possible to completely characterize the asymptotic 
distribution of the Potts model parameter estimator and define the following test statistic: 
 

    2

ˆ
0,1ˆˆ

MPL

MPL
Z N

 
 


   (27) 

 
creating the decision rule: Reject H if Z c . Considering a test size   (in all experiments 
along this chapter we set 0.1  ), that is, the maximum probability of incorrectly rejecting 
H is  , we have 1.64c  . However, in order to quantify the evidence against or in favor of 
the hypothesis a complete analysis in terms the test size, test statistic and p-values, 
calculated by  obsP Z z ,  is required. In case of a small p-value, we should doubt of the 
hypothesis being tested. In other words, to reject H we should have a test size   
significantly higher than the p-value. This approach provides a statistically meaningful way 
to report the results of a hypothesis testing procedure. 
For the experiments, to illustrate the example of statistical analysis in MRF, we adopted both 
single spin-flip MCMC methods, Gibbs Sampler and Metropolis, and a cluster-flipping MCMC 
method, the Swendsen-Wang algorithm, to generate several Potts model outcomes using 
different known parameter values. Figures 6, 7, 8 and 9 show the simulated images. 
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Calculating the observed Fisher information using the second derivative of the pseudo-
likelihood function leads to the following: 
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This approximation allows the calculation of the asymptotic variance of the maximum 
pseudo-likelihood estimator of the Potts MRF model. In order to demonstrate the 
application of the asymptotic variance in testing and evaluating the proposed pseudo-
likelihood equation, some results obtained in experiments with Markov Chain Monte Carlo 
simulation methods are presented. The results show the values of ˆ

MPL , asymptotic 
variances, test statistics and p-values for several synthetic images generated using MCMC 
algorithms on  second and third order neighbourhood systems. The objective is to validate 
the following hypothesis: 
 
 H: the proposed pseudo-likelihood equations provide results that are statistically 
 equivalent to the real parameter values, that is: 
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for the asymptotic variance it is possible to completely characterize the asymptotic 
distribution of the Potts model parameter estimator and define the following test statistic: 
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creating the decision rule: Reject H if Z c . Considering a test size   (in all experiments 
along this chapter we set 0.1  ), that is, the maximum probability of incorrectly rejecting 
H is  , we have 1.64c  . However, in order to quantify the evidence against or in favor of 
the hypothesis a complete analysis in terms the test size, test statistic and p-values, 
calculated by  obsP Z z ,  is required. In case of a small p-value, we should doubt of the 
hypothesis being tested. In other words, to reject H we should have a test size   
significantly higher than the p-value. This approach provides a statistically meaningful way 
to report the results of a hypothesis testing procedure. 
For the experiments, to illustrate the example of statistical analysis in MRF, we adopted both 
single spin-flip MCMC methods, Gibbs Sampler and Metropolis, and a cluster-flipping MCMC 
method, the Swendsen-Wang algorithm, to generate several Potts model outcomes using 
different known parameter values. Figures 6, 7, 8 and 9 show the simulated images. 
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Fig. 6. Synthetic images generated by MCMC simulation algorithms using second-order 
neighbourhood systems for M=3: Gibbs Sampler ( 0.45  ), Metropolis ( 0.5  ) and 
Swendsen-Wang ( 0.4  ), respectively. 
 

   
Fig. 7. Synthetic images generated by MCMC simulation algorithms using third-order 
neighbourhood systems for M=3: Gibbs Sampler ( 0.45  ), Metropolis ( 0.5  ) and 
Swendsen-Wang ( 0.4  ), respectively. 
 

   
Fig. 8. Synthetic images generated by MCMC simulation algorithms using second-order 
neighbourhood systems for M=4: Gibbs Sampler ( 0.45  ), Metropolis ( 0.5  ) and 
Swendsen-Wang ( 0.4  ), respectively. 
 

   
Fig. 9. Synthetic images generated by MCMC simulation algorithms using second-order 
neighbourhood systems for M=4: Gibbs Sampler ( 0.45  ), Metropolis ( 0.5  ) and 
Swendsen-Wang ( 0.4  ), respectively. 

 

The MPL estimators, obtained by the derived pseudo-likelihood equations were compared 
with the real parameter values. This information, together with the test statistics and the p-
values, obtained from the approximation to the asymptotic variance provide a mathematical 
procedure to validate and assess the accuracy of the pseudo-likelihood equations. Tables 4 
and 5 show the obtained results. 
 

 Swendsen-Wang Gibbs Sampler Metropolis 
M 3 4 3 4 3 4 
  0.4 0.4 0.45 0.45 0.5 0.5 
ˆ
MPL  0.4460 0.4878 0.3849 0.4064 0.4814 0.4884 

ˆ
MPL   0.0460 0.0878 0.0651 0.0436 0.0186 0.0111 

 1ˆ
obsI θ  0.4694 0.6825 0.8450 1.3106 0.3908 0.8258 

 2ˆ
obsI θ  3.0080 3.3181 3.8248 4.5387 2.2935 2.6436 

 2 ˆˆ MPLn   0.0519 0.0620 0.0578 0.0636 0.0743 0.1182 

nZ  0.2458 0.3571 0.2707 0.1729 0.0682 0.0322 

p-values 0.8104 0.7264 0.7872 0.8650 0.9520 0.9760 
Table 4. MPL estimators, observed Fisher information, asymptotic variances, test statistics 
and p-values for synthetic MCMC images using second-order systems. 
 

 Swendsen-Wang Gibbs Sampler Metropolis 
M 3 4 3 4 3 4 
  0.4 0.4 0.45 0.45 0.5 0.5 
ˆ
MPL  0.3602 0.3772 0.4185 0.4309 0.4896 0.4988 

ˆ
MPL   0.0398 0.0228 0.0315 0.0191 0.0104 0.0012 

 1ˆ
obsI θ  0.2738 0.5372 0.1104 0.1433 0.0981 0.1269 

 2ˆ
obsI θ  3.5691 4.6800 1.8703 2.3416 1.4165 1.4547 

 2 ˆˆ MPLn   0.0215 0.0245 0.0316 0.0261 0.0489 0.0600 

nZ  0.2510 0.1456 0.1772 0.1182 0.0470 0.0049 

p-values 0.8036 0.8886 0.8572 0.9044 0.9602 0.9940 
Table 5. MPL estimators, observed Fisher information, asymptotic variances, test statistics 
and p-values for synthetic MCMC images using third-order systems. 
 
The obtained results show that the asymptotic variance is reduced in third-order systems, 
increasing the p-values, suggesting that the use of higher-order systems improves Potts MRF 
model MPL estimation. Considering the observed data, we conclude that there are no 
significant differences between   and ˆ

MPL . Therefore, based on statistical evidences, we 
should accept the hypothesis H, assessing the accuracy of the MPL estimation method. 
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4. Contextual Classification and Bayesian Inference 
 

As presented in the previous sections of this chapter, multispectral image contextual 
classification through MRF models is stated as a Bayesian inference problem, since we are 
interested in the solution that maximizes the a posteriori distribution. Several combinatorial 
optimization algorithms can be used to approximate the MAP estimator, although is has 
been shown that the only optimal method is Simulated Annealing (SA). However, due to its 
high computational cost, SA may not be the best choice for real applications. In this chapter 
we discuss two suboptimal methods used in contextual classification: ICM and MPM. The 
main difference between these methods is that while the first one is the optimum Bayesian 
estimator in case of a uniform cost function, the later is optimum regarding a Hamming 
distance cost function (Won & Gray, 2004). 

 
4.1 Iterated Conditional Modes 
The ICM algorithm was originately proposed by Besag as a computationally feasible 
iterative and determinístic algorithm for approximating the MAP estimator in complex 
problems. The basic idea consists in, for each pixel, update its current value with the label 

that maximizes the a posteriori probability. By noting that      ,| | |ij ij ijP P x P x y x y x y , 

where ij
x  denotes the entire random field without the current element ijx , the subsequent 

maximization of  ,|ij ijP x x y   is always moving towards the a maximum of the a posteriori 

probability. Thus, ICM rapidly converges to a local maximum since its results are strongly 
dependent on the initialization. The ICM algorithm, as described in (Dubes & Jain, 1989) is 
given in the following. 
 
Algoritm 1. Iterated Conditinal Modes (ICM) 

1. Chose a MRF model for the label field X . 

2. Initialize x̂  by choosing the label ˆ ijx  that maximizes  |ij ijp y x , that is, the result of 

maximum likelihood classification. 

3. For 1, ,i M   and 1, ,j N   

a. Update the label ˆ ijx  with the value that maximizes 

      | , | | s
ij ij ij ij ij ijp x p y x p x  x y  

4. Repeat (3) iterN  times 

So, in our case, we always update the current label with the new value that maximizes the 
product between the LCDF’s of GMRF and Potts models. Note, however, that step (2) is 
being generalized, since instead of maximum likelihood classification, we can initialize ICM 
using several pattern classifiers.   
 

 

4.2 Maximizer of the Posterior Marginals 
As the name says, the MPM estimator is obtained by maximizing the posterior marginal 

probabilities  |ijP x y . Thus, the fundamental point here is the calculation of these 

distributions. The MPM algorithm, as proposed in (Marroquin et al., 1987), uses MCMC 
methods to approximate these distributions. Basically, the MPM algorithm simulate a 
Markov chain over the states that represent all possible configurations of the random field. 
The idea is that as each pixel is repeatedly visited, the resulting Markov chain generates a 
sample of the posterior distribution  |P x y , regardless of the initial conditions. As a result 

of that, a sequence of configurations      0 1x x x n     , corresponding to a 
Makov chain that reaches its equilibrium state, is generated. Once this state is reached, we 
can regard all configurations from this point as a sample of  |P x y . Besides, in the 
equilibrium state the expected value of a function of a random variable can be estimated 
through the ergodic principle. Using this result, the posterior marginal distribution for the 
MPM algorihtm can be approximated by (Dubes & Jain, 1989):  
 

      
1

1
|

n p gij ijp k
P x g x

n k
 

 
 


y  (28) 

 
where k  is the number of steps needed to the sequence to stabilize and n  is a sufficiently 
large number of iterations so that the estimation is accurate at a certain reasonable 
computational cost. One problem with this approach is exactly how to choose these values 
(also known as magic numbers). Usually, they are both chosen empiracally. The pseudo-code 
for MPM, as described in (Dubes & Jain, 1989), is shown in Algorithm 2. 

 
5. Metrics for Performance Evaluation of Image Classification  
 

In order to evaluate the performance of the contextual classification in an objective way, the 
use of quantitative measures is required. Often, the most widely used criteria for evaluation 
of classification tasks are the correct classification rate and/or the estimated classification 
error (holdout, resubstitution). However, these measures do not allow robust statistical 
analysis, neither inference about the obtained results. To surmount this problem, 
statisticians usually adopt Cohen’s Kappa coefficient, a measure to assess the accuracy in 
classification problems. 

 
5.1 Cohen’s Kappa Coefficient 
This coefficient was originally proposed by Cohen (Cohen, 1960), as a measure of agreement 
between rankings and opinions of different specialists. In pattern recognition, this coefficient 
determines a degree of agreement between the “ground truth” and the output of a given 
classifier. The better the classification performance, the higher is the Kappa value. In case of 
perfect agreement, Kappa is equal to one. The main motivation for the use of Kappa is that it 
has good statistical properties, such as asymptotic normality, and also the fact that it is 
easily computed from the confusion matrix. 
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As the name says, the MPM estimator is obtained by maximizing the posterior marginal 
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where k  is the number of steps needed to the sequence to stabilize and n  is a sufficiently 
large number of iterations so that the estimation is accurate at a certain reasonable 
computational cost. One problem with this approach is exactly how to choose these values 
(also known as magic numbers). Usually, they are both chosen empiracally. The pseudo-code 
for MPM, as described in (Dubes & Jain, 1989), is shown in Algorithm 2. 

 
5. Metrics for Performance Evaluation of Image Classification  
 

In order to evaluate the performance of the contextual classification in an objective way, the 
use of quantitative measures is required. Often, the most widely used criteria for evaluation 
of classification tasks are the correct classification rate and/or the estimated classification 
error (holdout, resubstitution). However, these measures do not allow robust statistical 
analysis, neither inference about the obtained results. To surmount this problem, 
statisticians usually adopt Cohen’s Kappa coefficient, a measure to assess the accuracy in 
classification problems. 

 
5.1 Cohen’s Kappa Coefficient 
This coefficient was originally proposed by Cohen (Cohen, 1960), as a measure of agreement 
between rankings and opinions of different specialists. In pattern recognition, this coefficient 
determines a degree of agreement between the “ground truth” and the output of a given 
classifier. The better the classification performance, the higher is the Kappa value. In case of 
perfect agreement, Kappa is equal to one. The main motivation for the use of Kappa is that it 
has good statistical properties, such as asymptotic normality, and also the fact that it is 
easily computed from the confusion matrix. 
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c. Replace x  by z  with probability p . 

4. Repeat (3) N times, saving the realizations from ( 1)lx   to ( )nx  

5. Calculate  |ijP x g y  for all pixels according equation (28). 
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a. Choose the label ˆ ijx  that maximizes the posterior marginal among all 

possible labels 

   ˆ | |ij ij ijP x x P x g  y y  

 
The expression for the Kappa coefficient from the confusion matrix is given by (Congalton, 
1991): 
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where iic  is an element of the confusion matrix, ix  is the sum of the elements of column i, 

ix   is the sum of the elements of the row i, c  is the number of classes and N is the number 
of training samples. The asymptotic variance of this estimator is given by: 
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6. Experiments and Results in Nuclear Magnetic Resonance Images 
 

In order to test and evaluate the contextual classification methods previously described in 
this chapter, we show some experiments in NMR images of marmocets brains, a monkey 
species often used in medical experiments. These images were acquired by the CInAPCe 
project, an abbreviation for the Portuguese expression “Inter-Institutional Cooperation to 
Support Brain Research”, a Brazilian research project that has as main purpose the 
establishment of a scientific network seeking the development of neuroscience research 
through multidisciplinary approaches. In this sense, pattern recognition can contribute to 
the development of new methods and tools for processing and analyzing magnetic 
resonance imaging and its integration with other methodologies in the investigation of 
epilepsies. Figure 9 shows the bands PD, T1 and T2 of a marmocet NMR multispectral brain 
image. 
 

   
Fig. 9. PD, T1 and T2 NMR image bands of the multispectral marmocet brain image. 
 
The contextual classification of the multispectral image was performed by applying both 
ICM and MPM using second and third order neighbourhood systems on several 
initializations provided by seven different pattern classifiers: Quadratic Bayesian Classifier 
(QDC) and Linear Bayesian Classifier (LDC) under Gaussian hypothesis, Parzen-Windows 
Classifier (PARZENC), K-Nearest Neighbour Classifier (KNNC), Logistic Classifier (LOGLC), 
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The contextual classification of the multispectral image was performed by applying both 
ICM and MPM using second and third order neighbourhood systems on several 
initializations provided by seven different pattern classifiers: Quadratic Bayesian Classifier 
(QDC) and Linear Bayesian Classifier (LDC) under Gaussian hypothesis, Parzen-Windows 
Classifier (PARZENC), K-Nearest Neighbour Classifier (KNNC), Logistic Classifier (LOGLC), 
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Nearest Mean Classifier (NMC) and Decision Tree Classifier (TREEC). All the experiments 
were implemented in MATLAB, using the pattern recognition toolbox PRTOOLS v.4.11, 
developed at Delft University, to provide the initializations through each one of the above 
classifiers. 
The experiments were conducted to clarify some hypotheses and conjectures regarding 
contextual classification. We want to verify the following hypothesis: 

A. Contextual classification is capable of significantly improving the performance of 
ordinary classification techniques (punctual methods). 

B. Different initializations can lead to statistically different contextual classification 
results (for the same iterative algorithm). 

C. The use of higher-order systems is capable of significantly improving the 
performance of contextual classification. 

D. Different contextual classification algorithms are capable of producing statistically 
different results (for the same initialization). 

We used 100 training samples for each class: white matter, gray matter and background. The 
classification errors and confusion matrix are estimated by the 10-Fold cross-validation 
method. Convergence was considered by achieving one of two conditions: less than 1% of 
the pixels are updated in the current iteration, or the maximum of 5 iterations is reached. 
Tables 6, 7, 8, 9 and 10 show the obtained results. 
 

Classifiers k̂  
2ˆ kappa  

PARZENC 0.7816 0.00031061 
KNNC 0.7550 0.00034100 
LOGLC 0.7583 0.00033502 

LDC 0.7716 0.00032177 
QDC 0.7866 0.00030515 
NMC 0.7850 0.00030629 

TREEC 0.6500 0.00044737 
Table 6. Kappa coefficients and variances for punctual classification results.  
 

Classifiers k̂  
2ˆkappa  

PARZENC 0.9783 3.5584e-005 
KNNC 0.9733 4.3614e-005 
LOGLC 0.9900 1.6553e-005 

LDC 0.9916 1.3811e-005 
QDC 0.9700 4.8952e-005 
NMC 0.9966 5.5431e-006 

TREEC 1.0000 0.0000 
Table 7. Kappa coefficients and variances for MPM classification on second order systems. 

Classifiers k̂  
2ˆkappa  

PARZENC 0.9966 5.5431e-006 

                                                 
1 Available online at http://www.prtools.org 

 

KNNC 1.0000 0.0000 
LOGLC 0.9950 8.3055e-006 

LDC 0.9966 5.5431e-006 
QDC 0.9966 5.5431e-006 
NMC 0.9933 1.1062e-005 

TREEC 0.9966 5.5431e-006 
Table 8. Kappa coefficients and variances for MPM classification on third order systems. 
 

Classifiers k̂  
2ˆkappa  

PARZENC 0.9700 4.8975e-005 
KNNC 0.9550 7.2614e-005 
LOGLC 0.9600 6.4864e-005 

LDC 0.9616 6.2206e-005 
QDC 0.9516 7.7788e-005 
NMC 0.9583 6.7446e-005 

TREEC 1.0000 0.0000 
Table 9. Kappa coefficients and variances for ICM classification on second order systems. 
 

Classifiers k̂  
2ˆkappa  

PARZENC 0.9983 2.7747e-006 
KNNC 0.9866 2.202e-005 
LOGLC 0.9983 2.7747e-006 

LDC 0.9950 8.3053e-006 
QDC 0.9850 2.4743e-005 
NMC 0.9950 8.3053e-006 

TREEC 1.0000 0.0000 
Table 10. Kappa coefficients and variances for ICM classification on third order systems. 

 
6.1 Statistical Analysis 
To test the hypothesis and validate the proposed methodology for contextual classification, 
both local (confidence intervals) and global (T test) analysis are performed. Let 1k  and 2k  
be the mean Kappa coefficients before and after the application of a given technique. 
Defining 1 2k k k  , it is desirable to test the following hypothesis: 
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The test statistic T, defined as follows, has a t-student distribution with n-1 degrees of 
freedom (n=7 in this case): 
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where k  denotes the standard deviation of the punctual differences. Thus, considering a 

  test size (i.e., 0.05   or 0.01  ), 0H  must be rejected if T is less than a critical value 

ct . This information, together with the p-values, allows a robust statistical analysis, as well as 
inferences about the problem in study. Note that the decision based on the T statistic is quite 
intuitive, since the greater the difference between the two means, more chance that we are 
dealing with distinct groups (captured by the numerator of T). On the other hand, the 
greater the variability of the results, more difficult is to detect differences on the means 
(captured by the denominator of T). 
To verify the hypothesis A, a T test was performed using the data presented in Tables 6 and 
9 (punctual classification x ICM on second order systems). Considering a test size 0.05  , 
we have a critical value of 1.943ct   . The obtained results indicate strong evidences 

against 0H , since 0.2098k   , 8.7741T   , leading to a p-value smaller than 0.0005. 

Therefore, we should reject 0H , assessing that combinatorial optimization algorithms can 
significantly improve the classification performance. Figure 10 shows a comparison of the 
visual results obtained by the LOGLC classifier and the LOGLC+ICM classification. 
 

  
Fig. 10. Comparison between classification maps for the marmocet brain multispectral NMR 
image obtained using LOGLC and LOGLC+ICM 
 
The hypothesis B was tested by simply constructing 95% confidence intervals (CI) for the 
respective Kappa coefficients. To illustrate the scenario, we compared the results of 
KNNC+ICM and TREEC+ICM classification form Table 9. The confidence intervals show 
that the results are statistically different, since for the KNNC+ICM we have [0.9387, 0.9713] 
and the TREEC+ICM provides a Kappa coefficient equal to one and with zero variance. 
Figure 11 compares the visual results. Actually, these results were expected since both 
combinatorial optimization algorithms ICM and MPM are sub-optimal, that is, they 
converge to different local maxima depending on the initialization. 
 

 

  
Fig. 11. Comparison between classification maps for the marmocet brain multispectral NMR 
image obtained using KNNC+ICM and TREEC+ICM. 
 
To test the third hypothesis (C), a T test was performed in data from Tables 9 and 10 to 
compare the mean performances. The results show that the mean performances are 
significantly different, since 0.0288k   , 5.8115T   , leading to a p-value smaller than 
0.005 and once again, strong evidences against 0H . Figures 12 and 13 shows a comparison 
between LOGLC+ICM and NMC+ICM on second and third order systems. 
 

  
Fig. 12. Classification maps for LOGLC+ICM and NMC+ICM on second order systems. 
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Fig. 13. Classification maps for LOGLC+ICM and NMC+ICM on third order systems. 
 
Finally, to test the last hypothesis, 95% confidence intervals were constructed using the 
Kappa coefficient values together with the asymptotic variances. From Tables 7 and 9 it is 
possible to observe that NMC+MPM produces the interval [0.9920, 1], while NMC+ICM 
gives [0.9423, 0.9743], assessing that the performances are significantly different. This results 
and the result obtained on testing the hypothesis B suggest that the use of classifier 
combination rules can be explored in contextual classification problems, since there is 
significant differences in the results, providing complementary information that can be used 
to improve the performance even more. Figure 14 shows a comparison between the results 
of MPM and ICM for the same initialization (NMC). 
 

  
Fig. 14. Classification maps for NMC+MPM and NMC+ICM on second order systems. 

 
7. Conclusions 
 

In this chapter we discussed three important problems in pattern recognition. First, the 
derivation of novel pseudo-likelihood equations for Potts MRF model parameter estimation 
on higher-order neighbourhood systems. Then, the accuracy of MPL estimation was 

 

assessed through approximations for the asymptotic variance of these estimators. Finally, 
multispectral image contextual classification was stated as a Bayesian inference problem. 
The obtained results show that the approach discussed here is valid, and more, is capable of 
significantly improving classification performance. Future works in this research area 
include the study about the efficiency of the MPL estimation through the analysis of 
necessary/sufficient conditions of information equality in MRF models, as well as the 
combination of contextual classifiers aiming for a further improvement in classification 
performance. 
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Fig. 13. Classification maps for LOGLC+ICM and NMC+ICM on third order systems. 
 
Finally, to test the last hypothesis, 95% confidence intervals were constructed using the 
Kappa coefficient values together with the asymptotic variances. From Tables 7 and 9 it is 
possible to observe that NMC+MPM produces the interval [0.9920, 1], while NMC+ICM 
gives [0.9423, 0.9743], assessing that the performances are significantly different. This results 
and the result obtained on testing the hypothesis B suggest that the use of classifier 
combination rules can be explored in contextual classification problems, since there is 
significant differences in the results, providing complementary information that can be used 
to improve the performance even more. Figure 14 shows a comparison between the results 
of MPM and ICM for the same initialization (NMC). 
 

  
Fig. 14. Classification maps for NMC+MPM and NMC+ICM on second order systems. 

 
7. Conclusions 
 

In this chapter we discussed three important problems in pattern recognition. First, the 
derivation of novel pseudo-likelihood equations for Potts MRF model parameter estimation 
on higher-order neighbourhood systems. Then, the accuracy of MPL estimation was 

 

assessed through approximations for the asymptotic variance of these estimators. Finally, 
multispectral image contextual classification was stated as a Bayesian inference problem. 
The obtained results show that the approach discussed here is valid, and more, is capable of 
significantly improving classification performance. Future works in this research area 
include the study about the efficiency of the MPL estimation through the analysis of 
necessary/sufficient conditions of information equality in MRF models, as well as the 
combination of contextual classifiers aiming for a further improvement in classification 
performance. 
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1. Introduction  

Many people working in Computer Vision and related areas, have, at some stage, thought 
about the possibility of developing a machine able to imitate the Human Visual System, i.e. 
to develop a computational model of human vision. However, to date, the goal of creating a 
general purpose vision system close, or even slightly close, to the robust and resilient 
capabilities of the human visual system remains unreachable (Vernon, 2006). 
In the history of Computer Vision many works related to this issue have been released. A 
survey about this subject is out of the scope of the present work, an introduction can be 
found in (Vernon, 2006). Nevertheless, we would like to draw our attention to two 
remarkable books dealing with human and computer vision appeared in mid 1980s. The 
authors were M. D. Levine and S. Watanabe (Levine, 1985; Watanabe, 1985). In addition to 
appearing the same year, they also turned out to be complementary to each other. In his 
book, Levine defined low-level and high-level tasks for computer and human vision. 
Related to computer vision, he defined the levels of analysis presented in Table 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Levels of Analysis for Computer Vision (by Levine). 

Level Description 
M + 3 3D Scene interpretation 
M + 2  3D Scene Description 
M + 1 2D Image description 
6 to M Higher level aggregation and model matching 

5 Discovery of structural relationships 
4 Feature classification 
3 Image segmentation and feature detection 
2 Preprocessing and restoration 
1 Sensor representation 
0 Scene 

13
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In his book, Levine dealt only with the levels from 0th to 3th, which correspond to the 
transformation from the raw sensed scene to a coded version of it. Watanabe, working 
independently, devoted his book to the 4th level, which corresponds to the task of pattern 
recognition. In their books, both authors presented and compared the human process of 
vision with the state-of-the-art of mathematical and computational developments at that 
time. However, they did not provide a computational model of human vision. 
The higher levels of analysis given in Table 1 would correspond to what is called perceptual 
organization. A review on this subject can be found in (Sarkar & Boyer, 1993). 
Recently, efforts to compile and group scattered research on this subject have led to the 
definition of a new Computer Vision field; the Cognitive Vision Systems. Although this new 
area is not yet well-defined (Christensen and Nagel, 2006; Vernon, 2008), Cognitive Vision 
Systems are defined by highlighting generic functionalities and non-functional attributes 
(Vernon, 2006). Thus, it is said that "a cognitive vision system can achieve four levels of 
generic functionality: Detection of an object or event in the visual field; Localization of the 
position and extent of a detected entity; Recognition of a localized entity by a labeling 
process; and Understanding or comprehending the role, context, and purpose of a recognized 
entity". It is easy to find that these functionalities match the computer vision levels of 
analysis provided by Levine in Table 1. But, in addition, the definition of Cognitive Vision 
Systems is extended underlining the fact that "they can engage in purposive goal-directed 
behavior, adapting to unforeseen changes of the visual environment, and anticipating the 
occurrence of objects or events. These capabilities (non-functional attributes) are achieved 
through; a faculty for learning semantic knowledge, and for the development of perceptual 
strategies and behaviors; the retention of knowledge about the environment, the cognitive 
system itself, and the relationship between the system and its environment; and the 
deliberation about objects and events in the environment, including cognitive system itself... 
The three non-functional attributes of purposive behavior, adaptability, and anticipation, taken 
together, allow a cognitive vision system to achieve certain goals, even in circumstances not 
expected when the system was designed". 
Under the term of Cognitive Vision many works have been developed recently (Christensen 
and Nagel, 2006; Vernon, 2008). Nevertheless, these works are devoted to specific aspects 
related to the Cognitive Vision processes, such as object recognition, adaptive knowledge, 
predictive element of cognition, and others, rather to define complete systems, which was 
the natural goal in early works, to develop a complete computer vision model imitating the 
human visual system. Nevertheless, this goal was, and continues to be, an unreachable 
target since the way that human vision actually works is mostly unknown, despite the 
advances on this subject achieved in the neurophysiology and psychology sciences (Levine, 
1985). At the moment, we can approach the human vision mainly from its functionality, and 
also try to provide it with higher level capabilities by adding some kind of artificial 
intelligence (non-functional attributes of Cognitive Vision Systems). Current knowledge 
about how the human vision system works is limited to the first levels of analysis (0th to 4th 
levels of analysis given in Table 1). Thus, it is only in these levels where we can propose 
approaches that strictly can be called biologically inspired, such as Visual Attention (García-
Díaz et al., 2008) for scene recognition and Visual Context Models (Ehtiati & Clark, 2004; 
Oliva & Torralba, 2007; Perko & Leonardis, 2008) to improve recognition performance. 
However, we think there are approaches inspired in the way humans carry out their 
cognitive vision at higher levels that can be considered biologically inspired. We refer to the 

 

way that humans organize visual information, object building from parts and localization in 
a given environment, and use it to achieve certain goals.  
In this context, we carry out a theoretical exercise and present here the outlines of one of the 
first complete designs1 for an artificial vision system which can be included within the 
definition of Cognitive Vision Systems; the BIVSEE system. This is biologically inspired (in 
the sense exposed in the previous paragraph) and also it is intended to imitate the early 
functionalities of the human visual system in enclosed environments2

We also present experimental work related to the scene recognition task, which is used in 
the scene location module to pre-localize sub-areas in the enclosed environment (the 
application scenario) and speed-up the computation of the tree description. For this purpose 
we use the saliency maps of a biologically inspired Visual Attention approach in 
combination with image features, SIFT (Lowe, 2004) and SURF (Bay et al., 2008) and find out 
the superiority of SIFT approach over SURF for the studied task. This is an interesting result 
as it is one of the few comparison works of these competitive methods in the area of image 
features

. The goal is to define a 
system able to perform basic recognition of objects, determine the spatial interrelations 
among the objects, and interact with the environment with a purposive goal, e.g. to survey a 
specific area, track a moving object, etc. We present a simple but valuable design which is a 
first approach on the path to develop wide-purpose humanlike vision systems, and it is 
intended to serve as the basis for future more complex developments. The system is defined 
through a cyclic and modular architecture that includes the following levels of analysis; 
preprocessing, scene location, tree description, analytic projection, and decision making.  

3

The system architecture is simple. It is based on a set of cyclically interconnected modules. 
Each module deals with a specific type of input data that is elaborated to provide 
appropriate data to the next module. The architecture (see Figure 1) starts with the camera, 
placed in a fixed location or mounted on a mobile device (robotic applications) to inspect the 
environment. The camera provides the first module with a stream of raw data composed of 
scene frames at a given rate (typically 5 fps correspond to robot navigation). The 
Preprocessing module improves the image data by applying image preprocessing techniques, 
e.g. noise removal. This module feeds the Scene Location module which localizes the current 
scene into one of the several sub-areas that set the complete environment. This will help, in 
next module, to reduce the search area within the reference tree. In the Tree Description 
module, segmentation techniques are used to divide the scene into homogeneous regions 
(regions with a homogeneous visual feature which can be a colour texture feature) which are 
used to build a tree data structure that describes the scene by means of the recognized 
objects present in it, and also compiles geometric and localization data for these objects. To 
carry out this recognition task it is necessary to use prior information which in this case is a 
reference tree which describes the complete scenario (the enclosed environment). This 
reference tree is the innate knowledge of the system and it must be previously created in a 

 (Bauer et al., 2007; Mikolajczyk & Schmid, 2005). 

 
2. BIVSEE Architecture 

                                                 
1 As far as we know in literature. 
2 Areas with a limited number of patterns and controlled illumination. 
3 Also called interest point detectors. 
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However, we think there are approaches inspired in the way humans carry out their 
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among the objects, and interact with the environment with a purposive goal, e.g. to survey a 
specific area, track a moving object, etc. We present a simple but valuable design which is a 
first approach on the path to develop wide-purpose humanlike vision systems, and it is 
intended to serve as the basis for future more complex developments. The system is defined 
through a cyclic and modular architecture that includes the following levels of analysis; 
preprocessing, scene location, tree description, analytic projection, and decision making.  
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The system architecture is simple. It is based on a set of cyclically interconnected modules. 
Each module deals with a specific type of input data that is elaborated to provide 
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placed in a fixed location or mounted on a mobile device (robotic applications) to inspect the 
environment. The camera provides the first module with a stream of raw data composed of 
scene frames at a given rate (typically 5 fps correspond to robot navigation). The 
Preprocessing module improves the image data by applying image preprocessing techniques, 
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supervised manner with the aid of human operators. The Tree Description module provides 
the next module, the Analytic Projection module, with a tree structure that includes the 
recognized objects and geometric and localization data of them in the current frame. Here 
the tree description is analyzed and projected into a semantic description of the scene.  This 
semantic description includes the objects present in the frame, their location, geometrical 
properties and spatial interrelations. Finally, the semantic description is used in the Decision 
Making module to elaborate and decide adequate actions coherent with the expected 
purposive behaviour of the system. For example, the system can be used to monitor the 
environment or track moving objects. The semantic description in the Analytic Projection 
module is performed using Semantic Networks, specifically the ERNEST formalism 
(Niemann et al., 1990) which contains extensions oriented to pattern recognition. Decision 
Making is carried out through the use of Decision Networks also called Influence Diagrams 
(Russell & Norvig, 2003). All the architecture cycle is intended to work at the frame rate 
provided by the camera. 
 

 
Fig. 1. BIVSEE Architecture. 

 
2.1 Preprocessing 
This module is used to enhance the original image data, which is commonly affected by 
noise and illumination variance (Petrou & Bosdogianni, 1999). The most usual kind of noise 
is Gaussian, which can be removed with an average filter. A median filter should be used 
instead in case of impulsive noise. With regards to the illumination variance, although 
enclosed environments are usually provided with controlled illumination, some kind of 
variability can still be present mainly due to the flicker effects introduced by lamps which 

Sementic  
Description 

 

operate directly from main frequency AC, e.g. fluorescents. In this case, it is better to 
manage it within the objects extraction stage, as suggested in the literature (Zhou et al., 
2006). In the literature, object extraction with variable illumination is dealt with using 
different approaches, such as colour constancy models, invariant features, or learning from 
many samples taken under different illumination conditions. We propose to use this last 
approach as we will see in Section 2.3. 

 
2.2 Scene Location 
This module receives the enhanced image data of the current frame and performs a pre-
localization of it into one of the several sub-areas that form the complete scenario (the 
complete enclosed environment). In a general case, a complex scenario can be composed by 
several sub-areas, e.g. an application scenario could be a University facility composed by 
several halls and rooms. This is the case of the data used in Section 3. In this case, the 
complete scenario is divided into seven sub-areas; hall-1, hall-2, hall-3, room-1, room-2, 
room-3 and room-4. If we pre-localize the current scene into a specific sub-area (through a 
scene recognition application) we can save computing time by reducing the search area 
within the reference tree, which is the prior information used to build the tree description of 
the current frame or scene.  
The scene recognition task is developed in Section 3, where also experimental work is 
presented. The scene recognition is carried out using a combination of saliency maps 
coming from a novel approach of Visual Attention and the SIFT and SURF image features. 

 
2.3 Tree Description 
This module receives the enhanced image data of current frame plus its localization into one 
of the several sub-areas that could form the complete scenario. These data is transformed 
into a tree data structure which describes the captured scene. This module implements the 
first levels in Table 1 from 0th to M+1 providing a 2D scene description. 
In this module, the image is first segmented into its different homogeneous components 
(regions with a homogeneous visual feature) using a state-of-the-art segmentation method. 
One generic and fast method that provides very good results is the Efficient Graph-Based 
Image Segmentation method, by (Felzenszwalb & Huttenlocher, 2004). 
Once we have segmented the image, it is divided into several regions. At this point we 
introduce the biologically inspired approach mentioned in Section 1 for higher levels of 
human vision. We, the humans, manage the visual data of a scene dividing it into objects 
and, at the same time, we compose these objects by grouping the several parts that form 
them (see Figure 2). In our approach we consider that each part of an object (an image 
region with a homogenous visual feature) has been correctly segmented by the 
segmentation algorithm. 
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region with a homogenous visual feature) has been correctly segmented by the 
segmentation algorithm. 
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Fig. 2. An artificial scene showing a computer and the different parts of it. 
 
Taking into account the decomposition of objects into their homogeneous parts, the enclosed 
environment, can be described through a tree structure that hierarchically compiles data 
about the segmented regions forming the different objects. Thus, the scene presented in 
Figure 2 would correspond to a tree data structure as it is shown in Figure 3. 
 

 
Fig. 3. Tree description of the scene presented in Figure 1. 
 
As we can see in Figure 3, the scene is decomposed from a primary node (Level 0) to several 
sub-nodes that refer to the objects present in Level 1. Also these objects are formed by the 
union of several leave-nodes (or final nodes) that correspond to the segmented areas 
achieved by the segmentation algorithm. Objects can be present in deeper levels of the tree, 
e.g. the mouse object could be decomposed into mouse and mousepad. These two last 
regions would be then leave-nodes in Level 3. 
If we go to a more general case, a complex scenario composed by several sub-areas, we 
could use the first level under the primary node to divide the complete scenario into 
different sub-areas. For example, a scenario could be a University facility composed by 
several halls and rooms. This is the case of the data used in Section 3 for experimental work. 
In this case, the complete scenario is divided into seven sub-areas; hall-1, hall-2, hall-3, 
room-1, room-2, room-3 and room-4. Then, from each one of these sub-areas, the different 
objects present in them would hold in the way shown in Figure 3. Going further, it would be 
possible to divide each sub-area into sub-sub-areas using another level at the beginning of 
the tree structure. 
 

 

RECOGNITION 
If we want the system to work with a specific scenario we should first create a prior 
information of this scenario. This prior information will be contained in a reference tree 
description of the scenario built in a supervised manner with the aid of human operators. 
This will give the innate knowledge to the system. The operators will study the segmented 
regions from the segmentation algorithm and from them compose the different objects 
building the reference tree data structure. In order to be able to perform object recognition 
from this prior information, we have to compile discriminative information into the leave-
nodes, classical pattern recognition data (e.g. colour, texture, shape, etc) for each segmented 
region. 
Once we have the reference tree that contains the prior information, the application will 
work using one or several cameras acquiring scenes in the enclosed environment. The idea 
is to provide the system with recognition information about what is being “seen” by the 
cameras. To do this, a segmentation method is applied and it divides the image into 
different homogeneous regions. After this, pattern recognition data compatible with that 
compiled for the leave-nodes in the reference tree is computed. This data is used to perform 
the recognition of these regions using one or more well-known pattern recognition methods 
(Duda et al., 2002). 
Once the segmented regions in the scene are recognized and classified using the pattern 
recognition data of the reference tree structure, a new tree corresponding to the current 
scene is built to describe the objects present in it. That way, the result of recognition is also a 
tree structure that describes the captured scene in the enclosed environment. 
In order to help to build the new tree for the current frame, we can define in the reference 
tree, for each object, what the object “is” using the regions that belong to it and the regions 
that do not belong to it. For example, the computer object in Figure 2 can be defined as: 
 

Computer = B+C+D+E (using the regions that belong to it)   (1) 
Computer = S-A  (using the regions that do not belong to it)  (2) 

 
Being S the complete scene. 
When we build the different objects in the current scene, we shall use different sets of 
regions that should maximize the first formula and minimize the second one. Thus, we can 
use a juxtaposition of formulas to find the correct set of segmented regions that correspond 
to a specific object in the reference tree (the prior information of the environment).  
Apart of compiling pattern recognition data in the leave-nodes, other important kind of 
information stored in the tree structure is geometric and localization information. 
Localization data, 2D position in a first approach or 3D in advanced developments, can be 
stored in leave-nodes and also in object-nodes. Geometric data can be also introduced in the 
nodes, e.g. the Fourier signatures (Loncaric, 1998). This will provide the next modules of the 
system with helpful high level information of the scene. Localization and geometric 
information in a specific node of the tree is always referred to the nodes that hold from it. 
If we want to introduce into the reference tree some kind of invariance to changes in 
illumination, scale, rotation and viewpoint, we can introduce in an object-node several 
representations of it, different sets of segmented regions (leave-nodes) corresponding to 
different illumination conditions, scales, viewpoints and rotations. 
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New objects can be introduced a posteriori in the prior information (the reference tree) with 
the aid of human operators. 
Computing time can be saved if the complete scenario is sub-divided into different sub-
areas in the reference tree. In this case, the search area within the reference tree used to carry 
out the recognition of leave-nodes and object building will be significatively reduced. 

 
2.4 Analytic Projection 
This module receives the tree data structure which describes the scene in the current frame. 
It is analyzed and then projected into a semantic description of the scene which includes the 
objects present in the frame, their location, geometry and spatial interrelations. The semantic 
description is performed using Semantic Networks. Specifically, we propose to use ERNEST 
semantic networks. 
Semantic networks were introduced in late sixties to model the semantics of English words 
(Quillian, 1969). These networks corresponded to directed, labelled graphs, where nodes 
contained information about objects, events or facts. Lately, semantic networks were 
improved to achieve problem-independent control algorithms giving rise to several 
semantic networks formalisms such as KRIPTON, NIKL, SB-ONE and ERNEST. We propose 
the ERNEST formalism (Niemann et al., 1990) because it contains useful extensions oriented 
to pattern recognition. 

 
2.5 Decision Making 
Finally, to implement the Decision Making module, which has to evaluate and decide 
adequate actions coherent with the expected purposive behaviour of the system, we turn to 
the areas of Decision Analysis (Machine Learning) and Artificial Intelligence. Among the 
variety of methods developed in these areas, we propose the use of decision networks 
(Russell & Norvig, 2003), also called influence diagrams. Decision networks are an extension 
of the Bayesian networks and they can be used to solve probabilistic inference problems 
(Bayesian networks) and also decision making problems (by using a maximum expected 
utility criterion). Decision networks are now widely used and are becoming an alternative to 
decision trees which typically suffer from exponential growth in the number of branches 
when new variables are added to the model. Although semantic networks can include 
control algorithms, that is, they can provide a semantic description and also implement the 
purposive behaviour of the system, we propose to use decision networks instead because 
they are more flexible and allow more complex decision schemes to be implemented, which 
is desirable if we want to extend system capabilities. 

 
3. Scene Recognition 

Scene recognition is used within the BIVSEE system to recognize local areas (sub-areas) in 
the global scenario, reducing the searching area in the reference tree and thus accelerating 
the recognition process. 
Here we present the experimental work that we have carried out related to this issue. We 
study how the use of a model of bottom-up saliency (visual attention), based on local energy 
and colour, can significantly accelerate scene recognition and, at the same time, preserve the 
recognition performance. We do this in the context of a mobile robot-like application where 

 

scene recognition is performed through the use of image features (SURF and SIFT 
alternatives are compared) to characterize the different scenarios, and the Nearest 
Neighbour rule to carry out the classification. Experimental work shows that SIFT features 
are the best alternative achieving important reductions in the size of the database of 
prototypes without significant losses in recognition performance and thus accelerating the 
scene recognition task. 

 
3.1 Introduction 
Visual attention is related with the process by which the human visual system is able to 
select [from a scene] regions of interest that contain salient information, reducing the 
amount of information to be processed and therefore the complexity of viewing (Treisman & 
Gelade, 1980; Koch & Ullman, 1985). In the last decade, several computational models 
biologically inspired have been released to implement visual attention in image and video 
processing (García-Díaz et al., 2008; Itti and Koch, 2000; Milanese et al., 1995). Visual 
attention has also been used to improve object recognition and scene analysis (Bonaiuto & 
Itti, 2005; Walther et al., 2005). 
We study the utility of using a recently presented novel model of bottom-up saliency 
(García-Díaz et al., 2008) to improve a scene recognition application by reducing the amount 
of prototypes needed to carry out the classification. The application is based on mobile 
robot-like video sequences taken in an indoor university area formed by several rooms and 
halls. The aim is to recognize the different scenarios in order to provide a mobile robot 
system with general location data. 
The visual attention approach that we use (García-Díaz et al., 2008) is a novel model for the 
implementation of the Koch & Ullman (Koch & Ullman, 1985) architecture of bottom-up 
saliency for static images. Two features are used to measure the saliency: local energy and 
colour. From them, we extract local maxima of variability through the decorrelation of 
responses and the measurement of statistical distance, followed by a non-linear local 
maxima excitation process to deliver a final map of saliency. With this method we obtain 
saliency areas in images that point out to relevant regions from the point of view of visual 
attention. In addition, saliency is not measured in a binary manner (salient or not) but scaled 
from 0 to 1, which permits to determine different levels of relevance by simply thresholding 
the saliency map. 
Scene recognition is performed using SIFT (Lowe, 2004) and SURF (Bay et al., 2008) image 
features (two different approaches which are compared) and the Nearest Neighbour rule. 
SIFT features are distinctive image features that are invariant to image scale and rotation, 
and partially invariant to change in illumination and 3D viewpoint. They are fast [to 
compute] and robust to disruptions due to occlusion, clutter or noise. SIFT features have 
proven to be useful in many object recognition applications and currently they are 
considered the state-of-the-art for general purpose real-world object learning and 
recognition, together with SURF features. SURF is a robust image descriptor, first presented 
by Herbert Bay et al. in 2006 (Bay et al., 2006), that can be used in computer vision tasks like 
object recognition or 3D reconstruction. It is partly inspired by the SIFT descriptor. The 
standard version of SURF is several times faster than SIFT and claimed by its authors to be 
more robust against different image transformations than SIFT. 
Results of experimental work have shown that the use of saliency maps in combination with 
SIFT features permit to drastically reduce the size of the database of prototypes, used in the 
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1-NN recognition process, achieving very good recognition performance. Thus, the 
computing costs of classification are reduced proportionally to the database size and the 
scene recognition application is accelerated. The database was reduced to 10.6% of its 
original size achieving a recognition performance of 91.9%, only a drop of 3.4% from the 
original performance 95.3% achieved without using saliency maps. 
 
3.2 Visual Attention 
In this model, following the standard model of V1, we use a decomposition of the image by 
means of a Gabor-like bank of filters. We employ two feature dimensions: colour and local 
energy. By decorrelating responses and extracting local maxima of variability we obtain a 
unique, and efficient, measure of saliency. 
Local Energy and Colour Maps. Local energy is extracted through the convolution of the 
intensity, the average of the three channels r, g and b, with a bank of log Gabor filters (Field, 
1987), which presents a number of advantages against Gabor filters, have complex valued 
responses. Hence, they provide in each scale and orientation a pair of filters in phase 
quadrature (Kovesi, 1996), an even filter and its Hilbert transform, an odd filter; allowing us 
to extract local energy as the modulus (Morrone and Burr, 1988) of the response to this filter 
vector. A more detailed description of our approach to local energy extraction can be found 
in (García-Díaz et al., 2008). With regards to Colour Maps, we extract first two colour 
opponent components: r/g and b/y. From them we obtain a multi-scale centre-surround 
representation obtained from the responses of the two double opponent components to 
high-pass logarithmic Gaussian filters. By subtracting large scales from small scales (1-3, 1-4, 
2-4, 2-5), we obtain a pyramid of four centre-surround maps for each colour component, r/g 
and b/y. 
Measurement of Variability. Difference and richness of structural content have been 
proven as driving attention in psychophysical experiments (Zetzsche, 2005). Observations 
from neurobiology show decorrelation of neural responses, as well as an increased 
population sparseness in comparison to what can be expected from a standard Gabor-like 
representation (Vinje & Gallant, 2000)(Weliky et al., 2003). Hence, we use decorrelation of 
the responses to further measure the statistical distance of local structure from the average 
structure. To decorrelate the multi-scale information of each sub-feature (orientations and 
colour components) we perform a PCA on the corresponding sets of scales. From the 
decorrelated responses, we extract the statistical distance at each point as the T2 of 
Hotelling. 
Excitation of Local Maxima. Once the structural distance within each sub-feature has been 
measured, we force a spatial competition exciting local maxima in a non-linear approach 
already described in (García-Díaz et al., 2008). Next, we fuse the resultant sub-feature maps 
simply gathering the surviving maxima, with a max() operation, in a local energy saliency 
map, and in a colour saliency map. Finally, we repeat the process, with these two maps to 
extract a final measure of salience. All the process is illustrated in Figure 4. 
 

 

 
Fig. 4. Saliency computation using the bottom-up model of visual attention. 

 
3.3 Scene Recognition Application 
Scene recognition or classification is related with the recognition of general scenarios rather 
than local objects. This approach is useful in many applications such as mobile robot 
navigation, image retrieval, extraction of contextual information for object recognition, and 
even to provide access to tourist information using camera phones, apart of its use within 
the BIVSEE system to pre-localize sub-areas in the global scenario. In our case, we are 
interested in recognize a set of different areas which are part of the facilities of the 
Electronics and Computer Science Department of the University of Santiago de Compostela. 
These facilities are formed by four class rooms and three halls that connect them. The final 
aim is to provide general location data useful for the navigation of a mobile robot system. 
Scene recognition is commonly performed using generic image features that try to collect 
enough information to be able to distinguish the different scenarios. In our case, to achieve 
this aim, we used image features comparing the SIFT and SURF alternatives. 
With regards to SIFT features, we used Lowe’s algorithm  (Lowe, 2004) which is applied to 
each image [or frame] and works as follows. To identify candidate keypoint locations, scale 
space extrema are found in a difference-of-Gaussian (DoG) function convolved with the 
image. The extremas are found by comparing each point with its neighbours in the current 
image and adjacent scales. Points are selected as candidate keypoint locations if they are the 
maximum or minimum value in their neighbourhood. Then image gradients and 
orientations, at each pixel of the Gaussian convolved image at each scale, are computed. For 
each key location an orientation, determined by the peak of a histogram of previously 
computed neighbourhood orientations, is assigned. Once the orientation, scale, and location 
of the keypoints have been computed, invariance to these values is achieved by computing 
the keypoint local feature descriptors relative to them. Local feature descriptors are 128-
dimensional vectors obtained from the pre-computed image orientations and gradients 
around the keypoints. With regards to SURF features (Bay et al., 2008), they are based on 
sums of 2D Haar wavelet responses and make an efficient use of integral images. As basic 
image descriptors they use a Haar wavelet approximation of the determinant of Hessian 
blob detector. There are two SURF versions: the standard version which uses a descriptor 
vector of 64 components (SURF-64), and the extended version (SUFR-128) which uses 128 
components. SURF are robust image features partly inspired by the SIFT features, and the 
standard version of SURF is several times faster than SIFT. 
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components. SURF are robust image features partly inspired by the SIFT features, and the 
standard version of SURF is several times faster than SIFT. 
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To compute the SIFT features we used Lowe’s original implementation4. We also used the 
original implementation of SURF features5 by Bay et al (see Figure 5). 
To carry out the classification task we used the 1-NN rule, which is a simple classification 
approach but fast [to compute] and robust. For this approach, we need to previously build a 
database of prototypes that will collect the recognition knowledge of the classifier. These 
prototypes are in fact a set of labelled SIFT/SURF keypoints obtained from training frames. 
The class (or label) of the keypoints computed for a specific training frame will be that 
previously assigned to this frame in an off-line supervised labelling process. This database is 
then incorporated into the 1-NN classifier, which uses the Euclidean distance to select the 
closest prototype to the test SIFT/SURF keypoint being classified. The class of the test 
keypoint will be assigned to the class of the closest prototype in the database, and finally, 
the class of the test frame will be that of the majority of its test keypoints. 
 

     
Fig. 5. SIFT (left) and SURF (right) keypoints computed on the same frame. 

 
3.4 Experiments and Results 
Experimental work consisted in a set of experiments carried out using four video sequences 
taken in a robot-navigation manner. These video sequences were grabbed in an university 
area covering several rooms and halls. Sequences were taken at 5 fps collecting a total 
number of 2,174 frames (7:15 minutes) for the first sequence, 1,986 frames for the second 
(6:37 minutes), 1,816 frames for the third (6:03 minutes) and 1,753 frames for the fourth (5:50 
minutes). The first and third sequences were taken following and specific order of halls and 
rooms: hall-1, room-1, hall-1, room-2, hall-1, room-3, hall-1, hall-2, hall-3, room-4, hall-3, 
hall-2, hall-1. The second and fourth sequences were grabbed following the opposite order. 
This was done to collect all possible viewpoints of the robot-navigation through these 
University facilities. In all the experiments, we used the first and second sequences for 
training and the third and fourth ones for testing. 
In the first experiment we computed the SIFT keypoints for all the frames of the training 
video sequences. Then, we labelled these keypoints with the corresponding frame class. The 
labels we used were: room-1, room-2, room-3, room-4, hall-1, hall-2 and hall-3. The whole 
set of labelled keypoints formed itself the database of prototypes to be used by the 1-NN 
classifier to carry out the classification on the testing sequences. For each frame of the testing 
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sequences their corresponding SIFT keypoints were computed and classified. The final 
frame class was set to the majority class within its keypoints. This experiment achieved very 
good recognition performance, 95.25% of correct frame classification, although, an 
important drawback was the high computational costs of classification, despite the fact that 
the 1-NN is a simple classifier. This was due to the very large size of the knowledge 
database of prototypes formed by 1,170,215 samples.  
In the next experiment, we followed the previous steps but using SURF features instead of 
SIFT features. In this case, the recognition results were very bad achieving only 35.09% of 
recognition performance with SURF-128 (version that uses 128 descriptors per keypoint), 
and 25.05% of recognition performance using SURF-64 (faster version which uses only 64 
descriptors). In both cases the size of the database of prototypes was 415,845. 
Although there are well known techniques for NN classifiers to optimize the database of 
prototypes (e.g. feature selection, feature extraction, condensing, editing) and also for the 
acceleration of the classification computation (e.g. kd-trees), at this point we are interested in 
the utility of using the saliency maps derived from the Visual Attention approach shown in 
Section 3.2. The idea is to achieve a significant reduction of the original database by selecting 
in each training frame only those keypoints that are included within the saliency map 
computed for this frame. Also, in recognition, only those keypoints lying within the saliency 
maps, computed for the testing frames, will be considered for classification. Once the 
database is reduced that way, optimizing techniques could be used to achieve even further 
improvements. 
 

      
Fig. 6. A frame processed using its saliency map at threshold 0.250. 
 
In the next experiment we carried out the idea exposed in the previous paragraph. 
Nevertheless, we wanted to explore more in-depth the possibilities of saliency maps. As it 
was commented, saliency measures are set in a range between 0 and 1, thus, we can choose 
different levels of saliency by simply using thresholds. We will be the least restrictive if we 
choose a saliency > 0.000, and more restrictive if we choose higher levels (e.g. 0.125, 0.250, 
etc). We planed to use 8 different saliency levels or thresholds: 0.000, 0.125, 0.250, 0.375, 
0.500, 0.625, 0.750 and 0.875. For each of these levels we carried out the recognition 
experiment (see Figure 6), and two were the results obtained: the percentage of recognition 
performance for each saliency level, and the size reduction of the original database. Results 
using SIFT and SURF features are shown in Tables 2 and 3 and Figures 7 and 8. 
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 Recognition % Database Size Database Size % 
Original 95.3 1,170,215 100.0 

Saliency > 0.000 94.9 870,455 74.4 
Saliency > 0.125 94.2 340,517 29.2 
Saliency > 0.250 93.2 200,097 17.1 
Saliency > 0.375 91.9 123,463 10.6 
Saliency > 0.500 89.7 76,543 6.6 
Saliency > 0.650 84.6 45,982 4.9 
Saliency > 0.750 64.8 24,525 2.1 
Saliency > 0.875 29.3 9,814 0.8 

Table 2. Results achieved using original frames and saliency maps with SIFT features. 
 

 Recognition % Database Size Database Size % 
Original 35.1 415,845 100.0 

Saliency > 0.000 33.0 334,159 80.4 
Saliency > 0.125 72.2 141,524 34.0 
Saliency > 0.250 73.9 84,599 20.3 
Saliency > 0.375 69.2 52,682 12.7 
Saliency > 0.500 59.3 32,715 7.9 
Saliency > 0.650 40.2 19,794 4.8 
Saliency > 0.750 41.4 10,583 2.6 
Saliency > 0.875 20.7 4,373 1.1 

Table 3. Results achieved using original frames and saliency maps with SURF-128 features. 
 

 
Fig. 7. Graphical results of recognition and database size using SIFT features. 
 

 

 
Fig. 8. Graphical results of recognition and database size using SURF-128 features. 
 
Experimental results clearly show that although SURF features have the advantage that they 
collect significantly less keypoints than SIFT (approximately half of them) their performance 
results are not adequate for the application of scene recognition that we are studying. 
Nevertheless, they have proven to be adequate, and faster than SIFT features, in other 
applications (Bay et al., 2008). 
Another interesting result with regards to the SIFT/SURF comparison is the following. In 
Figure 8, we can see that SURF-128 performance recognition improves as we use more 
restrictive saliency maps, with a 73.9% of maximum performance at 0.250 saliency 
threshold, then it drops from threshold 0.375 on. This result shows that SURF descriptors 
loose distinctiveness as we use more keypoints in each frame (less restrictive saliency maps). 
This fact does not occur when we use SIFT features, thus, SIFT descriptors show more 
distinctiveness than SURF descriptors when using very large keypoint databases. 
Finally, we have to point out that the best results are achieved using SIFT features, and also 
that saliency maps can reduce the amount of prototypes in the knowledge database and 
testing images up to one order of magnitude, while the recognition performance is held, 
saliency threshold 0.375 at Figure 7 and Table 2. In this case, the recognition performance 
drops to 91.9% (only 3.4 points from the maximum 95.3%) while the database size 
drastically falls from 1,170,215 to 123,463 prototypes. 

 
4. Summary 

In this chapter we have presented the outlines of a complete design for a Cognitive Vision 
System which includes in its development methods of biological inspiration, that is, 
methods inspired in the way humans perform our vision task. The BIVSEE system, is a 
system able to perform basic recognition of objects, determine the spatial interrelations 
among the objects, and interact with the environment with a purposive goal. We have 
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presented a valuable simple design which is intended to serve as the basis for future more 
complex developments. 
The system is defined through an architecture composed of fifth cyclically interconnected 
modules; Preprocessing, Scene Location, Tree Description, Analytic Projection and Decision 
Making. Each of these modules deals with a specific type of input data which is elaborated to 
provide the next module with adequate data. The Preprocessing module enhances the raw 
image (frame) acquired by the camera sensor. Then, the enhanced frame is passed to the 
Scene Location module which pre-localizes the scene into one of the several sub-areas of the 
complete scenario or environment. Then, the Tree Description module using a reference tree 
of the complete enclosed environment generates a tree data structure that describes the 
scene; the objects present in the scene and also geometric and localization data on these 
objects. This data is passed to the Analytic Projection module which elaborates this data to 
produce a semantic description of the scene. We propose to use the ENERST formalism of 
semantic networks to carry out this task. ENERST networks provide useful extension for 
pattern recognition, which is coherent with the kind of information that the system has to 
manage. This semantic description includes the objects present in the scene, their geometry, 
location and spatial interrelations. Finally, the semantic description is the input data used in 
the Decision Making module to decide the adequate actions coherent with the purposive 
behaviour that we want to implement into the system. For this module we propose to use 
Decision Networks. They come from the areas of Decision Analysis and Artificial 
Intelligence and allow implementing complex decision schemes. 
All the system cycle is intended to work at the frame ratio provided by the camera, which 
usually is of 5 frames per second in robot-navigation applications. 
In the second part of the chapter we present an application and experimental work related 
to the scene recognition task, which is used in the Scene Location module of the BIVSEE 
system to recognize specific sub-areas of the enclosed environment and thus reduce the 
search area in the reference tree. This will be useful to accelerate the computation of the tree 
description of the current frame.  
The scene recognition is performed using a biologically inspired Visual Attention approach 
in combination with image features or interest point detectors. We compare the SIFT and 
SURF approaches to extract image features. These two competitive approaches belong to the 
current state-of-the-art in this area and their comparison is a current issue in literature. 
Experimental results show that although SURF features imply less interest points, the best 
performance corresponds to SIFT features. The SIFT method achieves a 95.3% of correct 
scene recognition in the best case, while SURF method only reach to 73.9%. Another 
important result is achieved when we use the saliency maps from the Visual Attention 
approach. Using these saliency maps we can drastically reduce the database of prototypes 
used in the scene recognition application (up to one order of magnitude) without a 
significant loss in recognition performance, and thus it can accelerate the scene recognition 
process. In addition, experiments show that SURF features are less distinctive than SIFT 
features when the number of prototypes in the database grows.  
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1. Introduction 
 

During the past three decades, extensive research has been conducted on automatically 
recognising the identity of individuals from their facial images. In spite of the existence of 
alternative technologies such as fingerprint and iris recognition, human face remains one of 
the most popular cues for identity recognition in biometrics. Face recognition possesses the 
non-intrusive nature and are often effective without the participant's cooperation or 
knowledge. It makes a good compromise between performance reliability and social 
acceptance and well balances security and privacy. Other biometric methods do not possess 
these advantages. For instance, fingerprint recognition methods require the subjects to 
cooperate in making explicit physical contact with the sensor surface (Maltoni et al., 2003). 
Similarly, iris recognition methods require the subjects to cooperate in placing their eyes 
carefully relative to the camera. Nowadays, automatic face recognition has become one of 
the most active research topics in computer vision and pattern recognition, and received 
much attention from both scientific and engineering communities. 
The immediate motivation for this growing interest stems from various commercial 
applications relating to security and surveillance, such as bankcard identification, access 
control, airport monitoring and law enforcement. The availability of public large-scale 
datasets of face images, e.g. (Bailly-Bailliére et al., 2003; Martínez & Benavente, 1998; Messer 
et al., 1999; Phillips et al., 2005; Phillips et al., 1998; Sim et al., 2003), and evaluation protocols 
for assessing the performance of different techniques, e.g. (Bailly-Bailliére et al., 2003; 
Beveridge et al., 2005; Gao et al., 2008; Messer et al., 1999; Phillips et al., 2005; Phillips et al., 
2000), further advances the development of face recognition algorithms. Possibly, 
understanding of our human selves also forms a motivating factor of face recognition 
(Martínez et al., 2003). In fact, researchers have investigated various issues related to face 
recognition by humans and machines. Many studies in psychophysics and neuroscience 
have direct relevance to engineers working on designing algorithms or systems for face 
recognition (Zhao et al., 2003). 
The purpose of face recognition is to visually identify or verify one or more persons from 
input still or video images. This task is performed by matching the input images (also 
known as the probe) against the model images (also known as the gallery), which are the 
faces of known people in a database. A typical face recognition system contains four major 
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steps: 1) face detection, in which the presence of one or more faces in an input image is 
detected and the rough positions of these faces are located; 2) face localisation, in which the 
accurate positions and sizes of faces are decided; 3) feature extraction, in which 
discriminative features are extracted from each face region to represent identity information. 
A prior face normalisation procedure may be involved in this step; and 4) feature 
classification, in which discriminative features are fed into the classification algorithm for 
identification or verification. After more than 30 years of research, the state-of-the-art face 
recognition techniques have demonstrated a certain level of maturity on large databases in 
well-controlled environments (Li & Jain, 2005; Matas et al., 2000; Messer et al., 2004a; Messer 
et al., 2004b; Messer et al., 2003; Phillips et al., 2003; Phillips et al., 2000; Zhao et al., 2003). 
Nevertheless, face recognition in uncontrolled conditions is still challenging and far from 
adequate to deal with most general purpose tasks (Li & Jain, 2005; Phillips et al., 2006; 
Phillips et al., 2003; Phillips et al., 2007; Zhao et al., 2003). A wide range of variations are 
inevitable when face images are acquired in an uncontrolled and uncooperative scenario. 
These variations, such as pose variation, illumination variation and facial expression 
variation, can cause serious performance degradation, and thus form important challenges 
to be solved in the research community. 
Existing technologies for face recognition can be roughly classified into holistic approaches 
and analytic approaches. Using information derived from the whole face image, holistic 
approaches, such as Eigenface (Turk & Pentland, 1991) and Fisherface (Belhumeur et al., 
1997), are conceptually simple and easy to implement, but their performance is affected by 
facial expression, pose and illumination changes in practice. On the other hand, analytic 
approaches, such as Elastic Bunch Graph Matching (EBGM) (Lades et al., 1993; Wiskott et 
al., 1997), Line Edge Map (LEM) (Gao & Leung, 2002) and Directional Corner Point (DCP) 
(Gao & Qi, 2005), extract local information from salient facial features to distinguish faces. 
Represented by a set of low dimensional local feature vectors, these methods have the 
advantage of robustness to environmental variations. Recently, the Local Binary Pattern 
(LBP) approach (Ahonen et al., 2004; Ahonen et al., 2006) has proven to be a quite successful 
achievement for face recognition, providing a new way of investigation into face analysis. 
As a non-parametric local descriptor, LBP was originally designed for texture description 
(Ojala et al., 1996; Ojala et al., 2002; Ojala et al., 2001), but later extended to face recognition 
and outperformed existing methods such as PCA, Bayesian and EBGM methods (Ahonen et 
al., 2006). Two most important properties of the LBP operator in real-world applications are 
its computational efficiency and robustness against monotonic gray-level changes. The first 
property makes it possible to analyse images in challenging real-time settings. LBP has also 
been applied to facial expression analysis (Zhao & Pietikäinen, 2007) and background 
modelling (Heikkilä & Pietikäinen, 2006). 
The basic principle of LBP is that a face can be seen as a composition of micropatterns 
generated by the concatenation of the circular binary gradients. The statistical distribution 
(histogram) of these illumination invariant micropatterns is used as a discriminative feature 
for identification. The LBP operator is, by design, suitable for modelling repetitive texture 
patches, and is sensitive to random and quantisation noise in uniform image areas. Due to 
the fact that a holistic LBP histogramming retains only the frequencies of micropatterns and 
discards all information about their spatial layout, Ahonen et al. (2006) employed a spatially 
enhanced histogram for face recognition, which is extracted from evenly divided subregions 
of a face, followed by a histogram concatenation. This arbitrary spatial partition is not in 

 

accordance with local facial morphology, and thus inevitably leads to loss of discriminative 
power. 
In this chapter, we propose to extract micropatterns from the neighbourhoods of a sparse set 
of shape-driven points which are detected from edge map with rich information content on 
a face image. Both the number and the locations of the points vary with different individuals 
such that diverse facial characteristics of these individuals can be represented. To enhance 
the discriminative power of micropatterns, we also propose a Multidirectional Binary 
Pattern (MBP) to reflect binary patterns spanning multiple directions. The new 
representation is capable of describing both global structure and local texture, and also 
significantly reduces the high dimensionality of LBP histogram description. It inherits most 
of the other advantages of LBP such as computational efficiency and exemption from 
training. Besides, the proposed method can effectively alleviate the problem of sensitivity to 
random noise in uniform image areas, because MBP features are only extracted from the 
neighbourhoods of the sparse points, which are generally non-uniform areas. Using a new 
MBP measurement, we performed an investigation and evaluation of the proposed method 
for establishing point correspondence on the publicly available AR face database (Martínez 
& Benavente, 1998). A higher recognition accuracy than that of the Directional Corner Point 
(DCP) method (Gao & Qi, 2005) was obtained in our experiments, demonstrating the 
validity of this method on face recognition. 
The remainder of this chapter is organised as follows. Section 2 presents the details of the 
proposed MBP representation, which is derived from a detection algorithm of sparse points 
and an illumination-insensitive pattern descriptor attached on each point. Section 3 
describes using the specially designed MBP measurement to establish the correspondence 
among sparse points. In Section 4, the proposed method is experimentally evaluated 
through comparative experiments on the AR database. The last section summarises this 
chapter. 

 
2. Representation 
 

In this section, we first present a brief introduction of Local Binary Pattern (LBP), and then 
propose a new Multidirectional Binary Pattern (MBP). MBP is extracted from a sparse set of 
shape-driven points. This is different from most LBP approaches that cluster LBP 
occurrences from local image patches and thus can better represent both global structure 
and local texture for coding a face. 

 
2.1 Local Binary Pattern 
Initially derived from texture analysis community, the LBP operator was created as a gray-
level invariant texture measure to model texture images (Ojala et al., 1996; Ojala et al., 2002; 
Ojala et al., 2001). Later, it demonstrated excellent performance in many other research 
fields in terms of both speed and discrimination capability (Ahonen et al., 2006; Heikkilä & 
Pietikäinen, 2006; Zhao & Pietikäinen, 2007). 
Specifically, the LBP operator marks each pixel cI  of an image as a decimal number 

, ( )P R cLBP I , which is formed by thresholding the P equally spaced neighbour pixels 

,  ( 0, , 1)p RI p P= −  on a circle of radius R with the centre pixel cI  and concatenating the 

results binomially with factor 2 p : 
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and an illumination-insensitive pattern descriptor attached on each point. Section 3 
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If the coordinate of cI  is (0,  0) , the coordinates of ,p RI  are given by 
( sin(2 / ),  cos(2 / ))R p P R p Pπ π− . The gray-level values of neighbours ,p RI  not falling exactly 
in the centre of pixels are estimated by interpolation (Ojala et al., 2002). Fig. 1 illustrates an 
example of obtaining a LBP micropattern 8,1LBP  with the parameters 8P =  and 1R = . 
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Fig. 1. The LBP operator. 

 
2.2 Sparse points detection 
The edges in an image reflect large local intensity changes that are caused by the geometric 
structure of the object, the characteristics of the surface reflectance of the object and the 
viewing direction (Gao & Leung, 2002). Containing spatial information, a sparse set of 
points is detected at positions which have rich edge information in a face image. In contrast 
to traditional methods where feature points are often predefined as the locations of eyes, 
nose, mouth, etc., we do not fix either the number or the locations of the sparse points. The 
number of the sparse points and their locations can vary in order to better represent diverse 
facial characteristics of different persons, such as dimples, moles, etc. These diverse features 
are also important cues that humans might use for recognising faces. 
In order to ensure less demand on storage space and less sensitivity to illumination changes, 
the sparse points should be placed on the significant edge curves with high curvatures. 
While any general edge detection method can be used to detect the sparse points, we use an 
edge detector from (Nevatia & Babu, 1980), followed by the Dynamic Two-Strip algorithm 
(Dyn2S) (Leung & Yang, 1990) to obtain these points. After the edge map of a face image is 
detected, a strip is fitted to the left and right of each point on an edge curve, and the points 
inside each strip are approximated as a straight line. The orientation and width of the strip 
are adjusted automatically. Longer and narrower strips are favoured. In addition, the 
curvature and a measure of merit of each point can be calculated. Sparse points are selected 
in a three-step procedure: 
1) Points with a small merit compared to their neighbours are eliminated. 
2) A number of points, chosen from any points that are not covered by one of the 

strips selected in the first step, are reinstated to avoid over-elimination. 

 

3) Points that align approximately on a straight line are deleted except for the two 
endpoints on the curve. 

The remaining points after these steps are the detected sparse points. Fig. 2 illustrates two 
examples of sparse points superimposed on the original face image from the AR database. 
 

     
Fig. 2. Detected sparse points. 

 
2.3 Multidirectional Binary Pattern 
After the sparse points are detected, MBPs are extracted from these point positions. A MBP 
is defined as a pattern set which consists of four bunches of directional binary patterns: 
Horizontal Binary Patterns (HBPs), Vertical Binary Patterns (VBPs), Ascending Binary 
Patterns (ABPs) and Descending Binary Patterns (DBPs). In other words, MBP is composed 
of binary pattern bunches collected from four different directions. Fig. 3 visually illustrates 
the positions covered by these four pattern bunches. Similar to LBP, the pixels in the 
neighbourhoods are thresholded with the value of the centre pixel, and then linearly 
concatenated into four directional binary patterns as a local descriptor. One difference 
between MBP and LBP is that MBP is kept as original binary patterns, without being 
transformed into decimal figures for histogramming as in LBP. It should be noted that 
although the four bunches of directional binary patterns may be derived from the same 
pixels, the pattern-level features they represent are different. This is demonstrated from the 
example in Fig. 4. Mathematically, a MBP set takes the form 

, , , ,{ , , , }L N L N L N L NMBP HBP VBP ABP DBP=  (3) 
where HBP, VBP, ABP, and DBP refer to the four bunches of directional binary patterns 
respectively, with each bunch containing N binary patterns of the length L. For instance, the 
bunch of HBPs can be represented as 

, ,1 ,2 ,{ , , , }L N L L L NHBP HBP HBP HBP=   (4) 
where each HBP is composed of concatenated L binary values: 

, (1, ) (2, ) ( , )[ ( ), ( ), , ( )].    1L n H n c H n c H L n cHBP T I I T I I T I I n N= − − − ≤ ≤  (5) 
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are adjusted automatically. Longer and narrower strips are favoured. In addition, the 
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in a three-step procedure: 
1) Points with a small merit compared to their neighbours are eliminated. 
2) A number of points, chosen from any points that are not covered by one of the 

strips selected in the first step, are reinstated to avoid over-elimination. 

 

3) Points that align approximately on a straight line are deleted except for the two 
endpoints on the curve. 

The remaining points after these steps are the detected sparse points. Fig. 2 illustrates two 
examples of sparse points superimposed on the original face image from the AR database. 
 

     
Fig. 2. Detected sparse points. 

 
2.3 Multidirectional Binary Pattern 
After the sparse points are detected, MBPs are extracted from these point positions. A MBP 
is defined as a pattern set which consists of four bunches of directional binary patterns: 
Horizontal Binary Patterns (HBPs), Vertical Binary Patterns (VBPs), Ascending Binary 
Patterns (ABPs) and Descending Binary Patterns (DBPs). In other words, MBP is composed 
of binary pattern bunches collected from four different directions. Fig. 3 visually illustrates 
the positions covered by these four pattern bunches. Similar to LBP, the pixels in the 
neighbourhoods are thresholded with the value of the centre pixel, and then linearly 
concatenated into four directional binary patterns as a local descriptor. One difference 
between MBP and LBP is that MBP is kept as original binary patterns, without being 
transformed into decimal figures for histogramming as in LBP. It should be noted that 
although the four bunches of directional binary patterns may be derived from the same 
pixels, the pattern-level features they represent are different. This is demonstrated from the 
example in Fig. 4. Mathematically, a MBP set takes the form 

, , , ,{ , , , }L N L N L N L NMBP HBP VBP ABP DBP=  (3) 
where HBP, VBP, ABP, and DBP refer to the four bunches of directional binary patterns 
respectively, with each bunch containing N binary patterns of the length L. For instance, the 
bunch of HBPs can be represented as 

, ,1 ,2 ,{ , , , }L N L L L NHBP HBP HBP HBP=   (4) 
where each HBP is composed of concatenated L binary values: 

, (1, ) (2, ) ( , )[ ( ), ( ), , ( )].    1L n H n c H n c H L n cHBP T I I T I I T I I n N= − − − ≤ ≤  (5) 
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Here ( , )  (1 ,  1 )H l nI l L n N≤ ≤ ≤ ≤  represent the horizontally spaced pixels located at L N×  
positions in the neighbourhood of the centre pixel cI  (see Fig. 3a). Similar representations 
are applied to the remaining three bunches of directional binary patterns. Fig. 4 provides an 
example of obtaining two bunches of directional binary patterns 3,3HBP  and 3,3VBP  with the 
parameters 3L =  and 3N = . 

 
(a)  (b)  (c)  (d) 

Fig. 3. Multidirectional Binary Pattern (MBP). (a) Horizontal Binary Patterns (HBPs). (b) 
Vertical Binary Patterns (VBPs). (c) Ascending Binary Patterns (ABPs). (d) Descending 
Binary Patterns (DBPs). The black dot stands for the centre pixel. 
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Fig. 4. An illustration of obtaining 3,3HBP  and 3,3VBP . 
 
Based on this description, a face is represented by a sparse set of shape-driven points with 
MBP attached on each point as local texture. The MBP representation is extracted from 
sparse points rather than from histogramming all the pixels, and thus reduces the storage 
demand of an image. It also inherits LBP's advantage of insensitivity to illumination 
changes. Because the sparse points are derived from low-level edge map with rich feature 
information, they circumvent uniform areas where LBP suffers from random and 
quantisation noise. Meanwhile, the four-bunch MBP provides enhanced discriminative 
power for representation in order to improve the recognition accuracy. 

 
3. Measurement 
 

In practical applications, face images of a same individual generally suffer from intra-class 
variations such as illumination, expression and ageing. Finding correspondence of MBP 
pairs between two images is therefore very important to reveal the substantial 
similarity/difference of two faces. In this section, we first propose a new Binary Pattern 
Distance (BPD) to measure binary patterns, and then integrate it into a compound cost 
function to establish MBP correspondence for face recognition. The cost function is 

 

motivated by the Hausdorff distance concept (Dubuisson & Jain, 1994). Hausdorff distance 
has been widely utilised as shape comparison metrics on binary images. 

 
3.1 Binary Pattern Distance 
As a preliminary step, two distances are proposed to take measurement of two binary 
patterns (a model binary pattern MBP  and a test binary pattern TBP ): pattern distance and 
shifting distance. Representing the pattern-level disparity between two binary patterns, the 
pattern distance pd  is measured by examining the Hamming distances (the accumulated 
sum of the disagreeing bits in between) of the model pattern and the test pattern with 
several bit-wise shifts. The minimal value of these distances is selected as pd . The shifting 
distance sd  is defined as the number of shifting bits at which the pattern distance reaches 
the minimum. Fig. 5 provides examples of the proposed two distances. It is possible to 
assume that the pattern-level disparity originates from inter-class variation and the bit-wise 
shifting comes from intra-class variation. Therefore, pd  and sd  have the ability to reveal the 
local feature's inter-class and intra-class variations respectively. 

dp = 0, ds = 1

Binary Pattern a1
(101010)

Binary Pattern a2
(010101)

dp = 6, ds = 0

Binary Pattern b1
(111111)

Binary Pattern b2
(000000)

 
Fig. 5. The pattern distance ( pd ) and the shifting distance ( sd ). 
 
Following the definitions of pd  and sd , the BPD of binary patterns MBP  and TBP  is 
represented as: 

2 2( , )M T
p sBPD BP BP d dρ= +

 
(6) 
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min { ( , ( , ))}

| arg min{ ( , ( , ))} |

M T
p K k K
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− ≤ ≤

 =

 =  

(7) 

Here ρ is used to balance the contributions of pd  and sd . HD stands for the Hamming 

distance. The operation ( , )TSH BP k  performs a bit-wise directional shifting on TBP  for 
 ( , ,0, , )k k K K= −    times. A positive k stands for a forward-shifting; a negative k stands 

for a backward-shifting; and when k equals 0, no shifting operation is performed.  ( 0)K K ≥  
is the bit-wise shifting limit. 

 
3.2 MBP distance 
For two MBPs ( MMBP  and TMBP ) composed of four bunches of binary patterns 
respectively, the average BPD in each directional bunch is calculated, and then the minimal 
mean of four bunches is selected and defined as the MBP distance: 
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(8) 

This measurement involves bit-wise shifting of local patterns in four different directions (see 
Fig. 6). By using a small balancing factor ρ, it can provide robustness to small local feature 
distortion caused by intra-class variation. 

 
Fig. 6. The bit-wise directional shifting of MBP. 

 
3.3 Compound cost function 
A cost function is defined to find correspondence of MBP pairs between two face images. 
Given two finite MBP sets 1 2{ , , , }M M M

PM MBP MBP MBP=   representing a model face in the 
database and 1 2{ , , , }T T T

QT MBP MBP MBP=   representing a test face from input, where P and 
Q are the numbers of MBPs in M and T respectively. The cost function takes the form: 

( , ) max{ ( , ), ( , )}D M T dirD M T dirD T M=  (9) 

 

where the function ( , )dirD M T  is the directed cost function from set M to T. Since the point 
position ( , )x y  where each MBP is extracted has been recorded, the directed MBP cost 
function can be defined as 
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(10) 

This is a compound measurement composed of both spatial information and MBP features. 
The weight λ is used to balance the contributions of Euclidean distance and MBP distance. 
The cost function ( , )D M T  evaluates the degree of mismatch between two MBP sets by 
measuring the distance of the MBP of M that has the largest distance from any MBP of T, 
and vice versa. 

 
4. Experimental results 
 

The proposed method was assessed on the public available AR face database (Martínez & 
Benavente, 1998), which contains over 4000 colour images from 126 peoples (70 men and 56 
women). The database covers frontal view faces under controlled condition, different facial 
expressions and different illumination conditions. There are 26 different images per person, 
recorded in two different sessions with a two-week time interval, and each session consists 
of 13 images. Because images in some sessions were missing, we eventually obtained 120 
complete set of images (65 men and 55 women). All the images were normalised (in scale 
and rotation) and cropped to 160 × 160 pixels based on the manually labelled positions of 
two eyes. We fixed the MBP size as 8,  8L N= = , the bit-wise shifting limit as 4K =  and the 
balancing factor as 0.1ρ =  in our experiments. 

 
4.1 Determination of parameters 
The weight λ In Equation (10) balances the contributions of spatial and MBP measurements. 
In this subsection, a set of experiments was performed to determine λ using all the neutral 
expression faces in the AR database. The model set is the neutral faces in the first session, 
and the test set is those in the second session. The top-one recognition accuracy against the 
weight λ is displayed in Fig. 7. The recognition accuracy reached and remained maximum 
when λ ranged from 120 to 300. The weight 160λ =  was selected and used in the rest of the 
experiments. 
In the following, the MBP method was compared with the Directional Corner Point (DCP) 
method (Gao & Qi, 2005) under various situations, using the neutral faces in normal 
condition taken in the first session as the model set. 
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Fig. 7. Recognition accuracy against the weight. 

 
4.2 Face recognition results 
The face images under controlled condition in the second session were first used to evaluate 
the proposed method. The comparative recognition accuracy is illustrated in Fig. 8. 
Although the number of subjects used in this study (120) was more than that in DCP (112), 
the proposed MBP method still outperformed the DCP method. 
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Fig. 8. Comparative recognition accuracy under controlled condition. 
 
To compare the recognition accuracy with expression variations, the experiment was also 
performed on three different sets of images with smiling, angry and screaming expressions 
in the first session. The results are listed in Fig. 9. It can be seen from the figure that the 
performance of the proposed method is much better than the DCP method under all three 
expression variations, especially under the screaming condition, where the improvement is 
over 20%. This can be explained by the robustness of MBP against local feature distortion. It 

 

indicates that the locations of feature points might be subject to significant change from 
screaming, but the pattern-level disparity of their neighbourhoods is comparably stable. 
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Fig. 9. Comparative recognition accuracy under different expressions. 
 
We finally performed the experiment under the condition of illumination changes. The AR 
database contains three different lighting conditions: left light, right light and both lights on. 
Fig. 10 displays these experimental results. The recognition accuracy of the proposed 
method is noticeably above 90% when either left or right light on. This demonstrates that 
MBP is very tolerant to lighting changes. However, it is still sensitive to extreme lighting, 
which causes strong specular reflectance on the face skin and thus could erase some sparse 
points. 
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Fig. 10. Comparative recognition accuracy under different illuminations. 
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5. Conclusions 
 

Local Binary Pattern (LBP) has proved to be a powerful descriptor for both texture and facial 
images, demonstrating excellent performance in computer vision community. This chapter 
proposed a more discriminative Multidirectional Binary Pattern (MBP) for face 
representation. Faces are modelled as a sparse set of shape-driven points with MBP attached 
on each point. The main contributions of the proposed method are: 1) Binary pattern 
bunches from multiple directions are collected to enhance the discriminative power of local 
features. 2) In stead of histogramming all the pixels of an image, local features are extracted 
from sparse points to reduce the storage demand. 3) A specially designed MBP 
measurement is proposed to evaluate binary patterns and establish point correspondence. 
The experiments on face recognition demonstrated the effectiveness of the proposed method 
against different environmental variations. This study reveals that the proposed MBP 
method provides a new solution towards robust face recognition. 
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5. Conclusions 
 

Local Binary Pattern (LBP) has proved to be a powerful descriptor for both texture and facial 
images, demonstrating excellent performance in computer vision community. This chapter 
proposed a more discriminative Multidirectional Binary Pattern (MBP) for face 
representation. Faces are modelled as a sparse set of shape-driven points with MBP attached 
on each point. The main contributions of the proposed method are: 1) Binary pattern 
bunches from multiple directions are collected to enhance the discriminative power of local 
features. 2) In stead of histogramming all the pixels of an image, local features are extracted 
from sparse points to reduce the storage demand. 3) A specially designed MBP 
measurement is proposed to evaluate binary patterns and establish point correspondence. 
The experiments on face recognition demonstrated the effectiveness of the proposed method 
against different environmental variations. This study reveals that the proposed MBP 
method provides a new solution towards robust face recognition. 
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1. Introduction 
 

Face detection is the most fundamental and critical process in any automated system that 
deals with face images. Errors in this first step affect subsequent processes such as face 
localization, face modeling, facial expression analysis, face recognition, user classification, 
and so on. A face detector should have sufficient robustness to possible variations of face 
position, scale, orientation, aging, make-up, and illumination.  
Several approaches based on different features are available for face detection: model-based, 
color-based, appearance-based, or a combination of these. Model based approaches can deal 
with variations in face pose and illumination, but require the initial position of the target a 
priori. Color based approaches can reduce the search space of the detection system. 
However, skin color models are not effective where the spectrum of the light source varies 
significantly, i.e. color appearance is often unstable due to changes in both background and 
foreground lighting. To the best of the authors’ knowledge, the most successful face 
detection algorithms are based on appearance without using other cues. Although there has 
been much reported research in this field, it is probably fair to say that the framework of 
Viola and Jones (Viola & Jones, 2001) has attracted the most attention for its combination of 
detection accuracy and speed. They introduced a cascaded structure of weak classifiers 
using a boosted learning algorithm on a pool of simple Haar-like features (Papageorgiou, et 
al., 1998), and an extremely fast method of evaluating the features at any image location and 
scale. Lienhart and Maydt (Lienhart & Maydt, 2002) demonstrated the efficacy of extending 
the feature set; the modified version of the Haar-cascade face detector is available in the 
open-source computer vision library OpenCV. The computational processes for the face 
detection system can be divided into two stages: the learning stage and the detection stage. 
The learning stage involves the selection of the feature pool, variation of training samples, 
and training algorithm. The detection stage includes the search algorithm, structure, and 
merging post-processing of multiple outputs.  
In this paper, we introduce an online learning scheme based on a Sequential Monte Carlo 
method (Doucet, 1998); (Freund & Schapire, 1997) to boost computational efficiency on the 
detection stage. 
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Fig. 1. An overview of a Haar-cascade face detector and associated processes. 

 
2. Bayesian approaches for detection stage 
 

As in numerous other pattern classification tasks, accuracy and speed are twin requirements 
of face detection systems, with speed especially vital for some video-based applications. 
More accuracy, however, often requires more computation and thus entails less speed. A 
combination of a face detector and a tracker (to reduce the search volume in the current 
frame based on results up to the previous frame) may be used to increase processing speed 
in such cases. However, the underlying assumption of temporal continuity is violated at 
scene changes, which must be detected and the system re-initialized in order to avoid 
generating erroneous detections. In the following sections, we introduce a sequential face 
detection scheme for video sequences containing scene changes. The algorithm estimates 
probability distributions of a sequence of face region parameters using a Sequential Monte 
Carlo (SMC) method (Doucet, 1998). We show that this SMC approach successfully predicts 
possible regions in face parameter space for the current frame using temporal continuity 
from past frames, while resetting the distributions automatically at temporal discontinuities 
corresponding to scene changes. 
 

 

 
Fig. 2. Overview of an exhaustive search algorithm. 
 

 
Fig. 3. Overview of the Bayesian sequential importance search algorithm. 
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2.1 Exhaustive search and frequency-based thresholding 
Given an input image, the face detector scans possible combinations of the center positions 
and sizes of face rectangles. The computational cost reflects the total number of face 
candidates. Such face detectors are often trained using a training data set with some 
variations in position and scale, and the prevailing features for each weak learner are 
relatively simple and have a degree of uncertainty such that a single face in an input image 
can yield multiple face candidates with a range of positions and scales. One possible 
approach to handling these multiple outputs is to classify neighboring candidates into 
groups Gj , and to take an average over all elements of each group(see figure 1). 

 

ˆ u [ j ] =
1

Gj

ui
ui ∈G j

∑  ,  ui ; HS(ui;Dt ) =1 (1) 

Since true positives usually occur with greater consistency than false positives, if the 
number of elements belonging to the group G exceeds some threshold η the group may be 
considered likely to represent a true positive, while groups with fewer members may be 
rejected on the grounds that they are more likely to represent false positives. 

 
2.2 Bayesian importance search and marginalization 
In the general case, a face detection system is designed to scan the entire possible space of 
face region parameters uniformly unless we have prior knowledge of the statistics of those 
face parameters in the input image. It can be regarded as a maximization of the posterior 
distribution of the parameters using the uniform prior distribution (see figure 2). However, 
in the case of video face detection, we can assume temporal continuity of face regions as 
well as that of input image frames in general (see figure 3). Avidan (Avidan, 2001) 
introduced the first combined approach which uses the output of an SVM object detector to 
perform a tracking task. Okuma (Okuma, et al., 2004) proposed an SMC based algorithm 
which combined the AdaBoost detector and a color-based object tracker. The system can 
successfully track multiple targets from a given video sequence, but does not use the 
classifier directly as a likelihood function. 
Consider the situation where data is given as a video sequence. Let D be image data at the 
current (tth) frame and let D1:n = {D1, D2, ..., Dn } be the image data set up to the current frame. 
Several approaches regard the output of the face classifier FS(ut ; Dt ) as a confidence score 
for a face candidate ut . The likelihood function in this work is defined by using the 
calibration technique of Platt’s scaling (Platt, 1999) 
 

 

P(Dt ut ) =
1

1+ exp −βFS (ut ;Dt ) +γ( ) (2) 

 
Using Bayes’ theorem we obtain straightforwardly a recursive formula for P(u0:t|D1:t), the 
joint posterior distribution of a series of face region parameters u0:n = { u0, u1, ..., un } given 
the data: 
 

 

P(u0:t | D1:t ) =
P(Dt | ut )P(ut | ut−1,D1:t−1)

P(Dt | D1:t−1)
P(u0:t−1 | D1:t−1)  (3) 

 
with P(Dt |Dt-1) = P(D1) at t = 1. Consider a proposal distribution π  such that draws 

 

 

u0:t
(i) ~ π (u0:t | D1:t−1),   i =1,...,N  (4) 

can be obtained by standard methods, and define the importance weights 

 

w0:t
(i) =

P(D1:t | u0:t
(i) )P(u0:t

(i) | D1:t−1)
π (u0:t

(i) | D1:t−1)
,   i =1,...,N  (5) 

Then Sequential Monte Carlo approximates the joint posterior distribution by 

 

ˆ P (u0:t | D1:t−1) = ˜ w 0:t
( i)δ u0:t − u0:t
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i=1

N

∑  (6) 
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In order to perform Monte Carlo evaluation of the one-step marginal likelihood, assume that 
the draws at the previous step 

 

u0:t
(i) ~ P(u0:t−1 | D1:t−1),   i =1,...,N  (8) 

are available. Use a stochastic dynamics for the parameters P(ut |ut-1, D1:t-1 ) to generate 

 

{ ˜ u t
(i )}i=1

N and evaluate 

 

ˆ P (Dt | D1:t−1) = P(Dt | ˜ u t
( i)) ˜ w 0:t−1

( i)

i=1

N

∑  (9) 

If we design a sequential proposal distribution of the form 

 

π (u0:t | D1:t−1) = π (u s | u0:s−1)π (u0)
s=1

t

∏  (10) 

then, instead of drawing entire sample trajectories at each time by (8), we only need to draw 
one-step samples 

 

u t
(i) ~ π (u0:t | u0:t−1

(i) ,D1:t−1) (11) 
which significantly reduces computational costs. A sequential proposal distribution also 
leads to sequential importance weights: 

 

w0:t
(i) =

P(Dt | u t
(i))P(u t

(i) | u0:t−1
(i) ,D1:t−1)

π (u t | u0:t−1
(i) ,D1:t−1)

w0:t−1
(i) ,   i =1,...,N   

(12) 

 
We predict the region for the jth face candidate group Gj by the marginal posterior mean of 
the parameters at time t : 
 

 

ˆ u t
[ j ] =

u tP(u t | D1:t )du tut ∈G j
∫

P(Dt | D1:t−1)G j

≅

u t
( i) ˜ w 0:t

( i)

ut ∈G j

∑
˜ w 0:t

(i)

ut ∈G j

∑
 

 
(13) 

 
It should be noted that the Monte Carlo marginalization can be implemented simply by 
discarding those components that are not of interest. This is one of the advantages of Monte 
Carlo methods in general, and Sequential Monte Carlo in particular. 
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Then Sequential Monte Carlo approximates the joint posterior distribution by 
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In order to perform Monte Carlo evaluation of the one-step marginal likelihood, assume that 
the draws at the previous step 
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If we design a sequential proposal distribution of the form 
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then, instead of drawing entire sample trajectories at each time by (8), we only need to draw 
one-step samples 
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which significantly reduces computational costs. A sequential proposal distribution also 
leads to sequential importance weights: 
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We predict the region for the jth face candidate group Gj by the marginal posterior mean of 
the parameters at time t : 
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It should be noted that the Monte Carlo marginalization can be implemented simply by 
discarding those components that are not of interest. This is one of the advantages of Monte 
Carlo methods in general, and Sequential Monte Carlo in particular. 
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2.3 Change detection and re-initialization 
In many applications including broadcasting, input video sequences can contain 
discontinuities corresponding to scene changes. Since the approach described above 
assumes continuity between the current video frame Dt and the past series of frames D1:t-1 , 
we need a change detection framework to re-initialize the probability distributions at scene 
changes.  
We propose the sequential marginal likelihood (Matsumoto & Yosui, 2007) P(Dt| D1:t-1) as 
representing the degree of continuity of the given sequence D1:t . If the marginal likelihood 
suddenly drops, it is natural to suppose that an unexpected phenomenon on the input 
sequence, like a scene change, may have occurred. We therefore reset the probability 
distribution of ut to be flat if the sequential marginal likelihood P(Dt | D1:t-1) for all face 
candidate groups G falls below a threshold ε: 

 

  

 

π (u t | u0:t−1
(i) ,D1:t−1) =

N (u t−1
( i) ,Σ)   if  ∃G j ;P(Dt | D1:t−1)G j

> ε,
 1 Ω        otherwise,                      

 
 
 

 

 
(14) 

where Σ denotes the 3x3 covariance matrix of the Gaussian distribution N and Ω denotes the 
size of the entire parameter space of ut. 

 
2.4 Experiments 
We evaluated the performance of the proposed algorithms, compared with a face detection 
algorithm provided by the OpenCV libraries[11]. As a test image sequence, we selected 500 
frames from a video sequence from the TRECVID 2007 development data, a collection of 
broadcast videos. The development data provides a wide variety of broadcast programs to 
train content-based retrieval systems for the TRECVID contest, at QVGA resolution 
(320x240) with the frame rate of the PAL video format (25Hz). We selected the “BG_15190” 
video sequence, which contains many frontal faces at relatively large sizes. We constructed 
the test sequence from the first 10 frames of each of the first 50 shots, giving 500 frames 
containing 450 faces. We entered ground truth data by hand for all frontal and semi-frontal 
faces. Evaluation of the detection results was performed against the ground truth data, 
allowing position and size errors of up to 10% of the true face size. To simply compare each 
search strategy in face region parameter space, we used the same core object detector 
function from OpenCV as the face classifier FS(ut ; Dt ), and used the same runtime data file 
for frontal faces. For the baseline algorithm, we tried 10 settings for the threshold η (= {1, 2, . 
. . , 10}). For the proposed algorithm, we tried 10 settings for the threshold ε (= {0.2, 0.4, . . . , 
2.0}), and fixed the number of Monte Carlo samples at N = 500.  
Figure 4 and figure 5 show performance curves (precision vs recall, and F-measure vs 
detection speed) for the baseline algorithm and the proposed algorithm. Figure 4 shows that 
the average speed of the proposed approach was roughly double that of the baseline scheme 
for all settings, without sacrificing detection performance. 
Table 1 shows details of the best results in terms of F-measure for each approach. Figure 5 
shows temporal variations in detection time per frame for the proposed method with ε = 1.2. 
Spikes in the detection time are due to enlargement of the parameter search space 
corresponding to re-initialization when the lower alternative in equation (14) is selected. The 
frequency of such spikes on the trajectory corresponds to the 10-frame interval at which 

 

discontinuities occurred in the test sequence (constructed from 50 different shots of length 
10 frames). 

 
Fig. 4. Face detection performance of both methods with various thresholds (Left: precision 
vs recall, Right: F-measure vs detection speed). 
  

Search scheme Baseline (η = 2) Proposed (ε = 1.2) 
Recall 76.2 % (343/450) 81.6 % (367/450) 

Precision 92.7 % (343/370) 90.4 % (367/406) 
F-measure 0.84 0.86 
frame rate 6.1 fps 11.7 fps 

Table 1. Parameters at best (largest F-measure) result for each algorithm. 
 

 
Fig. 5. Trajectory of detection time for proposed method (ε = 1.2), performed on a 3.8 GHz 
Xeon CPU. The grey regions indicate the input frame with no face. 

 
3. Applications in Broadcasting 
 

Many applications of face detection technologies have appeared in the last few years, and 
digital still camera featuring the technologies have achieved commercial success. However, 
there are still few applications for video sequences. In the following sections, we introduce 
two particular applications of video face detection in broadcasting. 

 
3.1 Video Correction Support System 
In this section, we describe a video correction system for broadcast video materials. The 
system automatically detects human faces in the input video sequence as target regions, 
then estimates an appropriate set of correction parameters for the white/black/gamma 



Bayesian Video Face Detection with Applications in Broadcasting 287

 

2.3 Change detection and re-initialization 
In many applications including broadcasting, input video sequences can contain 
discontinuities corresponding to scene changes. Since the approach described above 
assumes continuity between the current video frame Dt and the past series of frames D1:t-1 , 
we need a change detection framework to re-initialize the probability distributions at scene 
changes.  
We propose the sequential marginal likelihood (Matsumoto & Yosui, 2007) P(Dt| D1:t-1) as 
representing the degree of continuity of the given sequence D1:t . If the marginal likelihood 
suddenly drops, it is natural to suppose that an unexpected phenomenon on the input 
sequence, like a scene change, may have occurred. We therefore reset the probability 
distribution of ut to be flat if the sequential marginal likelihood P(Dt | D1:t-1) for all face 
candidate groups G falls below a threshold ε: 

 

  

 

π (u t | u0:t−1
(i) ,D1:t−1) =

N (u t−1
( i) ,Σ)   if  ∃G j ;P(Dt | D1:t−1)G j

> ε,
 1 Ω        otherwise,                      

 
 
 

 

 
(14) 

where Σ denotes the 3x3 covariance matrix of the Gaussian distribution N and Ω denotes the 
size of the entire parameter space of ut. 

 
2.4 Experiments 
We evaluated the performance of the proposed algorithms, compared with a face detection 
algorithm provided by the OpenCV libraries[11]. As a test image sequence, we selected 500 
frames from a video sequence from the TRECVID 2007 development data, a collection of 
broadcast videos. The development data provides a wide variety of broadcast programs to 
train content-based retrieval systems for the TRECVID contest, at QVGA resolution 
(320x240) with the frame rate of the PAL video format (25Hz). We selected the “BG_15190” 
video sequence, which contains many frontal faces at relatively large sizes. We constructed 
the test sequence from the first 10 frames of each of the first 50 shots, giving 500 frames 
containing 450 faces. We entered ground truth data by hand for all frontal and semi-frontal 
faces. Evaluation of the detection results was performed against the ground truth data, 
allowing position and size errors of up to 10% of the true face size. To simply compare each 
search strategy in face region parameter space, we used the same core object detector 
function from OpenCV as the face classifier FS(ut ; Dt ), and used the same runtime data file 
for frontal faces. For the baseline algorithm, we tried 10 settings for the threshold η (= {1, 2, . 
. . , 10}). For the proposed algorithm, we tried 10 settings for the threshold ε (= {0.2, 0.4, . . . , 
2.0}), and fixed the number of Monte Carlo samples at N = 500.  
Figure 4 and figure 5 show performance curves (precision vs recall, and F-measure vs 
detection speed) for the baseline algorithm and the proposed algorithm. Figure 4 shows that 
the average speed of the proposed approach was roughly double that of the baseline scheme 
for all settings, without sacrificing detection performance. 
Table 1 shows details of the best results in terms of F-measure for each approach. Figure 5 
shows temporal variations in detection time per frame for the proposed method with ε = 1.2. 
Spikes in the detection time are due to enlargement of the parameter search space 
corresponding to re-initialization when the lower alternative in equation (14) is selected. The 
frequency of such spikes on the trajectory corresponds to the 10-frame interval at which 

 

discontinuities occurred in the test sequence (constructed from 50 different shots of length 
10 frames). 

 
Fig. 4. Face detection performance of both methods with various thresholds (Left: precision 
vs recall, Right: F-measure vs detection speed). 
  

Search scheme Baseline (η = 2) Proposed (ε = 1.2) 
Recall 76.2 % (343/450) 81.6 % (367/450) 

Precision 92.7 % (343/370) 90.4 % (367/406) 
F-measure 0.84 0.86 
frame rate 6.1 fps 11.7 fps 

Table 1. Parameters at best (largest F-measure) result for each algorithm. 
 

 
Fig. 5. Trajectory of detection time for proposed method (ε = 1.2), performed on a 3.8 GHz 
Xeon CPU. The grey regions indicate the input frame with no face. 

 
3. Applications in Broadcasting 
 

Many applications of face detection technologies have appeared in the last few years, and 
digital still camera featuring the technologies have achieved commercial success. However, 
there are still few applications for video sequences. In the following sections, we introduce 
two particular applications of video face detection in broadcasting. 

 
3.1 Video Correction Support System 
In this section, we describe a video correction system for broadcast video materials. The 
system automatically detects human faces in the input video sequence as target regions, 
then estimates an appropriate set of correction parameters for the white/black/gamma 
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levels of the detected regions. Figure 6 shows an overview of the system, constructed from 5 
modules: color corrector, 4-split multi viewer, face detection PC, correction control PC, and 
GUI terminal. 
The 4-split multi viewer encodes the input video signal as a sequence of JPEG images and 
broadcasts them to the two PCs, locally connected with Ethernet cables. Then the face 
detection PC detects all possible face candidate regions and passes them to the correction 
control PC. For each detected face region, the correction control PC evaluates the average 
luminance, and estimates the optimum luminance transformation so as to achieve a natural 
face tone. 
The correction control PC also evaluates a histogram of luminance over the whole input 
image, and sets black/white/gamma levels so as to achieve appropriate contrast and 
dynamic range for broadcasting. The set of video correction parameters are smoothed using 
a moving average filter, so as to eliminate over-sensitive responses to transient changes like 
flashing, and to eliminate possible errors in the face detection stage. Then the color corrector 
transforms the input video signal according to the set of smoothed correction parameters, as 
determined by the correction control PC. Using the GUI terminal (see figure 7), operator(s) 
can check a set of sample images from the input/output video signals. The GUI also 
provides adjustment/preset functions for each system parameter, including weighting 
factors for the whole image and detected face regions as the targets of video correction 
processes. processes.

 
Fig. 6. Overview of the video correction system. 
 
 

 

 
Fig. 7. Example of the GUI screen in parameter adjustment/presetting mode. 

 
3.2 Facial Occlusion Spotting 
In many cases, a broadcast image sequence is assembled from several video materials, with 
various visual effects. In this work, we assume a standard video effect, in which some video 
materials are superimposed on a base image. The main purpose of this section is to spot 
occlusions, in which the main broadcast subjects are overlapped completely or partially by 
the superimposed video materials. 
Figure 8 shows an overview of our occlusion spotting system. This system is constructed 
from two parts: a face detection system and an occlusion detector. 
Although there are various different situations where occlusions can arise in broadcast 
scenes, we focus on human faces as a major object of interest in broadcasting. We adopt the 
following three criteria for a target scene to be detected: 
 
i. Size of the face region is significant. 
ii. Spatial ratio of the overlapped area is significant. 
iii. The occlusion spans several contiguous frames. 
 
The first criterion reflects a general trend in broadcasting that main image objects are bigger 
than other incidental objects. The second criterion relates to the degree of occlusion. It 
reflects a natural assumption that an occlusion is troublesome if it hides more than a certain 
proportion of the whole face region. The third criterion is for temporal consistency. It aims 
to exclude accidental occlusions and noise due to camera work and/or movement of the face 
itself. We show a particular application for a broadcast news program, detecting face 
occlusions using our face detection technologies and an occlusion detector based on the 
three criteria described above. 
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Fig. 8. Architecture of the facial occlusion spotting system. 
 

Assume a set of face regions { Ωi ; i ∈ I } in an input image Dt at frame t, i.e. regions where 
the output of a face detector is +1. 

Occlusion Spotting 

According to criteria (i) and (ii), we define the degree of occlusion (occlusion score) for input 
image Dt as follows: 
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where φ(x; ρ) is a score function parameterized by ρ, and the weighting parameters λa and λb 
satisfy the following equation: 
 

 

λa + λb =1 (17) 
 
Here r0 is a standard radius for face regions in the given input images. Oi stands for the 
degree of spatial overlap between the ith face region Ωi and the target area Ω0 = {(x, y) : xR < x 
< xL, yT < y < yB} to be superimposed. The first term of equation (14) embodies criterion (i), 
and the second term criterion (ii). As shown in equation (15), we assume that the occlusion 
score would saturate if the size of face region were large enough, and the overlapping factor 
were large enough. 

 

We define an importance factor for a pixel (x, y) in the ith face region as a Gaussian 
distribution, G(x,y; Ωi). Then we define an overlapping factor Oi as the integral of the 
distribution G(x,y; Ωi) inside the target area 0 < Oi < 1 (see figure 9). 
 

From criterion (iii), we apply a smoothing filtering process to the trajectories of occlusion 
scores, Vt . As a criterion for occlusion, we define the alarm level at time t, Ut . Observing the 
general trend of temporal occlusions due to pan/tilt movement of the camera and isolated 
false positive errors in the face detector, we define using a Median filter with buffer length τ . 

Smoothing of Occlusion Score 

 

Ut := MED Vt−τ +1,...,Vt[ ] (18) 

where 0 < Ut < 1 since Vt is bounded by [0, 1]. We set Vt = 0 (t < 0), t = 2n+1 (n∈ Z+ ). The 
system assumes there is a continuous occlusion when Ut exceeds a threshold , and outputs 
warning signals. Therefore, the system response Ut is delayed relative to Vt by (τ-1)/2. A 
delay of several frames is acceptable because human operators can not respond in less than 
several hundreds of milliseconds in an occlusion spotting task. 
Figure 10 shows trajectories of Vt and Ut for the proposed scheme. We show examples of true 
positive and true negative scenes in figures 11 and 12, respectively. Some unstable responses 
at around 570 < t < 590 on the trajectories of figure 10 were caused by continuous missing of 
face regions in some critical scenes, such as scenes in which the target person is walking and 
shifting his/her head pose. These errors are mainly caused by face detection errors due to 
pose variations in the broadcast video and insufficient robustness of the face detector we 
used. We expect that the robustness can be improved if we use a variety of face pose data at 
the training stage of the face detector, and detectors tuned to multiple poses. 

 
Fig. 9. Importance factor for pixel (x, y) in ith face region. 
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Fig. 10. Trajectories of ideal response, actual response, Vt, and Ut of the system. 
 

  
Fig. 11. Examples of true positives. 
 

  
Fig. 12. Examples of true negatives. 
 
4. Conclusion 
 

In this paper we introduced a Bayesian online learning approach, Sequential Importance 
Search, for face detection in video which dramatically boosts detection speed for sequential 
input images. The online learning approach successfully prunes a considerable amount of 

 

the search space of face region parameters, and can automatically reset its prediction process 
in response to discontinuities (cuts) in the input video stream. Experimental results showed 
the efficiency of the proposed method in comparison to the conventional exhaustive search 
algorithm, and demonstrated its automatic re-initialization process, Bayesian change 
detection, at each scene boundary in the input sequence of a simulated broadcasting 
program compiled from the TRECVID video data. The re-initialization process rests on the 
sequential model marginal likelihood from the online learning process, which can be 
derived naturally from the methodology of hierarchical Bayesian inference. 
We also introduced two possible applications of our new face detection algorithm, in a video 
correcting system, and an occlusion spotting system. Although there still remain open issues, 
these technologies offer the prospect of improved performance in various practical 
engineering tasks in broadcasting. 
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1. Introduction 

The accurate estimation of the 3D configurations of complex articulated objects from 
monocular images [5] has been widely studied. Once the technology is perfected, there will 
be potential applications in many fields related to human posture and kinematic 
information, such as computer interfaces with gesture input, interaction with robots, video 
surveillance, and entertainment. However, this problem is extremely challenging due to the 
complicated nature of human motion and information limitations associated with 2D 
images. 
Various methods focus on human posture estimation. There are methods to extract features 
from images, based on the structure of the human body, for example, using skin color or 
facial position [3]. However, they impose restrictions on features, such as clothes and 
orientation. There are other methods to extract silhouettes and edges from images as 
features [1, 6, 7]. Many methods represent human images using body silhouettes. This 
representation has the advantage of containing strong cues for posture estimation while 
being unaffected by changes in appearance and lighting. However, they rely on the stable 
extraction of the silhouettes and edges, and they are weak in regard to self-occlusion. To 
solve these problems, it is necessary to extract features inside the silhouettes, being 
independent of skin color or orientation. HOG [2] was originally proposed as features to 
express the shape of an object, but it is also effective for human posture estimation from the 
above viewpoint. 
In this chapter, we propose an appearance-based approach to estimate human posture using 
HOG features, which can describe the shape of the object. The method does not depend on 
clothes and orientation under noisy conditions, so 3D human posture can be estimated 
stably. However, the dimension of the extracted HOG features vector is usually high in the 
background region because the HOG features are computed over the entire image. To solve 
this problem, we also propose a method to reduce feature dimension in the background 
regions using principal component analysis (PCA) on every HOG block. Using the proposed 
methods, 3D human posture can be estimated by linear regression of HOG features.   
It was confirmed that our method worked effectively for real images, and the experimental 
results show that our method reduces the RMS estimation error compared to the 
conventional method (shape contexts). 
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2. Features 

 
Fig. 1.  The flow of feature extraction 
 

This section describes the HOG features extracted from an image and the structure for 
representing the 3D human model. Moreover, this section describes the method to reduce 
the dimension of the HOG features vector in the background region using PCA on every 
block. Fig. 1 shows the flow of HOG features extraction. 

 
2.1 Histograms of Oriented Gradients 

HOG [2] and SIFT [4] were proposed for gradient-based features for general object 
recognition. HOG and SIFT describe similar features. The difference is that SIFT describes 
the features at the candidate location (keypoint), while HOG describes the features over the 
given region. This means that HOG can represent the rough shape of the object as shown in 
Fig. 2. 
 

                   
Fig. 2.  Input image (left) and image represented by HOG features (right) 

 
2.1.1 Gradient computation 
Before extracting the HOG features, the human region has to be detected using the 
background subtraction method on the input image. The image size is normalized at this 
time, and the human region is located in the central position on the image. Then the image 
gradient is computed as follows. 
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where xf and yf denote x and y components of the image gradient, respectively.  ),( yxI  
denotes the pixel intensity at position ),( yx . The magnitude ),( yxm and orientation 

),( yxθ are computed by 
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In order to make the HOG features insensitive to the clothes and facial expressions, we use 
the unsigned orientation of the image gradient computed as follows.  
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2.1.2 Orientation histograms 
The gradient image is divided into cells (cw×ch pixels) as shown in Fig. 3. For each cell, the 
orientation ),(

~
yxθ  is quantized into cb orientation bins, weighted by its magnitude ),( yxm  

to make histogram. That is, the histogram with the cb orientations is computed for each cell. 

 
2.1.3 Block normalization 

 
Fig. 3.  Block normalization 
 
Fig. 3 shows the orientation histogram extracted for every cell and the larger spatial blocks 
with bw×bh cells. Since a cell has cb orientations, the feature dimension of each block is 
db=bw×bh×cb for each block. Let v denote a feature vector in a block, and hij denote the 
unnormalized histogram of the cell in the position ),( ji , }1,1{ hw bjbi ≤≤≤≤  in a block. The 
feature vector of a certain block is normalized as follows.  
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Since the normalization is done by overlapping the block, the histograms hij are repeatedly 
normalized by different blocks.  

 
2.2 Dimension reduction using block-based PCA 

A HOG features vector usually has high dimension even in the background region because 
the gradients are computed over the entire image. Since the features are required inside the 
human region, the features in the background region should be removed for 3D human 
posture estimation. 
For this purpose, PCA is carried out for every block using training data. The gray value in 
the background region is almost constant, although it includes noises, because background 
subtraction is already performed as preprocessing. Therefore, a lot of feature dimensions in 
the background region can be reduced by PCA. Conversely, number of features in the 
human region cannot be reduced too much because their values change in various ways. 
Therefore, the human region has a lot of feature dimensions, and in the background region 
is reduced as shown in Fig. 4. is reduced as shown in Fig.

 
Fig. 4.  Dimension reduction from block-based PCA 

 
2.3 Structure of 3D human model 
Humans are regarded as multi-joint objects that transform into various shapes. However, 
the segment part which connects two joints can be regarded as rigid. Therefore, it is possible 
to express a 3D human model by joint angles. That is, in order to express the posture of a 3D 
human model, the values of joint angles are important. 
Let y  denote the vector composed of the angles at joints (elbow, waist, knee, etc.) of the 3D 
human model. Various postures can be expressed by changing these joint angles. The y  has 
24 (3×6+1×6) dimensions for the joint angles (except for joints like a finger), as shown in 
Fig. 5. 
The various postures are expressed by estimating these joint angles from the input image. 
 

 

 
Fig. 5.  Structure of 3D human model 

 
3. Regression-based approach 

This section describes the method for estimating 3D human posture from image features. 
Regression analysis is employed to estimate the posture as used in [1]. The relation between 
the HOG features vector ∈x ℝd and 3D human model vector ∈y ℝm is approximated by the 
following formula.  
 

ε+= Axy  (6) 
 
A is the dm× matrix, and ε is the residual error vector. The 3D human posture is estimated 
by converting the input image feature x  to the 3D human model vector y . In training the 
model (estimate A), a set of n training pairs },,1|),{( nixy ii =  is given (in our case, 3D 
poses and the corresponding image HOG features). The conversion matrix A is estimated by 
minimizing the least mean square error. Packing the training data into an nm×  3D posture 
matrix ),,,( 21 nyyyY ≡  and nd ×  image feature matrix ),,,( 21 nxxxX ≡ , the training is 
performed as follows. 
 

2minarg: YAXA
A
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In testing, the 3D human pose vector y  is estimated by converting HOG features vector x  
using the computed conversion matrix A. Fig. 6 shows the regression-based estimation 
method.  
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Fig. 6.  Regression-based estimation method 

 
4. Experiment 

In this section, we show the results of our proposed method in comparison to the 
conventional method, which utilizes shape context descriptors [6] extracted from silhouettes. 

 
4.1 Data and ground truth 

Images were taken with a monocular camera with a resolution of 640×480 pixels, as shown 
in Fig. 7. A standing human body was rotated horizontally. Images were taken from 8 
directions at intervals of 45 degrees using a fixed camera. Five actions (standing, hands 
raised, arms open, walking, running) were taken continuously in each direction. We 
manually assigned joint angles to each posture beforehand, and the estimation result was 
evaluated by RMS error. 
 

 
Fig. 7.  A sample image that was taken for the experiment 
 
For training data, 30 images were used in each direction, for 5 postures in total. For test data, 
123 images were used; image (a) under the same condition as the training data, image (b) 
under various conditions, and image (c) downloaded from http://www.nada.kth.se/ 

 

~hedvig/data.html. The images  used are summarized in Table 1. 
 

Posture 
The number of images 

Training data Test data 
(a) (b) (c) 

Standing 16 8 8 0 
Hands raised 40 8 8 0 
Arms open 24 8 8 0 

Walking 80 16 16 11 
Running 80 16 16 0 

Table 1. The number of images 
 
The image size was normalized to 150×200 using the background subtraction method. The 
values of HOG parameters were cw=10, ch=10, cb=9, bw=3, bh=3. In computing the HOG 
features vector, the block was moved cell by cell. Because 234 blocks were made from an 
image, the dimension of the HOG features was 18,954. PCA was carried out for every block 
to reduce the 81 dimensions until the 98% cumulative proportion of the HOG features was 
achieved.  The dimension of the HOG features was reduced to 8,998 as a result of computing 
block-based PCA . 

 
4.2 Experimental result 

It was confirmed that our method worked effectively for a real image. The results of the 
comparison experiment are shown in Fig. 8. 
 

 
Fig. 8.  Comparison experiment results 
 
Our method reduces the RMS estimating error by 5.35 degrees compared to the 
conventional method (shape contexts). Concerning the silhouette images, the limbs were 
sometimes ambiguous due to self-occlusion. However, in the HOG features, since it takes 
the internal edge into consideration, the posture differences can be distinguished so that the 
error decreased, as shown in Fig. 9. In addition, HOG after PCA at each block can improve 
the RMS error by 0.68 degrees compared to the original HOG. 
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Fig. 9.  Images walking leftward. The left image is the input image, the middle image is the 
silhouette image, and the right image is the HOG features image. 
 
The dimension reduction of PCA was decided according to the cumulative proportion rate. 
In Fig. 10, the RMS error vs. the cumulative proportion rate (the number of feature 
dimensions) is plotted. As shown in Fig. 10, the optimum cumulative rate (98%) was 
selected in our experiments.  
 

 
Fig. 10.  Results of dimension reduction using block-based PCA. The RMS error decreased 
most when the cumulative proportion rate was 98%. 
 
Next, the evaluation results of postures are shown in Fig. 11. The conventional method 
(shape contexts) showed a small error in the standing posture. This is because noises 
occurred when the human moved quickly. In a case of stationary posture, such as standing, 
was little noise in an image, so it was stabilized, and the human silhouette was extracted 
accurately. 
However, the purpose is to estimate not only standing but various other postures as well. 
With this in mind, our method can be said to be effective, as shown in Fig. 8 when 
considered all postures. 

 

Fig. 12 shows examples of the results of 3D posture estimation. 
 

 
Fig. 11.  Estimation result of postures 
 

 
Fig. 12.  Reconstructed sample postures 

 
7. Conclusion 

We described a method for estimating 3D human posture from a monocular image. In this 
chapter, we proposed the use of HOG features (which can be extracted without dependence 
upon clothes and orientation) and reducing the feature dimension in the background region 
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by PCA for every block. In future research, human detection with HOG features will be 
integrated with our method without using background subtraction.  

 
8. References 

 [1]A. Agarwal and B. Triggs. 3D Human Pose from Silhouettes by Relevance Vector 
Regression, IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, CVPR 2004, pp. 882-888, Washington, DC, USA, July 2004 

[2]N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection, IEEE 
Computer Society International Conference on Computer Vision and Pattern Recognition, 
CVPR 2005, pp. 886-893, San Diego, CA, USA, June 2005 

[3]M. Lee, I. Cohen. A Model-Based Approach for Estimating Human 3D Poses in Static 
Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, 
Vol.28, No.6, pp.905-916, June 2006 

[4]David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. International 
Journal of Computer Vision, CVIU, Vol.60, No.2, pp.91-110, 2004 

[5]Thomas B. Moeslund and Erik Granum. A Survey of Computer Vision-Based Human 
Motion Capture. International Journal of Computer Vision and Image Understanding, 
IJCV, Vol.81, pp.231-268, 2001 

[6]G. Mori and J. Malik. Recovering 3D Human Body Configurations using Shape Contexts. 
IEEE Transactions on Pattern Analysis and Machine Intelligence, TPAMI, Vol.28, No.7, 
pp. 1052-1062, June 2006 

[7]C. Sminchisescu, A. Kanaujia, D.N.Metaxas. BM3E : Discriminative Density Propagation 
for Visual Tracking, IEEE Transactions on Pattern Analysis and Machine Intelligence, 
TPAMI, Vol.29, No.11, pp.2030-2044, June 2007 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Frequency Shifting for Emotional Speaker Recognition 305

Frequency Shifting for Emotional Speaker Recognition

Yingchun Yang, Zhenyu Shan, Zhaohui Wu

X 
 

Frequency Shifting for Emotional  
Speaker Recognition 

 
Yingchun Yang, Zhenyu Shan and Zhaohui Wu 

College of Computer Science and Technology, Zhejiang University 
P.R.China 

 
1. Introduction  
 

The task of automatic speaker recognition is to determine the identity of a speaker by 
machine(Herbert & Michael, 1994 and Bimbot et al., 2004), which is the one of the main 
applications in pattern recognition. According to different application fields, it encompasses 
speaker verification and speaker identification. Speaker verification is to verify a person’s 
claimed identity from his/her voice, and gives a result “Yes” or “No” (Joseph & Campbell, 
1997). In speaker identification, there is no a priori identity claim, and the system decides 
who the person is, what group the person is a member of, or that the person is unknown.  
In general, the process of speaker recognition has two steps: feature extraction and 
classification. The process of feature extraction is to extract features from the utterance for 
training or testing. Many effective features are found in researches, such as MFCC(Rivaral et 
al., 1996 & 1999), LPC(Philippe &, 1995), PLP(Hermansky, 1990), Pitch(e.g. Atal, 1969) and 
Energy. The classification includes training and testing. Before testing, the recognition 
system must get familiar with the voices. Thus, in training, the system needs to collect 
speech of the registered person. Then in testing, the system compares an unidentified 
utterance to the trained model and makes identification or verification. The popular 
classification methods(or models) include GMM(Reynolds & Richard, 1995), GMM-
UBM(Reynolds et al., 1999), SVM(e.g., Wan ＆ Campbell，2000), HMM(Tishby, 1991), and 
DBN(Sang et al., 2003) . 
Although great progress has been made in last 20 years, there are still many problems for 
speaker recognition system in real applications. The recognition performance is reduced by 
many factors(Sadaoki 1997), such as background noise(e.g. Ming et al., 2008), channel 
effects(e.g. Reynolds, 2004) and emotion variability. In the paper(Shan et al., 2006), a speaker 
check-in system is evaluated in an office with 38 users(25 males, 13 female, aged from 20 to 
38) for 13 months. In the system, MFCC and GMM are applied as feature extraction method 
and modelling method. About 34% of the recognition errors are caused by noise and 35% by 
un-described reasons, in which emotion variability is the main factor.  
Speaker emotion variability means the emotion states mismatch between the training and 
testing speech, and such kind of recognition is called emotional speaker recognition or 
affective speaker recognition. Different emotion states will affect speech production 
mechanism of a speaker in different ways, thus lead to acoustical changes in his/her speech 
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(Scherer, 1998 and 2000). As concluded in (Louis, 2003 and Scherer, 2003), the emotion factor 
will change more than 20 types of speech features, such as pitch, Intensity, formants, speech 
rate, energy and duration. These changes can induce intra-speaker vocal variability, which 
will aggravate the recognition performance. 
The remainder of this chapter is organized as follows. In Section 2, the problem of emotional 
speaker recognition is analyzed and some methods are introduced. In Section 3, we 
proposed the frequency shifting method for emotional speaker recognition, including 
modelling and feature extraction method. In Section 4, an emotional speech corpus MASC is 
described briefly. In Section 5, the performance evaluation for the shifting method is given. 
Discussions and future works are drawn in Section 6. 
 
2. Emotional Speaker Recognition 
 

This section will give a review of some methods and related work in emotional speaker 
recognition. According to the difference of emotion states of the training and testing 
utterances, the emotional speaker recognition system often works in two situations. The first 
one is that both the training and testing data include the utterances with the same emotion 
states, though its performance is still worse than the situation when the emotion state is 
neutral(Scherer et al., 2000 and Wu W. et al.,2006). The other is that the emotion state of 
testing utterance is excluded in the training utterance. It usually occurs in the real 
application, where users often provide neutral speech in training yet various emotional 
utterances in testing. The system in this situation performs even worse than in the first 
one(Wu et al.,2006; Shan et al.,2007 and Huang et al.,2008), and it attracts our focal attention. 
The reason for poor performance is the mismatching between training and testing 
conditions. It also exists in other recognition applications, such as noise and channel effect. 
Some methods has been proposed to overcome this limitation. For example, for solving 
noise or channel effect, the compensation method, based on the relationship between 
different channels(Wu et al., 2006) or noise types, is applied to eliminate the negative effect. 
Under noisy surroundings, some rules are presented to see whether one frame is 
contaminated by noise and the clean part is used for testing. The idea of these two methods 
is helpful to emotional speaker recognition. However, emotion has its particularities. For 
instance, the deformation of voice by the same channel is fixed thus has its own rule, and the 
effects of emotion on voice deformation are more complex, for different person and text will 
affect the degree of deformation. 
The mismatch in emotional speaker recognition contains three conditions. In the first 
condition, the pattern of testing data is not contained in training speech. For example, the 
testing utterances contains sad speech, and the training utterances not, and the recognition 
system can’t match the pattern of the utterance in testing. In the second, the training data 
contains all the pattern in the testing utterance, but the pattern is not matched extract. 
Owning to the difference of emotional intensity and depth, the pattern may not be similar 
even if the emotion state is the same. In some cases, the mismatch happens, where the 
testing data is mixture of happy and neutral utterance. In the third condition, only neutral 
speech can be gathered in training and various emotion utterances exist in testing. In the 
ordinary, the emotion state of testing data is also unknown. It may need to identity the 
emotion state in testing and the recognition performance will be affected by the emotion 

 

identification rate. It is the most common condition in real application. And in the following, 
we primarily review the methods for solving this type problem. 
In our conclusion, the method of solving the mismatch problem has three ideas. The first 
idea is to extract the feature which is not varied by the emotion variation, which is the most 
effective way. Nevertheless it is the hardest, because recent experiment result shows that all 
types of features for speaker recognition (as we known) will be affected by emotion 
variation. For a brief explanation, the emotion varies the frequency spectrum in a complex 
way and the common features for recognition are extracted from the frequency spectrum. 
The second method tries to find a relation between different emotion states, including its 
feature, model and scores. The aim is to build a relationship between neutral utterance and 
other emotional utterance. Then, this relationship is adopted to transfer neutral speech to 
emotion speech. We named this method emotion enriching. The third method is to collect 
the neutral part from the emotion utterance for testing. It often needs to compute the 
emotional factor to define the emotion part, which is named emotion regulation. In the 
following of this section, we will introduce the recent presented methods from the second or 
third idea. 
Zheng(Bao et al., 2007 & Wu et al., 2006) considered that emotion effect is somewhat similar 
to that of channel effect on speaker recognition. They realized that when training and testing 
speech are in different emotions, the discrepancy between the speaker models and the test 
utterances will induce biases in verification scores. Thus,  the ideas of handling the channel 
effect was borrowed to alleviate the negative effect of emotion(Bao et al., 2006). In their 
former work, an emotion-dependent score normalization method(E-norm) (Wu et al., 
2006)derived from H-norm(Reynolds et al., 2000) was proposed, which was originally 
designed to alleviate channel effect in cross-channel speaker verification. It is designed to 
estimate these emotion-dependent biases from development data. Then, the biases are 
removed from verification scores. Soon afterwards, they furthered their approach by 
proposing emotion attribute projection(EAP) method(Bao et al., 2007), which removes 
emotion variability from SVM expansion dimensions. The idea is borrowed from the 
nuisance attribute projection (NAP), which has been proven to be a successful channel 
compensation method(Campbell et al., 2006 and Solomonoff et al., 2005). It can achieve a 
better result because it removes the subspace that may cause the emotion variability in the 
kernel of an SVM system.   
Huang (Huang et al., 2008) studied the difference between various emotions and propose a 
method based on the Pitch-dependent difference detection and modification (PDDM). The 
basic idea is to choose the neutral part of testing utterance for final scoring. The pitch is used 
as the emotion factor to distinguish “neutral” part from emotion utterance. First, it classifies 
the test utterances into HD (High Different from neutral, and with high identification error 
rate) and LD (Low Different from neutral, and with low identification error rate) group. 
Then, it modifies the segments with intense emotional information in the HD utterance to 
reduce the impact of unmatched emotion states in the training and testing.  
In most circumstances, the emotional element, if there is any, always lasts ephemeral when 
users provide testing utterance, since they tend to provide neutral speech for testing in real 
application(as discussed in (Shan et al., 2006). The testing utterance is a mixture of neutral 
and emotion speech, and it is common in emotional speaker recognition. The paper(Shan et 
al., 2009) experimentally analyzed the performance of the GMM-based verification system 
with the utterances in this situation and two results are concluded. One is applying the test 
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Some methods has been proposed to overcome this limitation. For example, for solving 
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different channels(Wu et al., 2006) or noise types, is applied to eliminate the negative effect. 
Under noisy surroundings, some rules are presented to see whether one frame is 
contaminated by noise and the clean part is used for testing. The idea of these two methods 
is helpful to emotional speaker recognition. However, emotion has its particularities. For 
instance, the deformation of voice by the same channel is fixed thus has its own rule, and the 
effects of emotion on voice deformation are more complex, for different person and text will 
affect the degree of deformation. 
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condition, the pattern of testing data is not contained in training speech. For example, the 
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system can’t match the pattern of the utterance in testing. In the second, the training data 
contains all the pattern in the testing utterance, but the pattern is not matched extract. 
Owning to the difference of emotional intensity and depth, the pattern may not be similar 
even if the emotion state is the same. In some cases, the mismatch happens, where the 
testing data is mixture of happy and neutral utterance. In the third condition, only neutral 
speech can be gathered in training and various emotion utterances exist in testing. In the 
ordinary, the emotion state of testing data is also unknown. It may need to identity the 
emotion state in testing and the recognition performance will be affected by the emotion 
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we primarily review the methods for solving this type problem. 
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effective way. Nevertheless it is the hardest, because recent experiment result shows that all 
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variation. For a brief explanation, the emotion varies the frequency spectrum in a complex 
way and the common features for recognition are extracted from the frequency spectrum. 
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other emotional utterance. Then, this relationship is adopted to transfer neutral speech to 
emotion speech. We named this method emotion enriching. The third method is to collect 
the neutral part from the emotion utterance for testing. It often needs to compute the 
emotional factor to define the emotion part, which is named emotion regulation. In the 
following of this section, we will introduce the recent presented methods from the second or 
third idea. 
Zheng(Bao et al., 2007 & Wu et al., 2006) considered that emotion effect is somewhat similar 
to that of channel effect on speaker recognition. They realized that when training and testing 
speech are in different emotions, the discrepancy between the speaker models and the test 
utterances will induce biases in verification scores. Thus,  the ideas of handling the channel 
effect was borrowed to alleviate the negative effect of emotion(Bao et al., 2006). In their 
former work, an emotion-dependent score normalization method(E-norm) (Wu et al., 
2006)derived from H-norm(Reynolds et al., 2000) was proposed, which was originally 
designed to alleviate channel effect in cross-channel speaker verification. It is designed to 
estimate these emotion-dependent biases from development data. Then, the biases are 
removed from verification scores. Soon afterwards, they furthered their approach by 
proposing emotion attribute projection(EAP) method(Bao et al., 2007), which removes 
emotion variability from SVM expansion dimensions. The idea is borrowed from the 
nuisance attribute projection (NAP), which has been proven to be a successful channel 
compensation method(Campbell et al., 2006 and Solomonoff et al., 2005). It can achieve a 
better result because it removes the subspace that may cause the emotion variability in the 
kernel of an SVM system.   
Huang (Huang et al., 2008) studied the difference between various emotions and propose a 
method based on the Pitch-dependent difference detection and modification (PDDM). The 
basic idea is to choose the neutral part of testing utterance for final scoring. The pitch is used 
as the emotion factor to distinguish “neutral” part from emotion utterance. First, it classifies 
the test utterances into HD (High Different from neutral, and with high identification error 
rate) and LD (Low Different from neutral, and with low identification error rate) group. 
Then, it modifies the segments with intense emotional information in the HD utterance to 
reduce the impact of unmatched emotion states in the training and testing.  
In most circumstances, the emotional element, if there is any, always lasts ephemeral when 
users provide testing utterance, since they tend to provide neutral speech for testing in real 
application(as discussed in (Shan et al., 2006). The testing utterance is a mixture of neutral 
and emotion speech, and it is common in emotional speaker recognition. The paper(Shan et 
al., 2009) experimentally analyzed the performance of the GMM-based verification system 
with the utterances in this situation and two results are concluded. One is applying the test 
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utterances with low emotion ratio, which suggests the user to provide pure neutral speech 
for testing or eliminating the non-neutral part from the testing speech. The other is 
increasing the testing utterances length, yet it can’t be satisfied in most applications. Thus, a 
simple is proposed method to distinguish the non-neutral features from the neutral ones in 
the scoring processing of testing with the purpose to reduce the emotion ratio of testing 
utterances. First, all features’ scores and the average of these scores are calculated. Second, 
the scores higher than the average are selected for the final score computation. In other 
words, not all features are effective in the score computation thus some of them are treated 
as non-neutral features and eliminated to decrease the emotion ratio. 
In about ten years ago, Scherer(Scherer, 2000) presented a structured training approach 
which aims at making the system get familiar with the emotion variation of  the user’s voice 
in training. In this method, the registered speakers are asked to provide speech on various 
emotional states. It doesn’t fit the common situation as we described above. However, it 
gives a direction for eliminating the emotion effect: the question is that how to synthesis 
emotion speech, or how to obtain the emotion feature, or how to train the emotion model, or 
how to calculate the scores of the feature vectors against his/her emotion model, when only 
the natural utterance is obtained in training.  
In the paper(Wu Z.H. et al., 2006), it was found the main reason that causes the performance 
degradation is the absence of emotion speech. Analysis of emotional speech and its 
synthesis rules have been researched for many years. It is a way to synthesize emotion 
speech based on these rules. They investigate the rules based feature modification for robust 
speaker recognition with emotional speech. A feature modification rule is developed to 
convert neutral speech to emotion speech. First, the rules of prosodic features modification 
are learned from a small amount of the content matched source-target pairs. Then, features 
with emotion information are adapted from the prevalent neutral features by applying the 
modification rules. Finally, the converted features are trained together with the neutral 
features to build the speaker models. The speaker models are trained with both the neutral 
speech provided by the users and generated output speech perceived as conveying 
emotions. 
In order to train the emotion model from his/her neutral model, Shan(Shan et al., 2007) 
presented a neutral-emotion GMM transformation algorithm, which is based on the 
assumption: if two speakers’ natural speech space satisfies the similar distribution, so does 
their emotion speech space, especially when they share the same culture. First, the KL-
distance between neutral GMMs (order n ) is calculated to find out k  speakers from the 
emotion database, who have the similar feature space with the registered speaker. Then, 
these speakers’ emotion GMM is transformed to the registered speaker’s emotion GMM. 
However, the order of the transformed GMM is kn times of the original one and leads to an 
exponential increase in computation cost. To overcome this limitation, a neutral-emotion 
GMM transformation algorithm was presented based on the same assumption as above. In 
this method, the transformation function is defined by a polynomial function(Shan et al., 
2008). It establishes a relationship between neutral and emotion GMM. Applying this 
relationship, the emotion GMM is obtained from the neutral GMM with the same order. The 
model is adopted in the emotional speaker recognition with increasing less cost of training 
and testing. However, these methods demand that the system is aware of all the emotion 
states of the testing utterances in training. And only the emotion states in testing dataset are 

 

considered. If the utterance with new emotion state is added into the testing dataset, the 
model needs to be retrained for this emotion state. 
In following sections, we present the frequency shifting method for emotional speaker 
recognition. In this new method, only neutral speech is required in training, and the testing 
speech is in multi-emotion conditions and the emotion state is not available. To model the 
speech of multi-emotion conditions, we introduce the multi-condition model, which has 
been successfully used in speech recognition to account for varying noise sources or 
speaking styles. The researches (e.g., Lippmann et al., 1987 and Scherer, 2000) indicate that it 
can improve the system robustness when the training data sets are in multi-conditions, thus 
we believe it is suitable for the multi-emotion conditions. In further, the maximum scoring 
method is proposed which takes the emotion occurrences of testing utterances into 
consideration. Thus the adversely effect of the mismatch of emotion state in training and 
testing can be weakened. In order to generate training speech with multi-emotions, we 
proposed a method to synthesize emotion utterances by shifting the spectrum of neutral 
speech. The energy distribution of neutral utterance is changed to create utterances with 
different energy distribution, which are used as emotion utterances for training. 
Comparative experiments carried on the MASC database(Wu, T., 2006) show that the new 
method is superior to the baseline system. The frequency shifting method combining with 
the maximum scoring method improve the system robustness. 
 
3. Frequency Shifting Method 
 

In this section, the frequency shifting method is introduced in two parts: model 
and emotion speech synthesis. 
 
3.1 Model 
In general speaker recognition, the training data set (0 ) only contains neutral utterance of 
speaker S , which is represented by the likelihood function 0( | , )p X S of feature vector X  
associated with speaker S trained on data set 0 . The Gaussian Mixture Model (GMM) is a 
preferable likelihood function(Reynolds et al., 1995), which is a weighted sum of Gaussian 
components. Each speaker S  is indicated by a GMM  . Generally, Expectation-
Maximization (EM) algorithm is applied in the training process to find out the parameters of 
  to maximize 0( | , )p X S  with respect to0 .  
In emotional speaker recognition, training speech with various emotion states should be 
created from 0  at first. This leads to augment training sets    1 2, ,... ...,l L , where  l  

denotes the thl  emotion speech and L  is the number of emotion states. The direct modeling 
method is to apply the structured training method to employ all the emotional data sets to 
train a likelihood function   0 1( | , , ,..., )Lp X S . It demands that the length of the training 
utterance of each emotion state is almost the same; otherwise its performance will be 
affected, when the specific emotion state of the testing utterance takes small proportion in 
training. According to overcome this limitation, we introduce the multi-condition 
model(Atal, 1974), which is formed by combining the likelihood functions trained on the 
individual training set: 
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utterances with low emotion ratio, which suggests the user to provide pure neutral speech 
for testing or eliminating the non-neutral part from the testing speech. The other is 
increasing the testing utterances length, yet it can’t be satisfied in most applications. Thus, a 
simple is proposed method to distinguish the non-neutral features from the neutral ones in 
the scoring processing of testing with the purpose to reduce the emotion ratio of testing 
utterances. First, all features’ scores and the average of these scores are calculated. Second, 
the scores higher than the average are selected for the final score computation. In other 
words, not all features are effective in the score computation thus some of them are treated 
as non-neutral features and eliminated to decrease the emotion ratio. 
In about ten years ago, Scherer(Scherer, 2000) presented a structured training approach 
which aims at making the system get familiar with the emotion variation of  the user’s voice 
in training. In this method, the registered speakers are asked to provide speech on various 
emotional states. It doesn’t fit the common situation as we described above. However, it 
gives a direction for eliminating the emotion effect: the question is that how to synthesis 
emotion speech, or how to obtain the emotion feature, or how to train the emotion model, or 
how to calculate the scores of the feature vectors against his/her emotion model, when only 
the natural utterance is obtained in training.  
In the paper(Wu Z.H. et al., 2006), it was found the main reason that causes the performance 
degradation is the absence of emotion speech. Analysis of emotional speech and its 
synthesis rules have been researched for many years. It is a way to synthesize emotion 
speech based on these rules. They investigate the rules based feature modification for robust 
speaker recognition with emotional speech. A feature modification rule is developed to 
convert neutral speech to emotion speech. First, the rules of prosodic features modification 
are learned from a small amount of the content matched source-target pairs. Then, features 
with emotion information are adapted from the prevalent neutral features by applying the 
modification rules. Finally, the converted features are trained together with the neutral 
features to build the speaker models. The speaker models are trained with both the neutral 
speech provided by the users and generated output speech perceived as conveying 
emotions. 
In order to train the emotion model from his/her neutral model, Shan(Shan et al., 2007) 
presented a neutral-emotion GMM transformation algorithm, which is based on the 
assumption: if two speakers’ natural speech space satisfies the similar distribution, so does 
their emotion speech space, especially when they share the same culture. First, the KL-
distance between neutral GMMs (order n ) is calculated to find out k  speakers from the 
emotion database, who have the similar feature space with the registered speaker. Then, 
these speakers’ emotion GMM is transformed to the registered speaker’s emotion GMM. 
However, the order of the transformed GMM is kn times of the original one and leads to an 
exponential increase in computation cost. To overcome this limitation, a neutral-emotion 
GMM transformation algorithm was presented based on the same assumption as above. In 
this method, the transformation function is defined by a polynomial function(Shan et al., 
2008). It establishes a relationship between neutral and emotion GMM. Applying this 
relationship, the emotion GMM is obtained from the neutral GMM with the same order. The 
model is adopted in the emotional speaker recognition with increasing less cost of training 
and testing. However, these methods demand that the system is aware of all the emotion 
states of the testing utterances in training. And only the emotion states in testing dataset are 

 

considered. If the utterance with new emotion state is added into the testing dataset, the 
model needs to be retrained for this emotion state. 
In following sections, we present the frequency shifting method for emotional speaker 
recognition. In this new method, only neutral speech is required in training, and the testing 
speech is in multi-emotion conditions and the emotion state is not available. To model the 
speech of multi-emotion conditions, we introduce the multi-condition model, which has 
been successfully used in speech recognition to account for varying noise sources or 
speaking styles. The researches (e.g., Lippmann et al., 1987 and Scherer, 2000) indicate that it 
can improve the system robustness when the training data sets are in multi-conditions, thus 
we believe it is suitable for the multi-emotion conditions. In further, the maximum scoring 
method is proposed which takes the emotion occurrences of testing utterances into 
consideration. Thus the adversely effect of the mismatch of emotion state in training and 
testing can be weakened. In order to generate training speech with multi-emotions, we 
proposed a method to synthesize emotion utterances by shifting the spectrum of neutral 
speech. The energy distribution of neutral utterance is changed to create utterances with 
different energy distribution, which are used as emotion utterances for training. 
Comparative experiments carried on the MASC database(Wu, T., 2006) show that the new 
method is superior to the baseline system. The frequency shifting method combining with 
the maximum scoring method improve the system robustness. 
 
3. Frequency Shifting Method 
 

In this section, the frequency shifting method is introduced in two parts: model 
and emotion speech synthesis. 
 
3.1 Model 
In general speaker recognition, the training data set (0 ) only contains neutral utterance of 
speaker S , which is represented by the likelihood function 0( | , )p X S of feature vector X  
associated with speaker S trained on data set 0 . The Gaussian Mixture Model (GMM) is a 
preferable likelihood function(Reynolds et al., 1995), which is a weighted sum of Gaussian 
components. Each speaker S  is indicated by a GMM  . Generally, Expectation-
Maximization (EM) algorithm is applied in the training process to find out the parameters of 
  to maximize 0( | , )p X S  with respect to0 .  
In emotional speaker recognition, training speech with various emotion states should be 
created from 0  at first. This leads to augment training sets    1 2, ,... ...,l L , where  l  

denotes the thl  emotion speech and L  is the number of emotion states. The direct modeling 
method is to apply the structured training method to employ all the emotional data sets to 
train a likelihood function   0 1( | , , ,..., )Lp X S . It demands that the length of the training 
utterance of each emotion state is almost the same; otherwise its performance will be 
affected, when the specific emotion state of the testing utterance takes small proportion in 
training. According to overcome this limitation, we introduce the multi-condition 
model(Atal, 1974), which is formed by combining the likelihood functions trained on the 
individual training set: 
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where ( | , )lp X S  is the likelihood function of frame vector X  trained on set  l , and 

( | )lP S  is the prior probability for the occurrence of thl  emotion speech of speaker S . As 
( | )lP S is fixed, maximizing ( | )p X S  in training is to maximize ( | , )lp X S  individually.   

In testing, the first is to calculate the posterior probability of speech given feature vector 
X with respect to speaker S : 
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where the equation is based on Bayes’ rule. By replacing ( | )p X S  in Equation (2) with 
Equation (1) and assuming an equal prior ( )P S  for all the speakers, we obtain an 
operational version of Equation (2) for recognition. 
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where ( | )tp S X  is defined by Equation (3).  
In our assumption, the emotion state of feature vector X  is not available, so the value of 

( | )lP S  can’t be decided. If each emotion state occurrences in testing is the same, ( | )lP S  
has the equal value for each emotion state. Equation (3) can be simplified:  
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In this equation, the average of ( | , )lp X S  is used for scoring, so it is named the mean 
scoring method. Since all of ( | )lP S  is the same, it neglects the effect of the emotion state of 
feature vector X . In our opinion, the emotion information of testing speech may overcome 
the degradation of the performance caused by different emotion states of testing and 
training speech. In testing, it needs to find the most likely emotion state for a given feature 
vector X . One feature vector only belongs to one emotion condition. Thus, the value of 

( | )lP S  for a feature vector X is defined as: 
 

 
1,

( | ) {
0,l

if the emotion state of X is l
P S

otherwise
 

(6) 

 

As ( | , )lp X S in Equation (1) describes the distribution of both the speaker and emotion 
feature space, a simple method based on ( | , )lp X S  is proposed. The object is to find which 
emotion state has the maximum posteriori probability to feature X . Formally, 
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where the second equation is due to Bayes’ rule. Combining Equation (6) and Equation (7), 
Equation (3) can be reduced to:  
 

 ( | ) max ( | , )lp S X p X S  (8) 
 
According to the deduction, the final result relates to the maximum of ( | , )lp X S , so it is 
named the maximum scoring method.  

 
3.2 Emotion Speech Synthesis 
In the last subsection, we assume only neutral speech 0  can be obtained in training. To 
adopt the multi-condition model in multi-emotion conditions, the training sets   1 2, ,..., L  
should be generated from neutral speech0 . The method of converting neutral speech to 
emotion speech will be described in this section. 
Much effort has been devoted to analyze the relationship between neutral and emotion 
speech, and many qualitative relations have been published. But it is troublesome to 
quantitatively analyze the relationship, because it is not only speaker dependent but also 
text dependent. Thus, it is hard to convert neutral speech to emotion speech exactly in the 
text independent speaker recognition. However, the research on acoustic changes benefits 
us to transform neutral speech to emotion speech.  

 
Fig. 1. The spectrum of certain frame vector of anger and neutral speech (voicing [e]). The 
dashed and solid line represents the anger and neutral spectrum individually. 
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feature vector X . In our opinion, the emotion information of testing speech may overcome 
the degradation of the performance caused by different emotion states of testing and 
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vector X . One feature vector only belongs to one emotion condition. Thus, the value of 
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where the second equation is due to Bayes’ rule. Combining Equation (6) and Equation (7), 
Equation (3) can be reduced to:  
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According to the deduction, the final result relates to the maximum of ( | , )lp X S , so it is 
named the maximum scoring method.  

 
3.2 Emotion Speech Synthesis 
In the last subsection, we assume only neutral speech 0  can be obtained in training. To 
adopt the multi-condition model in multi-emotion conditions, the training sets   1 2, ,..., L  
should be generated from neutral speech0 . The method of converting neutral speech to 
emotion speech will be described in this section. 
Much effort has been devoted to analyze the relationship between neutral and emotion 
speech, and many qualitative relations have been published. But it is troublesome to 
quantitatively analyze the relationship, because it is not only speaker dependent but also 
text dependent. Thus, it is hard to convert neutral speech to emotion speech exactly in the 
text independent speaker recognition. However, the research on acoustic changes benefits 
us to transform neutral speech to emotion speech.  

 
Fig. 1. The spectrum of certain frame vector of anger and neutral speech (voicing [e]). The 
dashed and solid line represents the anger and neutral spectrum individually. 
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Nowadays, the research on the acoustic changes is mainly in the frequency domain. The 
variation of formats represents the difference between neutral and emotion speech. Take 
anger speech for example, the average of F0, F1 and F2 of anger speech is smaller than 
neutral speech. Figure 1 shows the spectrum of certain feature vector extracted from anger 
and neutral utterance (voicing [e]). It indicates the anger speech can be shifted from neutral 
spectrum to change the formats. Hence, the emotion spectrum can be converted from the 
neutral spectrum by shifting its spectrum, though it is not precise.  
In the multi-conditions model, the aim is to synthesize all kinds of emotion speeches while 
the emotion state of synthesized speech is not concerned. Thus, we are even unaware of that 
in which direction and how long to shift the neutral spectrum. The training sets 
  1 2, ,..., L can be synthesized by changing the spectrum of neutral speech 0 . The 
spectrum shifting method is proposed: 
 

 ( ) ( )E NE f E f h  (9) 
where EE  and NE  is the energy in frequency f of emotion and neutral speech individually, 
and h is the length of shifting. According to this, the “emotion” speech can be obtained from 
the neutral speech. 
The synthesized speech can’t be categorized as a specific emotion state, only indicating the 
formats variation of neutral speech. In fact, it also changes the pitch and the energy 
distribution of the frame. In the structured training method, the aim is to synthesize all 
kinds of emotion utterances while the emotion state of synthesized speech is not concerned. 
Thus, the shifting method is suitable for obtaining the training dataset with different 
emotion states.  
The MFCC is most widely used frequency domain feature in speaker recognition. Adding 
the spectrum shifting method to MFCC extraction, it can extract emotion features from 
neutral speech with the different value of h . As shown in Figure 2, the process in the 
dashed rectangle is added and other steps are the same with the original. 

 
Fig. 2. The process of MFCC and the crewel frame is added to extract emotion features from 
neutral speech. 

4. Emotional Database 
 

An emotional speech database MASC (Mandarin Affective Speech Corpus) is used in our 
experiments(Wu, T. et al., 2006), which is available publicly. It is constructed with two major 
objectives. On one hand, it is used for prosodic and linguistic investigation of emotion 
expression in Mandarin. On the other hand, it supplies a training set as well as a test data set 
for speaker recognition system affected by emotional factors. Compared with other 
emotional speech database, MASC concentrates on showing both the characteristics of 
different emotional states and the intra-speaker variability caused by state changes of 
speakers. In particular, these records are spoken in Mandarin which is a fairly fresh area of 
emotional speech studies. 
The selection of emotional states is expected to put the speech on the emotion wheel which 
has been derived from the Plutchik's work (Plutchik, 1980). It is a model to describe the 
activation-evaluation-power space of emotion. According to this emotion model, emotional 
states distribute on a circle which is named Emotion Wheel. The centre of this circle stands 
for the natural origin, a state which gathers all kinds of emotional factors. However, the 
effects from these emotional factors are so weak that they cannot emerge at the origin. Each 
emotional state is defined with a unique planar vector 


E  that has two parameters, 

emotional intensity and emotional orientation. Emotional intensity indicates the range of 

E  

and emotional orientation renders the angle of 

E . In terms of the emotion wheel, four 

emotion types are selected in the corpus: anger, elation, panic and sadness, whose 
descriptions are consulted by Banse & Scherer (1996). 
 Neutral - Simple statements without any emotion. 
 Anger - A strong feeling of displeasure or hostility. 
 Elation - Be glad or happy because of praise. 
 Panic - A sudden, overpowering terror, often affecting many people at once. 
 Sadness - Affected or characterized by sorrow or unhappiness. 

 
The corpus contains recordings of 68 native speakers (23 female and 45 male) and five kinds 
of emotion states: neutral, anger, elation, panic and sadness. Each speaker reads 5 phrases, 
20 sentences three times for each emotion state and 2 paragraphs only for neutral. These 
materials cover all the phonemes in Chinese. The sentences include all the phonemes and 
most common consonant clusters in Mandarin. The types of sentences are: simple 
statements, a declarative sentence with an enumeration, general questions (yes/no 
question), alternative questions, imperative sentences, exclamatory sentences, special 
questions (wh-questions). The sampling rate of the utterances used in the experiments is 
8000Hz.  More details can be found in (Wu, T. et al., 2006). 

 
5. Experiments 
 
5.1 Evaluation of the Shifting Method 
In this subsection, an experiment is designed to compare the speakers’ emotion speech with 
the ones synthesized by the spectrum shifting method. The object is to see their similarity. 
The experiment employs five phrases read for three times of all speakers from the MASC. 
The neutral and emotion phrase with the same text and same speaker is compared, so the 
comparison is text dependent and speaker dependent. 
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The experiment employs five phrases read for three times of all speakers from the MASC. 
The neutral and emotion phrase with the same text and same speaker is compared, so the 
comparison is text dependent and speaker dependent. 
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First, the speech is segmented into frames by a 20-ms window progressing at a 10-ms frame 
rate. Secondly, FFT of the size 512 is used to transform the speech frames into frequency 
domain. Then, spectrogram shifting method is applied to obtain synthesized spectrums. The 
length unit of shifting is 8000/512=15.625Hz. And in the experiment, the shifting length h  
is ±1, ±2, ±3 ±4, ±5 unit. Thus, 10 phrases are created from one neutral phrase. Finally, 
reverse FFT transforms them into time domain to get emotion utterance.   
Here, the similarity of two phrases is indicated by the DTW(Sakoe, 1978 and Joseph 1997) 
distance. The distances from speaker’s emotion phrase to the neutral one and to the 
synthesized phrases are calculated. For each emotion state to neutral, there is 5*3*68 = 1020 
times of distance calculation. Because the number of synthesized phrases of one neutral 
phrase is 10, so its distance is based on DTW: 

 min( ( || ))h
E Nh

D DTW X X  (10) 

where EX  and h
NX  represent emotion speech and synthesized speech by shifting h HZ 

individually.  
The result is shown in Figure 3. The distance from synthesized phrase to emotion phrase is 
about half the distance to neutral one. The synthesized is more similar to speaker’s emotion 
speech than neutral. It indicates the synthesized speech can make the system familiar with 
the emotion speech in a certain way. 
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Fig. 3. The comparison of the distances from speaker’s emotion phrase to the neutral one 
and to the synthesized phrases. Note:  A : Anger, S : Sadness, E : Elation, P : Panic. 

 
5.2 Experiment Strategies 
In the following experiments, the speech is segmented into frames by a 20-ms window 
progressing at a 10-ms frame rate. An energy-based voice activity detector is used to remove 
silence. Then, the 13-dimension MFCCs are extracted from the speech frames. The final 
performance is evaluated by identification rate (IR), which is computed as the percent of 
correctly identified sentence over all testing sentences. 

 

Only the sentences(2-10s) of the corpus are used in the experiments.  All sentences in MASC 
are divided into two parts. The first 5 sentences read for three times for each speaker are 
used for training, named training data set. And the left 5*3*15*68=15300 are for testing. 
Six speaker identification experiments are designed to evaluate the performance. In the first 
experiment, only the neutral sentences are used to train a GMM with 32 order and the scores 
is calculated as Equation(2). Because the emotion mismatch between the training and testing 
speech, the result is the lower limit of the speaker identification performance. In the second, 
all the sentences in training data set are used to train a GMM with 160 orders and the 
scoring method is the same as the first experiment. It aims to evaluate the structured 
training approach. The training and testing speech in the third and fourth is the same with 
the second experiment. The difference is that they apply the multi-condition model with 32 
order GMM for each. The mean scoring method and maximum scoring method are adopted 
individually. These three methods are design to evaluate the performance of multi-
condition model and maximum scoring method. The training and testing sentences in the 
fifth and sixth experiment are the same as the first one. The multi-emotion training data is 
generated by the frequency shifting method to evaluate its performance. Their training and 
testing methods are the same as the third and forth one individually. The experiment 
strategies are summarized in Table 1. 

 
5.3 Results 

 Experiment Strategies Results 
Train  

dataset 
Test 

dataset 
Scoring 
Method 

Frequency 
Shifting 

IR (%) 

1 Neutral ALL Eq.2 No 45.17 
2 ALL ALL Eq.2 No 63.54 
3 ALL ALL Eq.4 No 58.71 
4 ALL ALL Eq.7 No 77.76 
5 Neutral ALL Eq.4 Yes 47.49 
6 Neutral ALL Eq.7 Yes 54.43 

Table 1. The strategies and results of the experiments.  
 
The details of identification rate are shown in Table 1.  Compared with the first experiment, 
the IR of the second, third and forth one is increased 12% at least. It indicates the system 
performance can be improved if the training data contains all kinds of emotion states. And it 
is important to make the system get familiar with the emotion speech in training.  
The multi-condition model combining with the maximum scoring method (77.76%) exceeds 
the structured training method (63.54%), with an increasing of 14.22%.  The multi-condition 
model serves to model the speech of multi-emotions. And the maximum scoring method can 
alleviate the negative effect of unavailable of the emotion state of testing speech. However, it 
is surprising that the structured training method outperforms the multi-condition model 
combining with mean scoring method (58.71%). The possible reason is that the length of 
speech with each emotion state is almost same in the experiment which is suitable for the 
structured training method.   
The use of shifting method improves the IR increased from 45.17% to 54.43%. It shows the 
shifting method indeed improves the performance when there is only neutral speech in 
training. The synthesized speech is helpful to make the system get familiar with the emotion 
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speech. However, it can’t achieve the result of forth experiment, in which all kinds of 
emotion states can be obtained. In summary, our emotional speaker recognition method 
based on the multi-condition model is more robust, when there is only neutral speech in 
training and various emotion utterances in testing. 

 
6. Discussions & Conclusions 
 

This chapter introduces the emotional speaker recognition, and presents a frequency 
shifting method. The shifting method combined with MFCC is adopted for feature 
extraction. It converts neutral speech to emotion speech for emotional speaker recognition. 
The extracted emotion feature is applied with maximum scoring method for emotional 
speaker recognition. In our experiments, the synthesized emotion utterance by shifting 
frequency spectrum proves more similar to emotion speech than the neutral is. The results 
demonstrate the shifting method combined with maximum scoring method is effective to 
improve the performance of emotional speaker recognition. 
All the methods we introduced above indeed outperform the baseline speaker recognition 
system in emotional condition. However, it can’t achieve the result where neutral speech is 
used for both training and testing. Even the performance is still worse than the situation 
where all kinds of emotion states can be obtained in training. It shows that we haven’t 
building an exact relationship between neutral and emotion utterances. More works should 
be carried out to find the variation rules of different emotion speeches. 
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1. Introduction  

Medical image diagnosis can be conducted through a highly intelligent cognitive process 
that requires special medical knowledge and experiences. It is not, of course, still completely 
clear what kind of information is needed and used for the highly intelligent diagnosis, but 
relatively low level features such as shapes, texture, and other pixel based statics extracted 
from the images can be used for the diagnosis. In this sense, medical images can be 
diagnosed, at least partially, by using pattern recognition algorithms. In this chapter, for 
lung cancer diagnosis by using X-ray computed tomography (CT) images, fundamentals 
and some advanced techniques of pattern recognition in medical image diagnosis will be 
studied extensively. 
An early stage detection of the lung cancer is extremely important for survival rate and 
quality of life (QOL) of patients (Naruke et al., 1988). Although a periodical group medical 
examination is widely conducted by diagnosing chest X-ray images, such group 
examination is not often good enough to detect the lung cancer accurately and there is a 
high possibility that the cancer at an early stage cannot be detected by using only the chest 
X-ray images. To improve the detection rate for the cancer at early stages, X-ray CT has been 
used for a group medical examination as well (Iinuma et al., 1992; Yamamoto et al., 1993). 
Using the X-ray CT, pulmonary nodules that are typical shadows of pathological changes of 
lung cancer (Prokop and Galanski, 2003) can be detected more clearly compared to the chest 
X-ray examination even if they are at early stages. This is an advantage of the X-ray CT 
diagnosis. In fact, it has been reported that the survival rate of the later ten years can reach 
90% after the detection at early stages using X-ray CT images (I-ELCAP, 2006). 
On the other hand, using the X-ray CT may exhaust radiologists because the CT generates a 
large number of images (at least over 30 images per patient) and they must diagnose all of 
them. The radiologists' exhaustion and physical tiredness might cause a wrong diagnosis 
especially for a group medical examination where most of CT images are healthy and only 
very few images involve the pathological changes. Therefore, some computer-aided 
diagnosis (CAD) systems have been developed to help their diagnosis work (Okumura et al., 
1998; Lee et al., 1997; Yamamoto et al., 1994; Miwa et al., 1999). 
Although these CAD systems can automatically detect pulmonary nodules with a high true 
positive rate (TP), the false positive rate (FP) is also high. To reduce the FP, several advanced 
methods such as neural network approaches have been proposed (Suzuki et al., 2003; 
Nakamura et al., 2005). However, there are still some fundamental problems such as a low 
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discrimination rate for variations of size and positional shift of nodule images. This is 
because they are still based on so-called low level or simple image recognition mechanisms 
with pixel oriented features compared to the radiologist's intelligent diagnosis process with 
more complex features. 
In this chapter, to further reduce the FP, we propose new methods to extract and combine 
novel features from the CT images of pulmonary nodules (Homma et al., 2008). The 
extraction and combination of new features are motivated by the radiologist's higher level 
cognitive process in which several features are combined and integrated to conduct precise 
diagnosis. Simulation results demonstrate the effectiveness of the new features and the 
combination method for discriminating nodule shadows from non-nodule ones. 
The rest of this chapter consists of as follows. Some filtering and feature extraction 
techniques will be introduced in section 2. To diagnose medical images, the region of 
interest (ROI) that is the target region of the recognition must be detected first and then 
some features can be extracted from the ROI for next step of the diagnosis. In section 3, for 
the extracted feature sets, the principal component analysis can be used to reduce the 
informational redundancy of the feature sets and to avoid unnecessary computational 
expensiveness of the classification algorithms. Then the effect of the extracted features on 
the nodule pattern classification will be evaluated by using the receiver operating 
characteristic (ROC) analysis. This evaluation will reveal what have been achieved and what 
cannot be achieved by the classification. To overcome the disadvantage of the classification 
algorithm, some advanced techniques will be developed in section 4. In section 5, 
concluding remarks including future perspective of this field will be given. 

 
2. Filtering and Feature Extraction: Fundamentals for Lung Nodule Detection 

In general, a discrimination method mainly consists of the feature extraction and pattern 
recognition techniques. The conventional image features are such as average, variance, and 
entropy of pixel values (Takizawa et al., 2001). However, they are not very effective and 
don't directly reflect target shapes in CT images that are one of the most important pieces of 
information used to discriminate between nodules and non-nodules. Therefore, we first pay 
attention to extracting a new shape feature that is more effective than conventional ones 
(Homma et al., 2008). 

 
2.1 Detection of ROI: Morphological filters 
First, we use the variable N-quoit filter (Okumura et al., 1998), based on a mathematical 
morphological technique (Haralick et al., 1987), to detect ROI from the original CT images. 
Let us consider an original image I(x, y) of the pixel values at position   (x, y). To apply the 
N-quoit filter to the image I, we define two elemental functions, D with a disk domain KD 
and R with a ring domain KR, as follows (Nakayama et al., 1995). 
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The output of the N-quoit filter, q, is calculated as  
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Using the disk and ring functions, the output q(x, y) results in large for island shadows in 
the image I, otherwise q(x, y) becomes small. Since the pulmonary nodules often look like 
small islands in the CT slice images, the filter can effectively detect regions including nodule 
candidates with high q values. 

 
2.2 Orientation features extraction 
To extract features for nodules recognition, we binarize the original images I in the ROI as  
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and calculate three conventional features (mean, variance, and entropy of pixels intensity) of 
the binarized image 

βI  (Kondo et al., 2000). 

Then, we apply a Gabor filter to the binarized image 
βI  and extract M orientation outputs. 

The impulse response of the filter is defined as the harmonic function multiplied by the 
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Fig. 1 shows examples of filtered images of four orientations. Using the new orientation 
features, the circle-like shadows can be discriminated from the other shapes. This is a 
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Using the disk and ring functions, the output q(x, y) results in large for island shadows in 
the image I, otherwise q(x, y) becomes small. Since the pulmonary nodules often look like 
small islands in the CT slice images, the filter can effectively detect regions including nodule 
candidates with high q values. 

 
2.2 Orientation features extraction 
To extract features for nodules recognition, we binarize the original images I in the ROI as  
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Fig. 1 shows examples of filtered images of four orientations. Using the new orientation 
features, the circle-like shadows can be discriminated from the other shapes. This is a 
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promising result because nodule shadows often look like circles. The orientation features 
involving such circle-shape information can thus be appropriate for the discrimination. 

Fig. 1. Examples of four orientation filtered outputs. 
 
For each orientation, we calculate the three features of mean, variance, and entropy of 
intensity. Consequently, we extract a total )1(3 +× M  features from the binarized image. 
Then we define a vector X of )1(3 +× M  features, T

MxxxX ],...,,[ )1(321 += , for the image in 

ROI. To eliminate the dimensional redundancy of the vector, we finally define a feature 
vector X' from the vector X by using the principal component analysis technique. 

 
3. Nodule Pattern Classification 

3.1 Pattern classification in principal component space 
We make, respectively, P and Q clusters of nodules and non-nodules images of training data 
on the principal component feature space by K-means method. The numbers of nodule and 
non-nodule clusters, P and Q, can be determined automatically on the basis of variance 
equalization between clusters (Ngo et al., 2002). Then, we project test data X' into the feature 
space and calculate Euclidean distances between test data and all the cluster centers (Fig. 2). 
Here any other distances such as the inner product and Maharanobis distance can be used 
as the similarity measure, but if the variances are almost the same among clusters, then 
Maharanobis distance are equivalent to Euclidean distance. 
 

Fig. 2. Distances from the test image to centers of P nodule and Q non-nodule clusters. 

 

Let us consider the (P+Q) distances dpA, p=1, 2, ..., P, from the P nodule clusters and dqN, 
q=1,2,...,Q, from the Q non-nodule ones. The discrimination is conducted by comparing the 
minimum distances dp*A, p*∈{1, 2, ..., P}, from the nearest nodule cluster and dq*N, q*∈{1, 
2, ..., Q}, from the non-nodule one. That is, if the ratio 
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is less than a threshold α , then the test image can be a nodule candidate; otherwise it is a 
non-nodule candidate. 

 
3.2 Effect of orientation feature 
To evaluate the effect of the orientation feature on the discrimination between nodule and 
non-nodule images, we have tested the proposed method by using a data set from the Web 
database of CT images (NICA, https://imaging.nci.nih.gov/ncia/faces/baseDef.tiles). We 
used a set of 297 nodule data images (208 training and 89 test images) and 1929 non-nodule 
data images (1351 training and 578 test images). The ROI size was 33 ×  33 pixels and the 
binarizing threshold β  was 40. The number of orientations M was 4 and the Gabor filter's 
parameters λ , σ , and γ  were 1.5, 2.6, and 1, respectively. The number of principal 

components C was 5, defined as the minimum number that satisfies ∑ =
>

C

j ju
1

95.0  where uj 

is the contribution ratio of principal component j. The number of clusters was 35 (25 nodules 
and 10 non-nodules). 

 
3.2.1 Clustering results 
Figs. 3 - 5 show sample images of feature vectors belonging to clusters made from training 
nodule images. The results demonstrate that each cluster consists of similar circle-like 
shapes of nodules. This suggests that the orientation features extracted from the nodule 
images can be useful for clustering them, and thus the proposed feature is effective for 
nodule discrimination. 
 

Fig. 3. Nodule images in cluster A. Images including relatively light and fuzzy boundary 
shadows are involved in this cluster. 
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Fig. 4. Nodule images in cluster B. Images including relatively bright, smooth boundary and 
large circle shadows are involved in this cluster. 
 

Fig. 5. Nodule images in cluster C. Images including small circle with spiculated boundary 
shadows are involved in this cluster. 
 
On the other hand, Figs. 6 - 10 show sample images of feature vectors belonging to non-
nodule clusters. The results demonstrate that some clusters are composed of similar shapes 
of non-nodules, but some are not. For example, in cluster nA (Fig. 6), most of images look 
like small circles, but there are a few images not involving such small circle shapes. Also, 
there are no similar shapes with each other in cluster nE (Fig. 10). This implies that non-
nodule clusters are composed of various images with relatively large variance of feature 
vectors, compared to similar images with small variance of feature vectors in nodule clusters. 
Indeed, variances of feature vectors in non-nodule clusters are relatively large, while 
variances in nodule clusters are relatively small, although both variances were not large: The 
averages of the variances in non-nodule and nodule clusters were 0.003 and 0.001, 
respectively. 

Fig. 6. Non-nodule images in cluster nA. Images including relatively small circle shadows 
are involved in this cluster. 

 

Fig. 7. Non-nodule images in cluster nB. Images including vertical line segments are 
involved in this cluster. 

Fig. 8. Non-nodule images in cluster nC. Images including relatively large circle shadows 
are involved in this cluster. 

Fig. 9. Non-nodule images in cluster nD. Images including horizontal line segments are 
involved in this cluster. 
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Indeed, variances of feature vectors in non-nodule clusters are relatively large, while 
variances in nodule clusters are relatively small, although both variances were not large: The 
averages of the variances in non-nodule and nodule clusters were 0.003 and 0.001, 
respectively. 

Fig. 6. Non-nodule images in cluster nA. Images including relatively small circle shadows 
are involved in this cluster. 

 

Fig. 7. Non-nodule images in cluster nB. Images including vertical line segments are 
involved in this cluster. 

Fig. 8. Non-nodule images in cluster nC. Images including relatively large circle shadows 
are involved in this cluster. 

Fig. 9. Non-nodule images in cluster nD. Images including horizontal line segments are 
involved in this cluster. 
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Fig. 10. Non-nodule images in cluster nE. Various shapes are involved in this cluster. 
 
This suggests that further improvement for non-nodule clustering can be done by extracting 
more effective features from the original images. Such improvement will be discussed in 
section 4.2. 

 
3.2.1 ROC analysis 
Fig. 11 shows the 3 receiver operating characteristic (ROC) curves. Without 12 features of 4 
orientations extracted by the Gabor filter, FP was about 80% when TP was 80%, while FP 
was about 35% by using the orientation features. The improvement of the discrimination 
rate (FP was improved from 80% to 35%) clearly demonstrates the effectiveness of the 
proposed feature on the diagnosis of pulmonary nodules. 
On the other hand, FP was about 30% under the same condition by using a massive training 
artificial neural network (MTANN) (Suzuki et al., 2003). Although these rates can be 
improved if we could choose more suitable settings for both the proposed and MTANN 
methods, we may claim that the discrimination performances of both methods are almost 
equivalent. 

Fig. 11. ROC curves. 

 

4. Advanced Methods for Lung Cancer Diagnosis 

4.1 Variation feature along body axis 
To further improve the discrimination rate for clinical use, we will now try to extract 
another effective feature (Homma et al., 2008). To begin with, let us consider why the 
discrimination performance using the orientation feature is not enough and what kind of 
images can be misjudged. For example, Fig. 12 shows a CT slice image of a patient. As 
mentioned in section 2.2, nodules often have circle-like shadows and thus we want to extract 
such shape information by using the Gabor filter. There are, however, some cases in which it 
is hard to discriminate between nodule and non-nodule images by using only such shape 
feature although the proposed one can be more effective than some conventional ones as 
demonstrated in the preceding section. Both images of nodules in cluster C (Fig. 5) and non-
nodules in cluster nA (Fig. 6) have similar circle-like shapes, for example. 

Fig. 12. ROI images detected by the variable N-quoit filter. Blue frames indicate images 
including nodules, whereas the red frame indicates a non-nodule image. 
 
Different from the shape information within a CT slice, a novel feature can be extracted from 
shadow shapes across CT slices in the direction along the body axis (cranio-caudal direction). 
For example, Figs. 13 and 14 are CT slices above and below Fig. 12. Note that, according to a 
common opinion of several radiologists, circle-like shapes of non-nodules are almost 
shadows of blood vessels in the direction along the body axis. In this case, as seen in these 
figures, the blood vessels are cylinder-like shapes and thus the circle-like shadows remain at 
the same position if we look at slices above and below the target slice. On the other hand, 
nodules are often ball shapes. In this case, if we look at a slice above or below the target slice, 
the circle-like shadows often disappear. Thus, as a new feature, we employ the variation of 
CT values in the direction along body axis. 
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Different from the shape information within a CT slice, a novel feature can be extracted from 
shadow shapes across CT slices in the direction along the body axis (cranio-caudal direction). 
For example, Figs. 13 and 14 are CT slices above and below Fig. 12. Note that, according to a 
common opinion of several radiologists, circle-like shapes of non-nodules are almost 
shadows of blood vessels in the direction along the body axis. In this case, as seen in these 
figures, the blood vessels are cylinder-like shapes and thus the circle-like shadows remain at 
the same position if we look at slices above and below the target slice. On the other hand, 
nodules are often ball shapes. In this case, if we look at a slice above or below the target slice, 
the circle-like shadows often disappear. Thus, as a new feature, we employ the variation of 
CT values in the direction along body axis. 
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Fig. 13. CT slice image above the slice of Fig. 12. The red frame shows continuity between 
Figs. 12 and 13, in which a circle-like shadow remains at the same position in both figures. 
On the other hand, the blue frames show discontinuity that sizes and CT values of circle-like 
shadows in both figures are different from each other. 

Fig. 14. CT slice image below the slice of Fig. 12. As same in Fig. 13, we can see continuity of 
a non-nodule shadow and discontinuity of nodule shadows. 
 
 

 

To extract the variation feature, we first calculate the average pixel value of the shadow 
image in the ROI. If a shadow is of a non-nodule and a part of the cylinder-shape blood 
vessels along the body axis, continuity of the average values can be observed. On the other 
hand, if the shadow is of a nodule, then discontinuity of the average can be observed. In 
other words, for the non-nodule case, the average value is almost the same in above and 
below slices, while the average changes depended on the slices for the nodule case. 
Let us denote the average values of the shadows Vm, Vu, and Vl for the target slice, and slices 
above and below the target, respectively. Using the averages, we define a new feature of 
shadow variation in the direction along the body axis T by 

),max( lu TTT =  (13) 
where 

|/1| umu VVT −=  (14) 
|/1| lml VVT −=  (15) 

The concept of calculation of the feature extraction is illustrated in Fig. 15. 

Fig. 15. Extraction of the shadow variation feature T. 
 
The new feature T tends to be small for non-nodule shadows of the continuity case while it 
is large for nodule shadows of the discontinuity case. In fact, for the data used in section 3.2, 
the average value of the variation T for non-nodule images was 0.182, while the average of T 
was 0.479 for nodules. 

 
4.1.1 Effect of variation feature 
Here the shadow variation feature T was first applied to the ROI images and then more 
careful discrimination using the orientation features was conducted. That is, if the variation 
feature T of a candidate shadow in a ROI is less than a threshold Th, the proposed method 
regards the shadow as a non-nodule. Otherwise, if T ≥  Th, the candidate shadow in the ROI 
is discriminated by using the orientation features as described in section 3.1. It might be 
worth mentioning an interesting fact that radiologists first detect ROIs of candidate shadows 
from the original CT slices by using such variation information along the body axis, and 
then diagnose the detected ROIs by using more detailed information such as shape, size, 
and CT values of shadows. This is the reason why we use the variation feature T before the 
orientation ones. 
We have evaluated the effect of the new features on the discrimination rate by using the 
ROC analysis. Fig. 16 shows ROC curves by the conventional method and proposed 
methods without and with the variation feature T. By using the variation feature, FP was 
about 20% when TP was 90% in the case of the threshold Th =0.206. On the other hand, FP 
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Fig. 13. CT slice image above the slice of Fig. 12. The red frame shows continuity between 
Figs. 12 and 13, in which a circle-like shadow remains at the same position in both figures. 
On the other hand, the blue frames show discontinuity that sizes and CT values of circle-like 
shadows in both figures are different from each other. 

Fig. 14. CT slice image below the slice of Fig. 12. As same in Fig. 13, we can see continuity of 
a non-nodule shadow and discontinuity of nodule shadows. 
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The new feature T tends to be small for non-nodule shadows of the continuity case while it 
is large for nodule shadows of the discontinuity case. In fact, for the data used in section 3.2, 
the average value of the variation T for non-nodule images was 0.182, while the average of T 
was 0.479 for nodules. 
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Here the shadow variation feature T was first applied to the ROI images and then more 
careful discrimination using the orientation features was conducted. That is, if the variation 
feature T of a candidate shadow in a ROI is less than a threshold Th, the proposed method 
regards the shadow as a non-nodule. Otherwise, if T ≥  Th, the candidate shadow in the ROI 
is discriminated by using the orientation features as described in section 3.1. It might be 
worth mentioning an interesting fact that radiologists first detect ROIs of candidate shadows 
from the original CT slices by using such variation information along the body axis, and 
then diagnose the detected ROIs by using more detailed information such as shape, size, 
and CT values of shadows. This is the reason why we use the variation feature T before the 
orientation ones. 
We have evaluated the effect of the new features on the discrimination rate by using the 
ROC analysis. Fig. 16 shows ROC curves by the conventional method and proposed 
methods without and with the variation feature T. By using the variation feature, FP was 
about 20% when TP was 90% in the case of the threshold Th =0.206. On the other hand, FP 
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was beyond 50% without the feature T. In other words, the discrimination rate FP was 
improved from about 50% to 20% under the condition TP=90%. Note that the condition 
TP=90% is good enough for clinical applications of pulmonary nodules diagnosis. Thus, the 
improvement clearly demonstrates usefulness of the variation feature. 

Fig. 16. ROC curves. 
 
The fact that TP does not reach 100% in Fig. 16 might be a disadvantage of the proposed 
method with the variation T. This is because a few nodule shadows were regarded as non-
nodule shadows by the variation threshold. As a second opinion for clinical use, however, 
robustness of the performance for various conditions is more important than TP=100% (TP 
≥  90% is often good enough). Indeed, the performance is robust for various threshold 
values and thus it can be another advantage for clinical use. 
 In addition to this, as shown in Fig. 11, performance of MTANN (Suzuki et al., 2003) was 
almost the same as that of the proposed method without the variation feature. Consequently, 
performance of the proposed method with the variation feature can be superior to that of the 
MTANN. Also, similar information to the variation T can be obtained by 3-dimensional 
images reconstructed from helical CT data (Nakayama et al., 1995). However, calculation of 
the variation T is very simple and thus less computationally expensive. 

 
 
 
 

4.2 Toward further improvement 
 

4.2.1 A new feature of circle-like shapes 
Fig. 17 shows examples of the true positive and false positive images under the condition 
TP=90% and FP=20%. It seems that the TP and FP images can further be distinguished by 
their shapes: TP images are circle-like shapes while FP images are tree branch-like shapes of 
blood vessels or more complex shapes. The proposed orientation features do not work well 
for these images, although they are very effective for the greater part of images. 
 
 
 
 
 
 
 

(a) True positive images.                                          (b) False positive images 
 

Fig. 17. Examples of the true positive and false positive images. True positive means that the 
discrimination result of the CAD system is nodule and it is really nodule whereas the false 
positive means that the system's result is nodule, but it is non-nodule. 
 
As discussed in section 3.2.1, nodule images are clustered well compared to non-nodule 
images clustering. A wide non-nodule cluster region with high variances can affect the FP 
results because the distance to the FP image may be overestimated even if an image 
involved in a non-nodule cluster is close to the FP image in the feature vector space. 
Another reason for this may be that the features are calculated for each orientation 
independently, but their relation among the orientations is not considered at least explicitly. 
For example, as illustrated in Fig. 18, we can expect that average pixel values extracted by 
the Gabor filter for all orientations are almost the same for circle-like shapes, while the 
averages are different from each other for line segments or tree branch shapes. 
 

Fig. 18. Expected relation between different angles for circle-like and tree branch-like shapes. 
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Fig. 17. Examples of the true positive and false positive images. True positive means that the 
discrimination result of the CAD system is nodule and it is really nodule whereas the false 
positive means that the system's result is nodule, but it is non-nodule. 
 
As discussed in section 3.2.1, nodule images are clustered well compared to non-nodule 
images clustering. A wide non-nodule cluster region with high variances can affect the FP 
results because the distance to the FP image may be overestimated even if an image 
involved in a non-nodule cluster is close to the FP image in the feature vector space. 
Another reason for this may be that the features are calculated for each orientation 
independently, but their relation among the orientations is not considered at least explicitly. 
For example, as illustrated in Fig. 18, we can expect that average pixel values extracted by 
the Gabor filter for all orientations are almost the same for circle-like shapes, while the 
averages are different from each other for line segments or tree branch shapes. 
 

Fig. 18. Expected relation between different angles for circle-like and tree branch-like shapes. 
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To extract such differences between orientations, higher angle resolution may be necessary. 
However, as shown in Fig. 19, the discrete Gabor filter function is depended on the angle 
because of the small size of ROI. In such case, the sums of pixel values extracted the Gabor 
filter are different from each other even for the circle-like shapes. 
 

Fig. 19 Angle dependency of the Gabor filter outputs: Extracted values of inner and edge 
pixels are different from each other for various angles. 
 
 To overcome this problem, we conducted an edge detection technique as preprocessing the 
original images, and then the output images of the Gabor filter were binarized to eliminate 
the error caused by the spatial resolution (Homma et al., 2008). By this improvement, as 
shown in Fig. 20, average values of M=8 orientations can be almost the same for all 
orientations for the circle-like shape, while for the branch-like shapes, the 8 average values 
are different from each other depending on the orientation of the branches. 
 

 

(a) Improved Gabor filter output for a circle-like shape. 

(b) Improved Gabor filter output for a tree branch-like shape. 
 
Fig. 20. Extracted values of inner and edge pixels are (a) almost the same for a circle-like 
shape, but (b) different from each other for a tree branch-like shape. 
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To extract such differences between orientations, higher angle resolution may be necessary. 
However, as shown in Fig. 19, the discrete Gabor filter function is depended on the angle 
because of the small size of ROI. In such case, the sums of pixel values extracted the Gabor 
filter are different from each other even for the circle-like shapes. 
 

Fig. 19 Angle dependency of the Gabor filter outputs: Extracted values of inner and edge 
pixels are different from each other for various angles. 
 
 To overcome this problem, we conducted an edge detection technique as preprocessing the 
original images, and then the output images of the Gabor filter were binarized to eliminate 
the error caused by the spatial resolution (Homma et al., 2008). By this improvement, as 
shown in Fig. 20, average values of M=8 orientations can be almost the same for all 
orientations for the circle-like shape, while for the branch-like shapes, the 8 average values 
are different from each other depending on the orientation of the branches. 
 

 

(a) Improved Gabor filter output for a circle-like shape. 

(b) Improved Gabor filter output for a tree branch-like shape. 
 
Fig. 20. Extracted values of inner and edge pixels are (a) almost the same for a circle-like 
shape, but (b) different from each other for a tree branch-like shape. 
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4.2.2 Improved results 
Fig. 21 shows the standard deviation s of 8 average values for the TP and FP images. The 
numbers of TP and FP images were 72 and 76, respectively. Note that the standard 
deviations s for TP images are relatively small as expected for circle-like shapes, whereas the 
deviations for FP images are relatively large or widely distributed from large to small. Thus, 
after the discrimination by the variation along body axis and orientation features proposed 
in section 2, the TP and FP images can further be distinguished by the new feature s. In fact, 
FP=8% under the condition TP=90% when the algorithm classifies the images with s > 0.01 
into non-nodules. In other words, FP decreased from 20% to 8% under the condition 
TP=90%. 
Although the improvement achieved by the new feature is a good result, what we would 
like to stress here is that the combination of several effective features and classification 
techniques might be the most important for developing clinically useful CAD systems. The 
methods and the promising results presented in this chapter may support the importance of 
the combination. 

Fig. 21. The standard deviation s of M average values for TP and FP images. s for TP images 
are relatively small as expected for circle-like shapes. 

 
5. Concluding Remarks 

In this chapter, we have proposed a new method to detect pulmonary nodules in X-ray CT 
images. From results in this study, we may claim that the proposed orientation and 
variation features of nodules can be useful for the pulmonary nodule diagnosis. The 
proposed method is based on the radiologist's diagnosis process. That is, by using the 
variation feature of shadows in the direction along the body axis, the method first selects 
nodule candidates and then only for the candidates, instead of all the images, the method 
further discriminates nodules from non-nodules by using the orientation feature details of 
shadow shapes. The selection can thus contribute to less computational expense. 
 The methods introduced and developed in this chapter, however, aimed at only isolated 
circle-like shapes with the some morphological features, and thus non-isolated nodules 
(pathological changes) may not be detected by such methods. To improve the detection rate 
of such non-isolated nodules, Homma et al. have proposed a new technique that transforms 

 

the non-isolated nodules connected to the walls of the chest into isolated ones (Homma et al., 
2009).  Again, we can combine the technique for non-isolated nodules with the methods for 
isolated nodules for clinical usefulness. The other drawbacks of the conventional methods 
can further be improved by incorporating some specific methods to solve the drawbacks. 
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4.2.2 Improved results 
Fig. 21 shows the standard deviation s of 8 average values for the TP and FP images. The 
numbers of TP and FP images were 72 and 76, respectively. Note that the standard 
deviations s for TP images are relatively small as expected for circle-like shapes, whereas the 
deviations for FP images are relatively large or widely distributed from large to small. Thus, 
after the discrimination by the variation along body axis and orientation features proposed 
in section 2, the TP and FP images can further be distinguished by the new feature s. In fact, 
FP=8% under the condition TP=90% when the algorithm classifies the images with s > 0.01 
into non-nodules. In other words, FP decreased from 20% to 8% under the condition 
TP=90%. 
Although the improvement achieved by the new feature is a good result, what we would 
like to stress here is that the combination of several effective features and classification 
techniques might be the most important for developing clinically useful CAD systems. The 
methods and the promising results presented in this chapter may support the importance of 
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the non-isolated nodules connected to the walls of the chest into isolated ones (Homma et al., 
2009).  Again, we can combine the technique for non-isolated nodules with the methods for 
isolated nodules for clinical usefulness. The other drawbacks of the conventional methods 
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1. Introduction  
 

The development of automated systems for medical diagnosis is a significant challenge 
faced by physicians, engineers and computer scientists. Such system requires a data set 
sufficiently large in order to be considered a reliable statistical sample (Karuiannis & 
Venetsanepouious, 1997). Conventional methods of monitoring and diagnosing cardiac 
abnormalities rely on detecting the presence of particular signal features by human 
observer. Due to the large number of patients in intensive care units and the need for 
continuous observation of such conditions; several techniques for automated abnormality 
detection have been developed in recent years to attempt to solve this problem. Such 
techniques work by transforming the mostly qualitative diagnostic criteria into a more 
objective quantitative signal feature classification problem (Owis et al., 2002). 
Computer technology has an important role in structuring biological systems. The explosive 
growth of high-performance computing techniques in recent years with regard to the 
development of good and accurate models of biological systems has contributed 
significantly to new approaches to fundamental problems of modelling transient behaviour 
of biological systems. Computer based analytical tools for the in-depth study and 
classification of data over day-long intervals can be very useful in diagnostics (Acharya et 
al., 2004). 
The ECG signal represents the changes in electrical potential during the cardiac cycle as 
recorded between surface electrodes on the human body. The characteristic shape of this 
signal is the result of an action potential that propagates within the heart and causes the 
contraction of the various portions of cardiac muscle. This internal excitation starts at the 
sinus node which acts as a pacemaker, and then spreads to the atria, this generates the 
characteristic P wave in the ECG. The cardiac excitation then reaches the ventricles giving 
rise to the characteristic QRS complex. After that the ventricles repolarises corresponding to 
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the T wave of the ECG. The automatic detection and timing of these waves is important for 
diagnostic purposes  (Unser & Aldroubi, 1996; Prasad & Sahambi, 2003). 
The classification of ECG signals into different disease categories is a complex pattern 
recognition task. In conventional systems, a typical heart beat is identified from the ECG. 
The P, QRS and T waves are characterized using measurements such as magnitude, 
duration and area. Classification is performed on these measurements, but the 
measurements of P, QRS and T sections vary significantly even among normal beats and can 
lead to misclassification (Kim et al., 2001). 
Electrocardiograms are signals that originate from the action of the human heart. The ECG is 
the graphical representation of the potential difference between two points on body surface, 
versus time. Its historical development has resulted in a tool for clinical diagnosis, the 12-
lead ECG. 
ECG signals are largely employed as a diagnostic tool in clinical practice in order to assess 
the cardiac status of a subject. They are used to examine ambulatory patients who are at rest 
during a recording or performing an exercise program and also patients in intensive care 
units. ECG recordings are examined by a physician who visually checks features of the 
signal and estimates the most important parameters of the signal. Using his expertise the 
physician judges the status of a patient. The recognition and the analysis of the ECG signal 
is difficult, since their size and form may change eventually and there can be a considerable 
amount of noise in the signal. Since the processing of ECG signal is a very important step in 
the process of ECG examination by physicians many tools, methods and algorithms from 
signal processing theory have been proposed, described and implemented. The Wavelet 
Transform (WT) is a new and promising set of tools and techniques for doing this. Wavelets 
have generated a tremendous interest in both theoretical and applied areas, especially over 
the past few years. A number of papers, already large, continues to grow, thus progress is 
being made at a rapid pace (Anan et al. 1995; Novak, 2000; Afsar & Arif, 2008). 

  
2. Wavelets Applications in Medicine 
 

The results of the studies in the literature have demonstrated that the WT is the most 
promising method to extract features from the ECG signals. The WT can be thought of as an 
extension of the classic Fourier transform, except that, instead of working on a single scale 
(time or frequency), it works on a multi-scale basis. This multi-scale feature of the WT 
allows the decomposition of a signal into a number of scales, each scale representing a 
particular coarseness of the signal under study. The WT provides very general techniques, 
which can be applied to many tasks in signal processing. One very important application is 
the ability to compute and manipulate data in compressed parameters which are often 
called features. Thus, the ECG signal, consisting of many data points, can be compressed 
into a few parameters. These parameters characterize the behavior of the ECG signal. These 
features of using a smaller number of parameters to represent the ECG signal are 
particularly important for recognition and diagnostic purposes (Güler & Übeyli, 2004). 
The WT of a signal consists of breaking up a signal into shifted and scaled versions of a 
reference (mother) wavelet and has good properties of time and frequency localization. It is 
robust to time varying signal analysis. The wavelet coefficients represent measures of 
similarity of the local shape of the signal to the mother wavelet under different shifts and 
scales (Unser & Aldroubi, 1996). 

 

Early diagnosis of acute Myocardial Infarction (MI) is of vital importance for patients 
attending the emergency department with chest pain, as there are large benefits for 
immediate treatment of acute MI patients. With appropriate therapy, the size of an infarct 
can be reduced which helps in preserving long-term cardiac function. On the contrary, 
without proper treatment the result may be severe cardiac damage that significantly reduces 
the prognosis for the patient. Computer-based ECG interpretations for the detection of acute 
MI are, therefore, of importance as they can improve the early diagnosis of acute MI 
(Haraldsson et al., 2004). 

 
3. ECG Data Collection and Sample Selection 
 

The ECG data for the present work were collected from Al-Kadhimya Teaching Hospital 
and from Al-Iskandaryia General Hospital in Baghdad. The ECG trace papers were recorded 
on an A4 trace paper containing the 12 ECG leads. The recorded ECGs were taken from 
MAC 1200 device. The collected ECG traces contain many diseases like MI and ischaemia 
(anterior, lateral and inferior wall infarction), ventricular hypertrophy and heart block. Sixty 
seven ECG traces had been recorded from these two hospitals. Some of them are corrupted 
by base line wander noise. All the ECG records had been diagnosed with the help of expert 
cardiologist from Al-Iskandaryia General Hospital. The job of the cardiologist was to 
diagnose the sixty seven ECG traces and to assess whether they are normal or abnormal. 
In the present work, since most of the collected cases contain normal and inferior infarction, 
the inferior MI and ischaemia were selected to be analyzed by our proposed classification 
system. Forty-three normal and abnormal subjects (patients with inferior MI) had been 
selected from the sixty seven cases. These records were displayed on ECG graph paper to be 
analyzed in the present work. The next step was the conversion of the ECG paper into image 
file in the computer by using high-resolution scanner. The resulting image file was saved as 
a bitmap image. The horizontal and vertical resolutions were both set to 150 dots per inch 
(dpi). The resulting image size is 1230*1630 pixels. This procedure was done for all the 
collected ECG papers.  

 
4. Methodology 
 

The block diagram of the proposed system is shown in Fig.1. The following sub-sections will 
describe each component of the block diagram in detail. 
 
4.1 Lead Selection 
A single lead ECG is selected from the total ECG image. Lead III has been selected to be 
processed for the next operations because the inferior infarction appears only in lead III and 
aVF lead. The selected lead has a length of 13 large squares of the ECG image. The extracted 
lead III picture is shown in Fig. 2. 
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a bitmap image. The horizontal and vertical resolutions were both set to 150 dots per inch 
(dpi). The resulting image size is 1230*1630 pixels. This procedure was done for all the 
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4. Methodology 
 

The block diagram of the proposed system is shown in Fig.1. The following sub-sections will 
describe each component of the block diagram in detail. 
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A single lead ECG is selected from the total ECG image. Lead III has been selected to be 
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aVF lead. The selected lead has a length of 13 large squares of the ECG image. The extracted 
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Fig. 1.  Block diagram of the ECG classification system 

 
 

 
 
 
 
 
Fig. 2.  Lead III picture selected from the total ECG image of sample No. 7 
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4.2 Signal Extraction from Image and Heart Rate Calculation 
The multi-beat lead image in the previous block is converted into a multi- beat signal by the 
signal extraction block. The flowchart of signal extraction from the image is shown in Fig. 3. 
The multi-gray leveled ECG image is separated into a single gray level image. Then, 
scanning for the gray levels between 0 and 200 is done to capture the signal and exclude the 
background. The gray levels above 200 are discarded based on histogram technique to 
remove the background. The resulted lead III multi-beat signal is shown in Fig. 4. From this 
signal, the heart rate is calculated by measurement of R-R interval in large squares since it 
has a multi-beat by using the formula (Guyton & Hall, 2000). 
 

HR=300/R-R (distance in large squares)                                        (1) 
 
The heart rate is measured for all ECG data and it is expressed in bmp. After heart rate 
calculation, the algorithm can decide whether the subjects had a tachycardia, bradycardia or 
normal heart rate.  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Fig. 3. Flowchart of signal extraction from image and heart rate calculation 
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Fig. 4. Extracted lead III multi-beat signal from lead III image of sample No. 7 

 
4.3 Windowing 
As the shape of each beat in ECG waves is asymmetric, P-QRS-T complexes are selected by 
using windows with the range 80 samples before the R-wave maximum point to 48 samples 
after the R-wave maximum. This is to extract a single beat ECG signal from the multi-beat 
data. The resulting single beat ECG is shown in Fig. 5. The signal has been normalized to 1 
as shown in Fig. 6.   
 
 
 
 
 
 
 
 
 
 
Fig. 5.  Single beat lead III signal of sample No. 7 
 

 
 
 
 
 
 
 
 

 
 Fig. 6.  Normalized single beat signal of sample No. 7 

 

4.4 Wavelet Denoising 
Wavelet denoising (WD) method or nonlinear wavelet filtering is based on taking Discrete 
Wavelet Transform (DWT) of a signal, passing the transform through a threshold, which 
removes the coefficients below a certain value, then taking the inverse DWT, as illustrated in 
Fig. 7. The method is able to remove noise and achieve high compression ratios because of 
the “concentrating” ability of the wavelet transform. The DWT localizes the most important 
spatial and frequency features of a regular signal in a limited number of wavelet coefficients 
(Novák, 2000). 

 
 
 
 
 
 

Fig. 7.  Basic denoising concept 
 
The general wavelet denoising procedure is as follows (Graps, 1995):  
 1. Apply wavelet transform to the noisy signal to produce the noisy wavelet coefficients to 
the desired level.  
2. Select appropriate threshold limit at each level and threshold method to best remove the 
noise. 
3. Take the inverse wavelet transform of the threshold wavelet coefficients to obtain a de-
noised signal. 

 
4.4.1 Threshold method 
The nonnegative garrote shrinkage function which was first introduced by Breiman 
(Brieman, 1995); (Poornachandra & Kumaravel, 2008) is defined as: 
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λδ is the non-negative garrote shrinkage function. A garrote shrinkage function 

is plotted in Fig. 8. The shrinkage function )(xG
λδ is continuous (like the soft shrinkage, 

therefore more stable than hard), and approaches the identity line as |x| gets large (close to 
the hard shrinkage, smaller bias than the soft shrinkage for large coefficient). The non-
negative garrote shrinkage function provides a good compromise between the hard and the 
soft shrinkage functions.  
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Fig. 4. Extracted lead III multi-beat signal from lead III image of sample No. 7 
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Fig. 8.  Garrote thresholding function 
 
4.4.2 Threshold Selection Rules  
There are three main threshold selection rules (Graps, 1995).  

a) Rigsure: threshold is selected using the principle of Stein’s Unbiased Risk Estimate 
(SURE) quadrature loss function. An estimate of the risk can be obtained for a 
particular threshold value λ.  Minimizing the risks in λ gives a selection of the 
threshold value.  

b) Universal: Fixed form threshold yielding minimax performance multiplied by a 
small factor proportional to the length of the signal. 

c) Heursure: Threshold is selected using a mixture of the first two methods.  In the 
present work, Heursure is used as a threshold selection rule.  

The original noisy ECG signal and the new denoised signal are shown in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Original noisy ECG and the denoised one 

 

 

4.5 Feature Extraction  
 

4.5.1 Feature Selection 
It is basically impossible to apply any classification method directly to the ECG samples, 
because of the large amount and the high dimension of the examples necessary to describe 
such a big variety of clinical situations. A set of algorithms from signal conditioning to 
measurements of average wave amplitudes, durations, and areas, is usually adopted to 
perform a quantitative description of the signal and a parameter extraction. On this set of 
extracted ECG parameters, several techniques for medical diagnostic classification are then 
applied, such as probabilistic approaches, heuristic models, and knowledge-based systems. 
The aim of this work was to determine suitable input feature vectors which would 
discriminate between normal and abnormal MI beats (Al-Naima et al., 2008). 

 
4.5.2 Reasons for the Use of Wavelet  
This is the most interesting question for most of the users. The wavelet has one or two 
parameters. Because wavelets have so many constraints that are not associated with the 
signal, but more with mathematical and calculation limitations, it is virtually impossible to 
blindly select a wavelet. Wavelets are usually chosen on the basis of “If you see what you 
need to see, then that's that, if not, then try something else”. The most general-purpose 
usable wavelet is Daubechies (Belgacem et al., 2003).  

 
4.5.3 DWT Coefficients Extraction 
In the present work Db4 and Haar wavelet have been used as the mother wavelets. 
MATLAB software package version 7 used to extract the DWT coefficients. For achieving 
good time-frequency localization, the preprocessed ECG signal is decomposed by using the 
DWT up to the fourth level. The smoothing feature of Haar wavelets and Db4 made them 
more suitable to ECG changes and the feature set is composed of level 1,2,3, 4 coefficients 
cd1,cd2 cd3,cd4 and ca4. Most of the energy of the ECG signal lies between 0.5 Hz and 40 
Hz. This energy of the wavelet coefficients is concentrated in the lower sub-bands ca4, cd4, 
and cd3. The level 1, 2 coefficients cd1 and cd2 are the most detail information of the signal 
and they are discarded since the frequency band covered by these levels contains much 
noise and is less necessary for representing the approximate shape of ECG. The frequencies 
covered by these levels were higher than frequency content of the ECG. Coefficients cd3 and 
cd4 represent the highest frequency components and ca4 represent the lowest one. 
For the Db4 wavelets, cd3 and cd4 having lengths of 21 and 14 coefficients are generated 
respectively. The DWT coefficients of Db4 wavelets of ECG segment of sample no. 7 are 
shown in Fig. 10. For the Haar wavelets, cd3 and cd4 having lengths of 16 and 8 coefficients 
are generated respectively. The obtained feature vectors form Db4 and Haar wavelets 
decomposition are used as an input to the NN classifier. The above procedure of 
decomposition is done for the 43 ECG segments for both normal and inferior MI patients. 
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There are three main threshold selection rules (Graps, 1995).  

a) Rigsure: threshold is selected using the principle of Stein’s Unbiased Risk Estimate 
(SURE) quadrature loss function. An estimate of the risk can be obtained for a 
particular threshold value λ.  Minimizing the risks in λ gives a selection of the 
threshold value.  

b) Universal: Fixed form threshold yielding minimax performance multiplied by a 
small factor proportional to the length of the signal. 

c) Heursure: Threshold is selected using a mixture of the first two methods.  In the 
present work, Heursure is used as a threshold selection rule.  

The original noisy ECG signal and the new denoised signal are shown in Fig. 9. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9.  Original noisy ECG and the denoised one 

 

 

4.5 Feature Extraction  
 

4.5.1 Feature Selection 
It is basically impossible to apply any classification method directly to the ECG samples, 
because of the large amount and the high dimension of the examples necessary to describe 
such a big variety of clinical situations. A set of algorithms from signal conditioning to 
measurements of average wave amplitudes, durations, and areas, is usually adopted to 
perform a quantitative description of the signal and a parameter extraction. On this set of 
extracted ECG parameters, several techniques for medical diagnostic classification are then 
applied, such as probabilistic approaches, heuristic models, and knowledge-based systems. 
The aim of this work was to determine suitable input feature vectors which would 
discriminate between normal and abnormal MI beats (Al-Naima et al., 2008). 

 
4.5.2 Reasons for the Use of Wavelet  
This is the most interesting question for most of the users. The wavelet has one or two 
parameters. Because wavelets have so many constraints that are not associated with the 
signal, but more with mathematical and calculation limitations, it is virtually impossible to 
blindly select a wavelet. Wavelets are usually chosen on the basis of “If you see what you 
need to see, then that's that, if not, then try something else”. The most general-purpose 
usable wavelet is Daubechies (Belgacem et al., 2003).  

 
4.5.3 DWT Coefficients Extraction 
In the present work Db4 and Haar wavelet have been used as the mother wavelets. 
MATLAB software package version 7 used to extract the DWT coefficients. For achieving 
good time-frequency localization, the preprocessed ECG signal is decomposed by using the 
DWT up to the fourth level. The smoothing feature of Haar wavelets and Db4 made them 
more suitable to ECG changes and the feature set is composed of level 1,2,3, 4 coefficients 
cd1,cd2 cd3,cd4 and ca4. Most of the energy of the ECG signal lies between 0.5 Hz and 40 
Hz. This energy of the wavelet coefficients is concentrated in the lower sub-bands ca4, cd4, 
and cd3. The level 1, 2 coefficients cd1 and cd2 are the most detail information of the signal 
and they are discarded since the frequency band covered by these levels contains much 
noise and is less necessary for representing the approximate shape of ECG. The frequencies 
covered by these levels were higher than frequency content of the ECG. Coefficients cd3 and 
cd4 represent the highest frequency components and ca4 represent the lowest one. 
For the Db4 wavelets, cd3 and cd4 having lengths of 21 and 14 coefficients are generated 
respectively. The DWT coefficients of Db4 wavelets of ECG segment of sample no. 7 are 
shown in Fig. 10. For the Haar wavelets, cd3 and cd4 having lengths of 16 and 8 coefficients 
are generated respectively. The obtained feature vectors form Db4 and Haar wavelets 
decomposition are used as an input to the NN classifier. The above procedure of 
decomposition is done for the 43 ECG segments for both normal and inferior MI patients. 
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Fig. 10. The DWT coefficients of ECG Db4 wavelet of level-4 of sample No. 7 

4.5.4 Discrete Fourier Transform  
Discrete Fourier Transform of each data set was performed after getting the sampling period 
to observe both frequency and phase response properties of every ECG signals. Each ECG 
segment is analyzed by DFT of 128 points. Due to symmetry of the DFT, only 64 points are 
considered. Thus, the Fourier magnitude and phase of 64 points length have been obtained. 
To reduce the dimensionality, 16 points are selected from the 64 points sample of the Fourier 
magnitude. For the phase, a set of 32 points are selected from the 128 points phase. Both the 
16 samples Fourier magnitude and 32 samples phase are used as feature vectors to be 
introduced to the NN classifier. The above procedure is done for each noisy and denoised 
ECG segments of the 43 cases of normal and patients with MI. The Fourier magnitude and 
phase for denoised ECG segment of sample no. 7 are shown in Fig. 11. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Fig. 11. The Fourier magnitude and phase for the denoised ECG signal 

 

4.6 Neural Networks Classifier 
In the present work, the neural networks are used for the classification purposes. The neural 
networks derive their power due to their massively parallel structure, and an ability to learn 
from experience. They can be used for fairly accurate classification of input data into 
categories, provided they are previously trained to do so. The accuracy of the classification 
depends on the efficiency of training. The knowledge gained by the learning experience is 
stored in the form of connection weights, which are used to make decisions on fresh input. 
Three issues need to be settled in designing an ANN for a specific application: 
 
1. Topology of the network. 
2.     Training algorithm. 
3.     Neuron activation functions. 
 
In the topology we adopted, the number of neurons in the input layer was fixed by the 
number of elements in the input feature vector. Therefore the input layer had 16 neurons for 
both the first and the third ANN classifiers, 21 neurons for the second, and 32 neurons for 
the fourth one using DWT (Db4), DWT (Haar), Fourier magnitude, Fourier phase 
respectively. The output layer was determined by the number of classes desired. In our 
study, the unique neuron of the output layer corresponds to the normal and MI beats. 
The proposed network was trained with all 45 cases (26 normal and 19 abnormal cases). 
These 45 cases are fed to the four feed forward neural network proposed in this study. 
MATLAB software package version 7 is used to implement the software in the current work. 
When the training process is completed for the training data (45 cases), the last weights of 
the network were saved to be ready for the testing procedure. Learning rate is set to 0.5, the 
output of the network was (-1) for the class normal and (1) for the class abnormal. The 
training algorithm used for this network is the Back Propagation Algorithm (BPA). The 
performance goal was met at 2300 epochs after a training time of 45 sec. The summary of the 
back-propagation algorithm applied in the present work can be described as:  
 
        1. Initialization: Assuming no prior information is available, the synaptic weights and   

thresholds have picked to a random value. 
        2. Presentations of the training examples The network is presented with an epoch of    

training examples. For each example in the set, ordered in some fashion, the 
sequence of forward and backward computations described under points 3 and 4 is 
performed. 

         3. Forward computation 
         4. Backward computation 
         5. Iteration The forward and backward computations under points 3 and 4 are iterated 

by presenting new epochs of training examples to the network to reach the stopping 
criteria. 

 
The testing process is done for 20 cases (12 normal and 8 abnormal).  These 79 cases are fed 
to the proposed network and the output is recorded for calculation of the sensitivity, 
specificity and accuracy of prediction. 
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The accuracy of the classification depends on the efficiency of training. The knowledge 
gained by the learning experience is stored in the form of connection weights which are 
used to make decisions on fresh input. 
Classification of MI is a complicated problem. To solve this two hidden layers are taken in a 
feed forward neural network. The single hidden layer is set for our four neural classifiers as 
follows: For the DWT (Db4) NN and Fourier magnitude NN, the hidden layer consists of 
four neurons. For the DWT (Haar) NN, the hidden layer consists of six neurons. And for the 
Fourier phase NN, the hidden layer consists of 8 neurons. The BPA is a supervised learning 
algorithm, which aims at reducing the overall system error to a minimum. The connection 
weights are randomly assigned at the beginning and progressively modified to reduce the 
overall mean square system error. The weight updating starts with the output layer, and 
progresses backwards. The weight update aims at maximizing the rate of error reduction, 
and hence, it is termed as ‘gradient descent’ algorithm. It is desirable that the training data 
set be large in size, and also uniformly spread throughout the class domains. In the absence 
of a large training data set, the available data may be used iteratively, until the error 
function is reduced to an optimum level. For quick and effective training, data are fed from 
all classes in a routine sequence, so that the right message about the class boundaries is 
communicated to the ANN.  
Before the training process is started, all the weights are initialized to small random 
numbers. This ensured that the classifier network was not saturated by large values of the 
weights. In this experiment, the training set was formed by choosing 15 normal beats and 12 
MI beats obtained from the selected cases. 
The sigmoid function was used as the neural transfer function. The most important reason 
for choosing the sigmoid as an activation function for our networks is that the sigmoid 
function f(x) is differentiable for all values of x, which allows the use of the powerful BPA.  

 
5. Results and Discussion 
The performance of the algorithm was tested by computing the percentages of the three 
parameters; Sensitivity (SE), Specificity (SP) and Accuracy (AC) as follows (Al-Timemy, 2008; 
Al-Timemy & Al-Namia, 2009): 
 
                                                                     
                                                                                                                                                               (3)  
 
 
 
 
                                                                                                                                                               (4) 
 
 
 
 
 
                                                                                                                                                               (5) 
 

100
)(
×

+
=

FNTP
TPSE

100
)(
×

+
=

FPTN
TNSP

100
)(

)(
×

+++
+

=
FPFNTPTN

TNTPAC

 

Where TP is the number of true positives, TN is the number of true negatives, FN is the 
number of false negatives, and FP is the number of false positives. The true positives (TP), 
false positives (FP), true negatives (TN), and false negatives (FN) are defined appropriately 
as shown below: 
 
FP: Classifies normal as abnormal. 
TP: Classifies abnormal as abnormal.  
FN: Classifies abnormal as normal.  
TN: Classifies normal as normal. 
 
In our study, the unique neuron of the output layer corresponds to the normal and 
infarction beats. In practice, the number of neurons in the hidden layer varies according to 
the specific recognition task and is determined by the complexity and amount of training 
data available. If too many neurons are used in the hidden layer, the network will tend to 
memorize the data instead of discovering the features. This will result in failing to classify 
new input data. Using a trial-and-error method, we tested hidden layers varying between 
two and 20 neurons. The optimum number of neurons in the hidden layer was found to be 
five for the first ANN classifier, three for the second and two for the last one. The resulted 
accuracy, sensitivity and specificity for DFT-NN and DWT-NN are shown in Table 1. 
 

Disease cases Accuracy Sensitivity Specificity 
DFT-NN 20 85% 80% 90% 
DWT-NN 20 95% 90% 90% 

 
Table 1. The results after training of the proposed network 

 
6. Conclusion 
 

ECG signals of the human generated by the conduction system of the heart are usually non-
stationary signals. A method based on image processing techniques was presented for data 
acquisition of the ECG cases. This method of obtaining ECG samples was shown to be 
efficient in ECG samples acquisition. In the present work, classification of ECG patterns was 
achieved by means of DWT and DFT combined with BP NN. In its current form, BPA uses 
the gradient descent to train the network. 
 The objective is to minimize the BP error to reach the desired response. Denoising process 
was adopted to remove different types of noise corrupting the ECG samples. The ECG 
signal can be used as a reliable indicator of heart diseases. In the present work, the DWT, 
DFT and the NN classifier are presented as diagnostic tools to aid the physician in the 
analysis of heart diseases. A wavelet based NN classifier has been proposed for MI 
classification. The feature set has been carefully chosen to have enough information for good 
accuracy. This feature set is a subset of DWT coefficients based on ‘Db4’ and ‘Haar’ 
wavelets. 
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Where TP is the number of true positives, TN is the number of true negatives, FN is the 
number of false negatives, and FP is the number of false positives. The true positives (TP), 
false positives (FP), true negatives (TN), and false negatives (FN) are defined appropriately 
as shown below: 
 
FP: Classifies normal as abnormal. 
TP: Classifies abnormal as abnormal.  
FN: Classifies abnormal as normal.  
TN: Classifies normal as normal. 
 
In our study, the unique neuron of the output layer corresponds to the normal and 
infarction beats. In practice, the number of neurons in the hidden layer varies according to 
the specific recognition task and is determined by the complexity and amount of training 
data available. If too many neurons are used in the hidden layer, the network will tend to 
memorize the data instead of discovering the features. This will result in failing to classify 
new input data. Using a trial-and-error method, we tested hidden layers varying between 
two and 20 neurons. The optimum number of neurons in the hidden layer was found to be 
five for the first ANN classifier, three for the second and two for the last one. The resulted 
accuracy, sensitivity and specificity for DFT-NN and DWT-NN are shown in Table 1. 
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Table 1. The results after training of the proposed network 

 
6. Conclusion 
 

ECG signals of the human generated by the conduction system of the heart are usually non-
stationary signals. A method based on image processing techniques was presented for data 
acquisition of the ECG cases. This method of obtaining ECG samples was shown to be 
efficient in ECG samples acquisition. In the present work, classification of ECG patterns was 
achieved by means of DWT and DFT combined with BP NN. In its current form, BPA uses 
the gradient descent to train the network. 
 The objective is to minimize the BP error to reach the desired response. Denoising process 
was adopted to remove different types of noise corrupting the ECG samples. The ECG 
signal can be used as a reliable indicator of heart diseases. In the present work, the DWT, 
DFT and the NN classifier are presented as diagnostic tools to aid the physician in the 
analysis of heart diseases. A wavelet based NN classifier has been proposed for MI 
classification. The feature set has been carefully chosen to have enough information for good 
accuracy. This feature set is a subset of DWT coefficients based on ‘Db4’ and ‘Haar’ 
wavelets. 
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1. Introduction 

1.1 GPU Computing  
Since 1999, which marks the introduction of the Graphics Processing Unit (GPU) for the PC 
industry, the use of commodity graphics hardware for non-graphic applications has become 
an important research topic. At the time, GPUs were specially designed for 3D computer 
graphics based on a fixed-function processor built around the graphic pipeline. These GPUs 
were difficult to program so the first programming efforts were regarded as academic 
projects. A major limitation of this generation of GPUs was the lack of floating-point 
precision in the fragmenting processors. This limitation has vanished with the introduction 
of floating-point pixel processing with the ATI Radeon 9700 GPU in the late 2002s, and the 
NVIDIA GeForce FX GPU in the early 2003s. After only a few years, we are now entering 
the third stage of GPU computing : GPUs are now general-purpose parallel processors 
(GPGPU) with support for accessible programming interfaces and industry-standard 
languages. Nowadays, the GPU’s have drastically changed the face of computing and a 
large community of developers successfully applies their findings to GPUs, in various 
application domains, in order to achieve speedups of orders of magnitude superior to 
optimized CPU implementations. GPUs are playing an increasing role in non-graphic and 
scientific computing applications. For a good overview and the state of the art of GPUs 
architecture, computing and applications, the reader can refer to (Owens et al., 2008, Owens 
et al., 2007). 
The high computational rates of the GPU have made graphics hardware an attractive target 
for demanding applications such as those in the field of signal and image processing. 
Among the most prominent applications in this area are those related to image 
segmentation, a driving application concerning the field of medical imaging. 

 
1.2 Medical imaging context 
Medical imaging must deal with increasingly large sized medical image data produced by 
modern imaging systems such as multidetector computed tomography (MDCT) or magnetic 
resonance imaging (MRI). The evaluation process of these images is not trivial and can 
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result in missed abnormalities due to the inherent limitations of human perception. These 
evaluation difficulties increase with the use of 3D or 4D images. In clinical settings it is 
fundamental to extract quantitative and qualitative information from these images, in a 
reproducible and reliable way. The basic problem is the identification and extraction of 
anatomical or pathological features embedded in 2D or 3D images by a process called 
segmentation. Image processing on large medical volume data rely on computationally 
demanding applications that can benefit from the development of  GPUs. 
Medical image processing addresses a large range of problems and for each area of 
application, the segmentation strategies must be adapted to specific needs and clinical 
constraints. In several cases, fully automatic segmentation processes fail because the quality 
of images is directly affected by variability in imaging parameters, human anatomy and 
pathological changes over time. Therefore, the medical practitioner must take the time to 
correct the segmentation errors in 3D or 4D images in a tedious and time consuming task 
that is not compatible with clinical workflow. Medical images are complex and, in absence 
of higher level knowledge, this may result in several different interpretations. It is therefore 
imperative to incorporate some user intervention, which adds prior information in order to 
guide the segmentation process towards a reliable solution. This approach is suited in a 
clinical context because segmentation errors and computing time can be reduced within the 
same step. The principle is that high level image understanding is used to initialize low-
level tasks operated by the computer.  Specifically, the medical practitioner can draw rough 
scribbles labeling the regions of interest (each label related to a specific object) and then the 
image is automatically segmented by propagating these labels over the whole image. If 
needed, the user can add more seeds to achieve the ideal result.  
Seeded segmentation approaches have been widely used in a very inspiring way in various 
domains, such as segmentation and matting of photo/video or in the treatment of natural 
images (Bai and Sapiro, 2007), cartoons or natural image colorization (Qu et al., 2006, 
Konushin et al., 2006), and interactive segmentation for image compositing (Vezhnevets et 
al., 2005, Yin et al., 2004, Rother et al., 2004, Mortensen and Barrett, 1998). These 
segmentation approaches rely on weighted-distance-based techniques. From each user-
provided label, a weighted distance is computed in order to find out the probability for each 
unlabelled pixel to be assigned to a particular label. In these techniques, the image grid is 
seen as a graph with pixels as nodes and edges connecting neighboring pixels. Since the 
work initiated by Boykov and Jolly (Boykov and Jolly, 2000), the Graph Cuts method has 
become a very attractive way for interactive organ segmentation in medical imaging and 
different work based on weighted distance for image segmentation has been published (Xu 
et al., 2007, Protiere and Sapiro, 2007, Chefd'hotel and Sebbane, 2007). Additionally, the 
geodesic weighted distances can be seen as a specific case of the more general technique 
presented in (Falcão et al., 2004) as well as the ∞=q case presented by Sinop and Grady 
(Sinop and Grady, 2007). In this last publication, the authors showed a general seeded image 
segmentation algorithm based on the minimization of q norms. They showed that two 

popular seeded image segmentation algorithms, Graph Cuts (Boykov and Funka-Lea, 2006) 
and Random Walker (Grady and Funka-Lea, 2004), correspond to the parameter choices of q 
= 1 and q = 2 respectively. 
Since graph-cuts algorithms are computationally heavy on large datasets, recent work has 
been done to find solutions to implement these algorithms on graphics hardware. Two 
different approaches are found.  

 

The first looks at the new GPU implementation of the push-relabel algorithm (Vineet and 
Narayanan, 2008, Dixit et al., 2005) to solve the mincut/maxflow problem. Reported 
performances on 2D images show that the GPU approaches are very promising (Vineet and 
Narayanan, 2008). Nevertheless, it is important to notice that the implementation was 
performed using CUDA, a parallel computing architecture developed by NVIDIA, which 
works with all NVIDIA GPUs from the G8X series or newer. Compared to low level 
languages, CUDA needs only a short learning curve to build proof of concepts but the 
application is limitated to NVIDIA cards.  
Another approach is to focus on efficient GPU implementation for large sparse matrix solver 
(Volkov and Demmel) required by spectral methods for image segmentation such as 
Normalized-Cuts, or to find the solution to a sparse linear system as needed by the 
isoperimetric algorithm (Aharon et al., 2005). Implementation of these algorithms is not 
straightforward and for this reason, we focus our energy on developing simple iterative 
algorithms which can be formulated as a cellular automaton. 

 
1.3 Cellular automaton: a model suited to GPU computing 
Since the days when Von Neumann and Ulam (Von Neumann and Burks, 1966) first 
proposed the concept of cellular automata (CA) until the recent book of Wolfram `A New 
Kind of Science' (Wolfram, 2002), the simple structure of CA has attracted researchers from 
various disciplines. An exhaustive survey of literature, on cellular automata for modeling 
purposes, can be found in (Ganguly et al., 2003). CA became more practical and immensely 
popular in the late 1960's, when John Conway developed the cellular automata based Game 
of Life - an elementary computerized model of a colony of living cells (Gardner, 1970). The 
popularity of cellular automata can be explained by the enormous potential that they hold 
in modeling complex systems, in spite of their simplicity.  
A cellular automaton (CA) is a collection of cells arranged in an N-D lattice, such that each 
cell’s state changes as a function of time according to a defined set of rules that includes the 
states of neighbouring cells. Typically, the rule for updating the cells state is the same for 
each cell, it does not change over time and it is applied to the whole grid simultaneously. 
That is, the new state of each cell, at the next time step, depends only on the current state of 
the cell and the states of the cells in its neighbourhood. All cells on the lattice are updated 
synchronously. Thus, the state of the entire lattice advances in discrete time steps. It is clear 
that the concept of parallelism is implicit to cellular automata. In terms of computing, we 
need to process many elements (cells) with the same program. Each element is independent 
of the other elements and basically, elements cannot communicate with each other. These 
constraints match exactly with the GPU programming model, which is called SPMD and 
stands for Single Program, Multiple Data. Technically, each element can operate on a 32-bit 
integer or on floating-point data with a reasonably complete general-purpose instruction set. 
Elements can read data from a shared global memory (a “gather” operation) and with the 
newest GPUs, they can also write back onto arbitrary locations in shared global memory 
(“scatter”) (Owens et al., 2008). This programming model is well-suited for programs 
formulated as CA, as many elements can be processed in lockstep running the exact same 
code. Code written in this manner is called “SIMD”, for Single Instruction, Multiple Data. 
The most recent published papers using CA and GPU cover simulation of physical (Zhao, 
2008), biological (Gobron et al., 2007) or physiological (Alonso Atienza et al., 2005) 
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processes. It would not be surprising to see an increase in the popularity of CA algorithms 
now that powerful GPUs are widely available, at low cost, on home computers. 

 
2. Our contribution 

Our work seeks to develop simple CA algorithms to perform efficient multi-label 
segmentation tasks on, but not restricted to N-Dimensional medical images, and implement 
them on low cost graphical hardware (GPUs).  
In this paper we propose a massively parallel implementation of the Ford-Bellman’s shortest 
paths algorithm (FBA) to perform graph-based segmentation.  
Two applications based on FBA are presented. The first focuses on ultra-fast computation of 
the watershed transform on N-D images, while the second presents an alternative and an 
optimized framework to perform graph-based seeded segmentation on N-D images. It is 
important to notice that our work was voluntarily designed as a compromise between 
computational efficiency and hardware compatibility. Indeed, our FBA approach was 
implemented using OpenGL-Cg language on low cost, non vendor-specific graphics 
hardware. This aspect becomes interesting in a commercial software context because it can 
run on recent or moderately old hardware (NVIDIA GeForce 6 or ATI 1000 graphic card 
families). 

  
3. Method 

The N-D image is treated as a discrete object and is seen as a graph where each pixel (voxel) 
is a graph node or vertex. A predefined cost-function is used to characterize the edges 
abutting two adjacent nodes included in the neighborhood. The cost-function is used to 
compute multiple shortest-path-trees (sp-tree) where the tree roots are specifically labeled 
vertices called seeds. The segmentation result is obtained by cutting the graph in order to 
separate it into two, or more, sets. The algorithm starts by computer or user defined seed 
groups on the image. Each seed group is characterized by a location and a specific label so 
that the K-labels belong to K-specific objects in the image. The segmentation algorithm 
iteratively evolves from these starting labels, so that at the end, the N-D image is segmented 
in K objects. Each region is then guaranteed to be connected to seed points with the same 
label. 
 
In the following, we consider an N-D gray scale image as a graph ( )EVG ,=  with a set of V 
vertices, or nodes, and a set of edges VxVEe ⊆∈  spanning two neighboring vertices, 

iv and jv  defined by its neighborhood. The weighted graph assigns a value to each edge 

ije called a weight or a cost and is denoted by ijc or ( )ijec  and defined by REf →: , a real-

valued weight function. ( )vλ  and ( )vl  represent the value and the label assigned to a 

vertex respectively. kS is a start (or source) vertex with label k  or a group of vertices with 
the same labelk − .  For each unlabeled vertex we can compute the minimal cost to reach the 
source s as the sum of the weights of the edges in the path. If we compute a sp-tree for k-
labeled source vertex kS , each unlabeled vertex of the graph can be represented by a K-

 

tuple vector which represents the K-cost to reach the K-label. As shown by equation (1), the 

global cost, noted k
i

C  is computed as the cumulative cost of the shortest path kP between 

vertices iv and the kS seed group. 

( )∑= k
i

k
i PfC  (1) 

 
The i-th vertex can then be represented by a K-tuple vector { }jii Cv  with Kj ,1∈ . The final 

vertex labeling process, ( )vl  in (2), is derived from these K-tuples by tagging each vertex 

with the nearest K-label. The label assigned to vertex iv  is the label of the minimum cost 

jC . 

( ){ }j
i

Kj
ji Clabelvl =
== 1min)(  (2) 

 
We show that this method can be used to partition a graph in K sub-graphs by performing 
K-cuts. It means that the image is split in K-specific regions including the k-seed groups. In 
practice, computing K times the sp-tree is not an optimal approach. We show in the next 
section that the multiple-sp-tree can be computed in a more effective way. 

 
3.1 Dijkstra’s and Ford-Bellman shortest paths algorithm 
Dijkstra’s shortest paths algorithm (Dijkstra, 1959) is the most popular method to compute 
the shortest path between two vertices ),( ts , or between a start vertex s  and all other 

vertices iv  in a graph. Dijkstra’s algorithm is a heap-based method with computational 
complexity in O (N log N), but this complexity can be reduced by the use of techniques like 
that presented in (Yatziv et al., 2006). However, generally speaking, priority queues are very 
difficult to parallelize and we aim to develop other implementation strategies to compute 
the shortest paths.  
A different approach used to calculate the distance of all vertices vi from a defined vertex s is 
the Ford-Bellman’s algorithm (Bellman, 1956, Ford Jr, 1956) described in Algorithm 1 below. 
This 50-year-old algorithm gives a concise generalized expression of the cost-minimization 
problem. The most crucial, unique and unintuitive aspect of this algorithm is that even 
though the vertices can be processed in any order (even randomly), the algorithm will, in 
the end, produce the lowest-cost distance from every vertex to the start vertex (Even, 1979). 
Each vertex is simply relaxed several times until the algorithm converges to the stationary 
global solution. This important aspect of the Ford-Bellman’s algorithm has caught our 
attention because it allows an efficient parallel implementation that can be achieved by 
cellular automata as presented in the following section.  
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Algorithm 1: The Ford-Bellman’s algorithm 
( ) 0←sλ  and for every ∞←≠ )(, psp λ  

as long as there is an edge qp → , such that ( ) ( ) pqwqp +> λλ  then 

( ) ( ) pqwqp += λλ   

( ) ( )qlabelplabel =  

 
This algorithm generalizes Dijkstra’s algorithm for graphs having negative arc weights but 
without cycles of the negative weights. Unfortunately, on conventional sequential 
computers, the algorithm takes O(n3) time to generate a complete connected n-vertex 
weighted graph. A hardware specific parallel implementation is proposed by 
(Nepomniaschaya, 2001). In this paper, the author introduces a natural straightforward 
matrix representation of the Ford-Bellman algorithm on a STAR-machine. The STAR-
machine is an associative parallel system of the SIMD type with vertical processing. The 
goal of the study was to represent the Ford-Bellman algorithm as a corresponding STAR 
procedure, to justify its correctness and evaluate time complexity. 

 
3.2 Expression of FBA as a cellular automaton  
CA is a collection of cells arranged in an N-D lattice, such that each cell’s state changes as a 
function of time according to a defined set of rules that include the states of neighbouring 
cells. That is, the state of a cell at a given time depends only on its own state, at the previous 
time step, and on the states of its neighbourhood cells at the previous time step. All cells on 
the lattice are updated synchronously. Thus the state of the entire lattice advances in 
discrete time steps. For a 2D image, the Moore or von Neumann neighbourhoods can be 
used, while in 3D, the natural extension of these neighbourhoods gives us 6 and 26 
neighbours respectively. Following this definition, CA can easily be applied to N-D images 
(lattice) represented by a graph G, where cells are pixels (or voxels) of this image and 
vertices of the graph. 
We can then write the CA rule that computes, for each time step (t), the Ford-Bellman’s 
algorithm by the following equation : 
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Where 
pN is the neighbourhood of p. 

Equation (3) shows that the Ford-Bellman’s CA rule can be written in a very efficient and 
concise form. The principle of CA is then to apply this transition rule (3) synchronously for 
all cells and to iterate as long as any cell changes its state. The relation (3) computes the 
shortest path of all vertices to a set of specific initial seeds. In this case, at the end of the 
algorithm, all vertices are labeled with the seed label. In a more general case, the user starts 
to define interactively, on the image, K-group of seeds having K-labels, so that K-labels 
belong to K-specific objects. In this case, the seeds label must be spread out at the same time 
as the cell state is updated. We can then write the pseudo-code of the evolution rule of the 
CA (Algorithm 2) for the FBA when K-labeled seed groups are specified. At least, the user 
specified 2 labels, one for the object and the other for the background. 

 

For iteration 1+k , cell labels 1+klabel , and cell states 1+kλ , are updated as follows:  
 
Algorithm 2: CA rule for K-seeded weighted distance map 

Vsl ∈  Where [ ]Kl ,1∈  with K  the total number of label  
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end for 

 
3.3 Neighbourhood and Cost function 
For a 2D image, the Moore or von Neumann neighbourhoods can be used, while in 3D, the 
relation below gives the 3D edge set connectivity E in the case of 6, 18 and 26-connected for 
N=1, 2  and 3  respectively. 
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As for many graph-based segmentation algorithms (Boykov and Funka-Lea, 2006, 
Chefd'hotel and Sebbane, 2007, Grady and Funka-Lea, 2004, Protiere and Sapiro, 2007), the 
edge weights encode image intensity changes between two neighboring graph nodes p, q. In 
a general case, the cost 

pqw can be represented by the following relation: 
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The parameter h is used, if needed, to add a regularization term which represents the 
geometric distance between two vertices.  

 
3.4 FBA to compute the Watershed transform 
Watershed transform is one of the most popular methods for image segmentation. The 
watershed transform was originally proposed by (Digabel and Lantuejoul, 1977) and later 
improved in (Beucher and Lantuejoul, 1979). The watershed method can be formulated in a 
general framework called image labeling, where a label is associated to each pixel from a 
finite set. The intuitive idea underlying this method comes from geography : when a 
landscape or topographic relief is flooded with water, watersheds are the dividing lines of 
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Equation (3) shows that the Ford-Bellman’s CA rule can be written in a very efficient and 
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the basins of attraction of rain falling over the region. The various formalizations, 
definitions, algorithms and implementations of the watershed concept can be divided into 
two classes. 
One is based on the specification of a recursive algorithm by (Vincent and Soille, 1991) and 
the other one is based on distance functions by (Meyer, 1994). Moreover, watershed 
methods are usually based on sequential algorithms but during the last decade, serious 
efforts were made to find parallel implementation strategies (Eom et al., 2007, Noguet, 1997, 
N. Moga et al., 1998). Unfortunately, despite the use of all the techniques and architectures, 
there is always a stage, in the watershed transform, that remains a global operation. 
Therefore, only modest speedups are to be expected in the case of parallel implementation 
(Roerdink and Meijster, 2000). Our approach shows efficient parallel implementation of the 
watershed transforms based on a cellular automaton (CA) that computes Ford-Bellman’s 
shortest paths (Kauffmann and Piche, 2008).  
Our CA algorithm, presented above, does not produce watershed lines. All pixels are 
merged within some basin, so that the set of basins tessellates the image plane. This is a 
consequence of the local condition of the CA algorithm that is very advantageous for a 
parallel implementation of the watershed transform (Roerdink and Meijster, 2000). Unlike 
other parallel algorithms, our CA algorithm is deterministic and the result does not depend 
on the order in which the pixels are treated during the execution of the algorithm. This is a 
consequence of a fundamental aspect of CA, which is that all cells on the lattice are updated 
synchronously at each time step. 

 
3.5 GPU implementation of FBA 
The graphic card is a Single Instruction Multiple Data (SIMD) computer. This type of 
computer was not commonly available before its introduction into graphic processor, SIMD 
machines were principally dedicated to signal processing or other tasks. In the 90’s there 
was great interest around these types of computers (for example the famous Connection 
Machine by Thinking Machines Corporation Inc.) but it was constrained to the research 
area. Huge improvements in regard to the speed of classical computers and the inherent 
programming difficulty of SIMD made them less attractive. The expertise needed to 
program this kind of devices was either lost or not developed. Nowadays SIMD are 
available at very low cost, so their use became widespread.  However, to program a SIMD 
computer, one often needs to completely reformulate algorithms. Not all algorithms are well 
suited for GPU; ideal GPGPU applications have large data sets (in regards to the memory 
available on the graphic card), high parallelism, and minimal dependency between data 
elements. GPUs are  perfect devices to execute CA code: this is due to the fact that CA 
algorithms only rely on local information (nearest neighbours and local states are usually 
sufficient).  The only complication lies in that we are not aware of the sweeping order of the 
cells in our CA by the GPU (we do not know if a memory cell has yet to be processed or 
not). This means that you can have neighbours that are at time (t+1) and others at time (t). In 
order to update synchronously all the cell states, we need to use some kind of a buffer. 
Let's describe how we have programmed these devices to implement the FBA algorithm: To 
contain the data and the results, we used a RGB 32 bits float graphic texture (double 
precision floating point will be available in near future on high end graphics cards). In the 
red Channel (R), we put the image data, in the green channel (G), we put the computed 
weighted distance map and in the Blue channel (B), we updated the label associated to each 

 

vertex. The vertex labeling step could have also been computed from the converged distance 
map but it is more efficient to update the labels at each iteration because a channel is 
available to store this information. Since all vertexes are updated synchronously in lockstep, 
we needed to have some kind of a buffer. The buffering technique used is the famous Ping-
pong scheme, also called ‘double buffering’. It is a programming technique that uses two 
buffers to speed up a computer that can overlap I/O with processing. Data in one buffer is 
being processed while the next set of data is read by the other one. This buffer technique 
does not need extra video memory. The ‘shader’ program, that has to be executed on each 
vertex, is written in OpenGL Cg, which runs on almost all hardware. It is a strait forward 
implementation of the FBA equation, as described in algorithm 2. The CA is iterated a 
predefined number of times and the label information are extracted from the Blue channel. 
In the cases where the algorithm did not fully converge, a few iterations have been added 
from this non converged state to reach the expected segmentation results. The user can also 
add or remove seeds and run the ‘shader’ code for an additional number of iterations.  
Our approach offers the great benefits of running on older hardware and of being 
compatible with new graphic cards. We could have implemented a more efficient algorithm 
using CUDA, but this avenue is much too restrictive in terms of hardware requirement. 

  
4. Experimental results 

Two different studies, based on the FBA-GPU approach, were conducted. In the first study 
we applied the algorithm to compute the watershed transform on 2D and 3D images. The 
computational efficiency of our GPU approach was compared to a CPU optimized version 
of the watershed transform. 
The second study concerned the use of the FBA-GPU approach to perform seeded 
segmentation of organs in medical image data sets. At first, we evaluated the reproducibility 
and accuracy of our GPU-FBA segmentation approach applied to 3D kidney segmentation 
on a retrospective study totaling 20 magnetic resonance angiography (MRA) acquisitions. 
Then, we performed a comparison between the computing performances of our FBA-GPU 
approach and a CPU implementation of our algorithm. Finally, the FBA-GPU was 
benchmarked on available graphic hardware’s in order to assess the improvement of 
computation time on different graphic cards. 

  
4.1 Technical specifications 
All experimental results presented in the following studies have been performed on an Intel 
Xeon Dual Core (3 GHz) with 2GB RAM and an ATI Radeon X1950 Pro graphic card with 
512 MB of graphical memory.  
It is important to notice that our work was voluntarily designed as a compromise between 
computational efficiency and hardware compatibility. Indeed, our FBA approach was 
implemented using OpenGL-Cg language on different brands of low-cost graphic cards. 
This aspect becomes interesting in a commercial software context because it can run on 
recent or moderately old hardware, even on a NVIDIA GeForce 6 or on ATI 1000 graphic 
card families. 
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4.2 Parallel Watershed transform 
In order to illustrate CA-Watershed results, the algorithm 2 was applied to different images 
by using the two following valued functions.  
 

( ) ( )IGfandIf BA *σ∇=∇=  (6) 

 
where G is a Gaussian smoothing function. The watershed results are represented by mosaic 
images where each labeled region is filled by the mean value of the pixels inside this region. 
The starting seeds, si , are defined automatically as the local minima of the input image I, 
such as: 
 

( ) ( ))(min qIsI
siNqi ∈

<  (7) 

 
Where Ns is defined as the neighborhood of s. 
 
The first 2D application represents a magnetic resonance image (MRI) of a kidney along a 
sagittal plane (figure 1) while the second one is the popular image of Lena (figure 2). These 
examples show that the watershed regions give a regular partitioning of the image and a 
coherent and smooth representation of boundaries. On both images we applied the 
watershed transform by increasing the size of the Gaussian filtering kernel, with the 
smallest kernel represented in (a) and the largest one in (c). As the kernel size increases, the 
number of local minima decreases which results in greater watershed regions, as illustrated 
by figures 1 and 2.  
 

 

 
Fig. 1. MRI image of a kidney along the sagittal plane (a), kidney image filtered by a 
Gaussian (b, c), and respective watershed mosaic images (d, e, f). 
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Fig. 2. Image of Lena (a) and smoothed versions (d, c) by a Gaussian function. Watershed 
mosaic (d, e, f) computed on gradient of respective images (a, b, c). 
 
As we can see in the second study, the number of iterations needed so that the FBA 
algorithm converged, depends on the Euclidian length of the longest geodesic path between 
k-labelled vertices. We showed intuitively that computing a watershed transform can be an 
ideal case for the FBA application because the distance between two k-labelled seeds (two 
local minima in a specific neighborhood) is generally small, so that only few iterations are 
needed to reach a converged result. This is especially true in the context of noisy images, 
such as in medical image datasets, where the local minima are regularly spaced over the 
whole image dataset. Filtering the image will increase the distance between the local 
minima, so that more iterations are needed to ensure the convergence of the algorithm. A 
consequence of this shows that the FBA method is more computationally efficient when the 
local minima are regularly distributed over the image space and when the distance between 
the minima is small.  
The computing efficiency of our GPU-CA-Watershed was evaluated by comparing its 
running time to the running time of a C++ implementation of the Tobogganing algorithm 
described in (Fairfield, 1990, Lin et al., 2006). The initial 3D images used for testing was 
based on an isotropic CT-scan acquisition of size 512 by 512 by 512 pixels. This dataset was 
downsampled, using the nearest neighbor method, In order to obtain isotropic datasets 
sized as a multiple of 64 by 64 by 64 pixels. The CPU and GPU watershed algorithms were 
applied to all 3D datasets and the respective computing times were recorded.  
 

 

 
Fig. 3. Comparison between CPU and GPU computing time (ms) of watershed transform on 
box sized image datasets. 

 
The results of our experiment, illustrated on figure 3,  show that the GPU CA-Watershed 
performs 2.5 times faster than the C++ optimized version of the Tobogganing watershed. 
Moreover, this speedup factor in favour of GPU can easily be increased by using more 
recent low cost graphic hardware, as shown in Table 3 in the following section.  

 

  
4.3 FBA for seeded segmentation  
The second study seeked to evaluate the reproducibility and accuracy of the FBA method 
applied to the segmentation of renal volumes on a retrospective study totaling 20 magnetic 
resonance angiography (MRA) acquisitions. The computational performances of our FBA-
GPU approach were compared with a CPU implementation of the Dijkstra’s shortest paths 
algorithm. Finally, the FBA-GPU implementation was benchmarked on available graphic 
hardware in order to assess the improvement of computation time on different graphic 
cards. 
The proposed CA-GPU segmentation technique was validated experimentally by measuring 
the renal volumes on MRA acquisitions of twenty patients affected by symptomatic 
renovascular disease. The context of validation was to apply our method to perform an 
automatic 3D segmentation of the kidneys based on user defined labelled seeds. From these 
segmentation results, the Parenchymal renal volumes were computed.  
Study setup : All MRA were performed on a 1.5 T Magnetom Vision unit (Siemens, 
Erlangen, Germany) using a phased array body coil.  The sequence used was a coronal 3D 
gradient echo centered on the aorta and the kidneys during dynamic IV administration of a 
contrast agent. The typical image matrix size (XYZ) was 512 by 512 by 150 pixels, with an 
associated pixel resolution of 0.82, 0.82 and 1.25 mm. A representative sample of our MRA 
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database can be shown in figure 3. In these images, the kidneys are represented in a coronal 
section where two major structures can be observed: the superficial part is the renal cortex 
(enhanced signal) and the deep part is the renal medulla (appearing in grey or black). The 
kidney is a bean-shaped structure which presents concave and convex surfaces. The goal 
was to segment the 3D kidney Parenchyma (cortex and medulla). There were three main 
challenges : firstly, the kidney borders are not well defined in the concave surface, because it 
is the point at which the renal artery enters the organ;, secondly, renovascular disease 
directly affects the quality of MRA acquisitions which results in poor contrast between the 
kidney and the background as shown in figure 1b. Finally, the segmentation method had to 
be able to deal with cortical cysts (appearing, for example, as a black hole  on the right 
kidney of figure 1d) that had to be excluded from the segmentation. 
 

 
Fig. 3. MRA acquisitions under a coronal 3D gradient echo sequence centered on the aorta 
and the kidneys during dynamic IV administration of a contrast agent. The kidney is seen as 
a Bean-Shape structure where two major structures can be observed: the superficial part is 
the renal cortex (enhanced signal) and deep part is the renal medulla (appearing in grey or 
black). Significant morphologic and pathologic differences can be observed on the image 
sample which challenges the segmentation. Poor contrast between the cortex and the 
background can be observed on the left kidney (L) on figure 1b and 1a. Cortical cysts 
(appearing, for example, as a black hole  on the right kidney of figure 1d) were excluded 
from the segmentation. 
 
Two readers used the FBA-GPU software tool in a blinded manner to segment the 40 
kidneys in MRA images. The automatic segmentation was started from user defined 
labelled seeds. In order to standardize the segmentation protocol between the readers, the 
two following steps were established. During the first step, the reader navigated in the 3D 
MRA dataset through an orthogonal multiplanar reconstruction (MPR) using a mouse-
driven synchronized 3D cursor. As illustrated in figure 4, the user moved the cursor near the 
centre of the kidney so that the renal artery appeared in the axial view.  
 

 

 
Fig. 4. Multiplanar reformatted images of the kidney as an axial plane (a), a sagittal  plane 
(b) and a coronal plane (c). A synchronized cursor (yellow dashed lines) was used to 
navigate in the 3D data set. The reader moved the cursor near the centre of the kidney so 
that the renal artery appeared in the axial view. 
 
In a second step, based on these three selected planes, the user roughly drew two groups of 
labelled seeds using a painting tool as shown in figure 5. The red seeds needed to be defined 
inside the kidney while the blue ones were drawn outside the kidney (Fig. 5). The FBA-GPU 
process was then started and automatically stopped after a fixed number of iterations. The 
corresponding 3D kidney segmentation result is illustrated in figure 6. The number of 
iterations was set to 100 (conservative value) for all kidney segmentations in order to ensure 
the convergence of the algorithm, as will be discussed further. 

 
Fig. 5. Initialization of the segmentation algorithm on axial (a), coronal (b) and sagittal (c) 
planes. The user roughly drew two groups of labeled seeds using a painting tool; the red 
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background can be observed on the left kidney (L) on figure 1b and 1a. Cortical cysts 
(appearing, for example, as a black hole  on the right kidney of figure 1d) were excluded 
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seeds were defined inside the kidney while the blue ones were drawn outside the kidney. 
3D view of seeds positioning is illustrated on (d). 
 

 
Fig. 6. Example of a segmented kidney. The red overlay represents our automatic 
segmentation results obtained by our FBAGPU approach after 100 iterations. Kidney VOI is 
shown in red on axial (a), coronal (b) and sagittal (c) planes, and in 3D view (d). 
 
Reliability: The two readers performed the 3D segmentation of 40 kidneys (from the 20 
MRA) using the FBA-GPU approach.The mean and standard deviation of the kidney 
volumes computed by each reader are summarized in Table 1. 
 

Reader Volume (mL) : Mean ± SD 

Radiologist 1 140.6 ± 37.23 

Radiologist 2 140.907 ± 37.222 

Table 1. Descriptive statistics of 40 segmented kidney volumes 
 
The inter-observer analysis between reader #1 and #2 is summarized on Table 2 below. 
These results indicate that inter-observer reproducibility for kidney volume measurement is 
excellent, ICC=0.998 (0.997-0.999) and show an absolute volume difference (in %of mean 
kidney volumes) of 1.16% ± 0.86. No statistically significant differences were observed  
(p=0.43) between reader #1 and #2 for the volume computation by our method.  
 

 

Method 
Comparison between reader #1 and #2 

ICC (95%) 
CI (two-sided) 

Volume diff 
(%) Mean ± SD 

Abs volume diff 
(%) Mean ± SD 

P value for 
Student T-test  

 
3D CA-GPU 
 

0.998 
(0.997-0.999) -0.21 ± 1.44 1.16 ± 0.86 0.43 

Table 2. Statistical results for 40 renal volumes measurements 
 
Measurement time: The whole segmentation time of the FBA-GPU method was subdivided 
as the initialization time needed to seeds positioning (1 min on average) and as the GPU 
computation time (3.6 s ± 0.9). This gave us a total estimated segmentation time lower then 
1min 04s, on average, per kidney. For complicated MRA cases, more time was needed 
because it was necessary to add other seeds to ensure good segmentation results. However, 
the total time never exceeded 3 min. 
Computational efficiency: In this section, we validated the hypothesis that our FBA-GPU 
algorithm was more efficient, in this segmentation context, than a CPU implementation of 
the method. To perform this comparative analysis we implemented the Dijkstra’s all pair 
shortest path (APSP) algorithm in C++, using a binary heap. The algorithm was adapted to 
propagate the seed labels needed by the multi-label segmentation approach.  
All CPU segmentation tests were performed automatically by using the previously saved 
labelled seeds, defined by the users during the first validation study.  
The fundamental difference between the Dijkstra algorithm (DA) and FBA approach is that 
the DA implementation uses Priority Queue and defines a sorting function on the nodes. 
The algorithm converged to an optimal solution, since the search proceeded by expanding 
the lowest-cost vertices first, and optimal wave fronts, that worked their way out through 
the search space were generated ; an optimal decision at each step produced a globally 
optimal solution. In other words, the valid solution was only available once all vertices had 
been visited. In the FBA approach, each vertex was simply relaxed several times until the 
algorithm converged to the stationary global solution. This presents the advantage that, at 
each iteration, the solution is available and becomes closer to the optimal solution until the 
convergence is reached. The number of iterations needed to converge depends on the length 
of the longest geodesic path between a k-labelled vertex and all other vertices of the image 
or between two different k-labelled vertices. This means that the number of iterations 
needed to converge depends on the geometric complexity of the object to segment. To 
illustrate this we can say that the FBA approach needs many more iterations to segment an 
object like a maze than for an organ such as the kidney. Based on different segmentation 
contexts of human organs (liver, kidney, bones, aortic aneurysm …) we showed that the 
number of iterations, D, can be estimated by the equations (8) as a constant C that multiplies 
the maximal shortest Euclidian distance between the seed families defined inside (s) and 
outside (t) the organ respectively. 
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min   and ( )i

M

i
dCD

1
max

=
=  (8) 

Where M and N represent the number of seeds having label s and t respectively.  
For our segmentation application, a conservative value for D is given by C > 4. 
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For our segmentation application, a conservative value for D is given by C > 4. 
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GPU vs. CPU: The average of the DA-CPU computing time was 38.5s ± 8 while the 
corresponding FBA-GPU time for 100 iterations was 3.6s ± 0.9. The convergence rate of the 
FBA-GPU approach was evaluated by comparing the segmentation results obtained after a 
fixed number of iterations to the fully converged result given by the DA-CPU method. We 
show in figure 7 that after 10 iterations the difference between the intermediate FBA result 
and the ideal volume was 30.8% while after 50 iterations, this difference was drastically 
reduced to 0.12%. We confirmed that for all 40 kidney segmentations, no differences were 
observed after 60 iterations. This justifies that we fixed the number of iterations at 100 
(conservative value) for all segmentation experiments presented in this paper. It should be 
noted that in the cases where the algorithm did not fully converge, a few iterations were 
added from this non converged state to reach the expected segmentation results. 
GPU Benchmark: We were also interested in the evaluation of the performances of our FBA-
GPU approach on different graphics hardware available in our imaging labs. To do this, the 
same version of the software was installed on seven PCs where we recorded GPU and CPU 
computation times needed to run the identical kidney segmentation experiment. Table 3 
summarizes the measured computing times to run FBA on different graphics hardware and 
PCs. The GPU time is given separately as the setup time and as the FBA time. The setup-
time is the time allocated for data transfer from/to the video memory and the FBA-time 
represents the time needed to perform 100 iterations of the Ford-Bellman algorithm.   

 
Fig. 7. Difference (Err) between the FBA segmented kidney volume and the converged 
solution at each 10 iterations. Err is represented in % of the converged volume. 
 

 GPU time (ms)  

Graphic Card family Setup-time FBA-time Speedup factor 

ATI Radeon HD 4870 885 563 9,7 

Nvidia GeForce GTX 260 812 922 5,9 

 

ATI Radeon HD 3970 n/a 1211 4,5 

NVIDIA GeForce 9800 GT 1032 1843 3,0 

9800 gtx nvidia laptop 1061 1950 2,8 

Radeon X1950 Pro  906 3047 1,8 

NVIDIA GeForce 7950 GT 1419 5444 1,0 

Table 3. Benchmarking of FBA running times (ms) on different graphics hardware. The 
speed up factor is given as the ratio of the FBA-time to the slowest FBA-time. 

  
5. Discussion 

The purpose of our work was to demonstrate that simple cellular automata algorithms 
implemented on low cost graphics hardware can perform efficient image processing tasks 
on N-D medical datasets. The implementation of the Ford-Bellman’s algorithm was in a first 
time applied to perform the watershed transform, and in a second time, to perform seeded 
organ segmentation. 

 
5.1 Watershed transform  
A comparison between our GPU watershed implementation and an efficient CPU 
implementation of the watershed transform showed that a GPU approach based on a 
massively parallel implementation of the Ford-Bellman algorithm can outperform efficient 
CPU implementation of the watershed algorithm. Computing a watershed transform can be 
an ideal application case for the FBA-GPU approach because the algorithm is initialized by a 
large number of seeds which are defined as local minima in a specific neighborhood. As the 
local minimum are defined on the whole image dataset, only few iterations are needed to 
reach a converged result. However, the number of iterations must be increased in the case of 
ideal images such these having large plateaus filled with the same gray level, or with images 
smoothed by a large Gaussian kernel. The reason is that the local minimum are more distant 
from each other and more iterations are then needed to find the converged watershed lines. 
We showed that the FBA-GPU approach is particularly efficient over CPU implementation 
when it is applied to real noisy large images such as medical datasets.  In other cases, an 
hybrid GPU-CPU approach can be considered. 

  
5.2 Seeded segmentation  
The second purpose of this study was to demonstrate that our FBA-GPU approach can 
efficiently be used to perform automatic organ segmentation in 3D medical datasets with a 
high degree of reliability and accuracy. The high reproducibility of renal volumes 
segmentation (inter-observer correlation ICC=0.998) combined to its accuracy (mean 
absolute error < 1.5%) makes this method valid for clinical use.  The low difference between 
renal volumes segmented by two independent readers also indicates that our FBA method is 
robust to manual seed selection. The maximal absolute error between the two readers was 
3.12%, which indicates that the precision of renal volume measurements is weakly affected 
by the variability of image parameters, such as anisotropic resolution of MRI scans and poor 
contrast between kidney parenchyma and background in the presence of severe 
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renovascular disease as illustrated on figure 1b. Moreover, the short time required by the 
whole segmentation process (< 2 min) shows that our method can be used in clinical routine.  
In a second time we conduct a study to evaluate the computational efficiency of our  GPU  
Ford-Bellman approach  compared to a CPU implementation of the Dijkstra’s algorithm. For 
all kidney segmentation (100 iterations) we see a speedup of 10 between the GPU and CPU 
running time. This speedup factor can easily be increased to 50 by using a more actual 
graphic hardware as presented in the next GPU benchmark section. Our GPU-based version 
of the FBA algorithm is simple to implement and presents itself as an alternative and 
optimized approach to perform graph-based segmentation in regards to other proposed 
approaches (Vineet and Narayanan, 2008, Bolz et al., 2003, Fung and Mann, 2008, Gernot et 
al., 2007, Koutis, 2008). 
Our work was voluntarily designed as a compromise between computational efficiency and 
hardware compatibility. Indeed, our FBA approach was implemented using OpenGL Cg 
language on different brands of low cost graphics cards.  
We also benchmarked the FBA on seven different graphics hardware (Table 3), available on 
standard PCs in our medical imaging department, in order to highlight (non exhaustive) 
increasing performances and speedups of GPUs between past and newer low cost hardware 
generations. On one side, by comparing the FBA-time on different GPUs, a speedup factor 
of 10 was found between the slowest and fastest tested graphics hardware and a speedup 
greater than 5 between the GPU used in this study and the ATI Radeon HD 4870., The 
setup-time was overall in the same range for all graphics hardware. On the other side, the 
CPU computing times were slightly the same for all PCs available in our labs.  

  
5.3 Are GPUs better than CPUs ? 
The GPU's rapid increase in both programmability and capability has spawned a research 
community that has successfully mapped a broad range of computationally demanding, 
complex problems to the GPU (Owens et al., 2008). While GPUs are a compelling alternative 
to traditional microprocessors in high-performance computer systems, they can also be seen 
as a complementary solution to CPU approaches. In our case, using the FBA-GPU approach 
to compute the shortest path inside a long and tortuous organ, such as vessels or the colon, 
gives poor performances compared to the DA-CPU approach. Yet, we show that in our 
study the FBA method is more efficient to perform multi label segmentation of the kidney. 
For this reason, we suggest that performances comparison between GPU and CPU 
approaches must be carefully regarded from a global point of view including the application 
context and the complexity of the algorithms to be implemented. 
However, there are some limitations on the use of GPUs. The first limitation concerns the 
setup-time which represents the minimal time needed for the data transfer from/to the 
video memory. Since the video memory is accessed through the PCI Express lane it is much 
slower than the RAM access. It seems clear that the best use case is achieved by loading once 
the data to the graphics card’s memory and to compute as much as possible there. For this 
reason it is not efficient to test the convergence of the FBA at each iteration or after a low 
number of iterations. A second limitation concerns the restriction on the type of data that 
can be used. Indeed, there is no native double precision float in GPU (this could change in a 
near future) and this limitation can be so important in some computational problems that 
straightforward usage of GPU is excluded.  

 

6. Conclusion 

We have presented a GPU-based Cellular Automaton to perform efficient image processing 
tasks on large image datasets. Our work is based on the Ford-Bellman’s shortest paths 
algorithm which is first applied to compute the watershed transform and secondly to 
perform automatic multi label segmentation of organs in N-D medical images with minimal 
user interaction for initialization. Validation of this method on MRA examinations showed 
high inter-observer reproducibility and accuracy that allows the method to be used in 
clinical routine. Our implementation of the FBA in the form of a CA is simple, efficient and 
straightforward, and can be implemented in low cost vendor-independent graphics cards. 
Our work was strongly motivated by the fact that the processing power has clearly shifted 
from the CPU to the GPU. The experimental testing performed on MRA datasets confirms 
the expected gain in performance with GPU implementation. To our knowledge, we are the 
first to propose a GPU implementation of FBA as a cellular automaton to perform the 
watershed transform and seeded segmentation on ND images. 
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5.3 Are GPUs better than CPUs ? 
The GPU's rapid increase in both programmability and capability has spawned a research 
community that has successfully mapped a broad range of computationally demanding, 
complex problems to the GPU (Owens et al., 2008). While GPUs are a compelling alternative 
to traditional microprocessors in high-performance computer systems, they can also be seen 
as a complementary solution to CPU approaches. In our case, using the FBA-GPU approach 
to compute the shortest path inside a long and tortuous organ, such as vessels or the colon, 
gives poor performances compared to the DA-CPU approach. Yet, we show that in our 
study the FBA method is more efficient to perform multi label segmentation of the kidney. 
For this reason, we suggest that performances comparison between GPU and CPU 
approaches must be carefully regarded from a global point of view including the application 
context and the complexity of the algorithms to be implemented. 
However, there are some limitations on the use of GPUs. The first limitation concerns the 
setup-time which represents the minimal time needed for the data transfer from/to the 
video memory. Since the video memory is accessed through the PCI Express lane it is much 
slower than the RAM access. It seems clear that the best use case is achieved by loading once 
the data to the graphics card’s memory and to compute as much as possible there. For this 
reason it is not efficient to test the convergence of the FBA at each iteration or after a low 
number of iterations. A second limitation concerns the restriction on the type of data that 
can be used. Indeed, there is no native double precision float in GPU (this could change in a 
near future) and this limitation can be so important in some computational problems that 
straightforward usage of GPU is excluded.  

 

6. Conclusion 

We have presented a GPU-based Cellular Automaton to perform efficient image processing 
tasks on large image datasets. Our work is based on the Ford-Bellman’s shortest paths 
algorithm which is first applied to compute the watershed transform and secondly to 
perform automatic multi label segmentation of organs in N-D medical images with minimal 
user interaction for initialization. Validation of this method on MRA examinations showed 
high inter-observer reproducibility and accuracy that allows the method to be used in 
clinical routine. Our implementation of the FBA in the form of a CA is simple, efficient and 
straightforward, and can be implemented in low cost vendor-independent graphics cards. 
Our work was strongly motivated by the fact that the processing power has clearly shifted 
from the CPU to the GPU. The experimental testing performed on MRA datasets confirms 
the expected gain in performance with GPU implementation. To our knowledge, we are the 
first to propose a GPU implementation of FBA as a cellular automaton to perform the 
watershed transform and seeded segmentation on ND images. 
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1. Introduction 
 

Recently, recognition of web documents and characters in natural scenes has emerged as a 
hot, demanding research field (Doermann et al., 2003). In particular, recognition of 
characters in scene images with a wide variety of image degradations and complex 
backgrounds poses the following two key problems. 
The first problem is figure-ground discrimination (Herault & Horaud, 1993) or correct 
binarization of color characters in scene images as a crucial step to the success of subsequent 
recognition. Most of the binarization methods are based on global, local/adaptive or multi-
stage selection of threshold (Trier & Jain, 1995; Wolf et al., 2002; Wu & Amin, 2003). 
However, color-based binarization has not yet been fully addressed (Miene at al., 2001).  
The second problem is distortion-tolerant character recognition under the condition of a 
small sample size because there is only a limited quantity of data against a wide variety of 
fonts and image degradations. Hence, we cannot make good use of statistical pattern 
recognition techniques, including sophisticated discriminant functions, neural networks, 
support vector machines or kernel methods. 
Regarding the first problem we propose three promising approaches. The first approach is 
application of genetic algorithms (GA) to a combinatorial problem of determining an 
optimal filter sequence that correctly binarizes an input image (Kohmura & Wakahara, 
2006). The filter bank contains a number of typical image processing filters as applied to one 
of the RGB color planes and logical/arithmetic operations between two color planes. The 
second approach is selection of a maximum separability axis in the RGB color space and an 
appropriate threshold on the axis for binarizing an input image as the two-category 
classification problem (Yokobayashi & Wakahara, 2006). Here, the key idea for solving this 
problem is application of the Otsu’s criterion (Otsu, 1979) to the distribution of color pixels 
of the input image projected onto every possible axis in the RGB color space. The third 
approach is application of K-means clustering in the HSI color space to color pixels of the 
input image, generation of temporally binarized images via every dichotomization of K 
clusters, and their classification into two categories: character and non-character (Kato & 
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Wakahara, 2009). Here, a character vs. non-character classification is effectively 
implemented by support vector machines (SVM). 
Regarding the second problem we try to make use of elastic image matching techniques 
(Uchida & Sakoe, 2005). Here, we apply two kinds of distortion-tolerant template matching 
based on the deterministic character deformation models. The first one is our global affine 
transformation (GAT) correlation technique (Wakahara et al., 2001). The GAT correlation 
absorbs distortion expressible by affine transformation by determining optimal affine 
parameters that maximize a normalized cross-correlation value between an affine-
transformed input image and a template. In particular, image matching by means of 
normalized cross-correlation was shown to be robust against image blurring and additive 
random noise (Sato, 2000). The second one is the well-known tangent distance (TD) (Simard 
et al., 1993). The tangent distance absorbs distortion expressible by a linear combination of 
predefined geometric and topographical transformations as applied to both an input image 
and each template. 
We show experimental results made on the public ICDAR 2003 robust OCR dataset (ICDAR 
Datasets, 2003) containing a wide variety of single-character images in natural scenes. 
In Section 2, we explain ICDAR 2003 robust OCR dataset. Section 3 proposes three kinds of 
techniques for figure-ground discrimination or correct binarization of color characters in 
scene images. In Section 4, we describe two competing techniques of distortion-tolerant 
image matching for recognizing binarized characters. Section 5 shows experimental results. 
Section 6 is devoted to discussion and future work. 

 
2. ICDAR 2003 robust OCR dataset 
 

Several datasets used in ICDAR 2003 robust reading competitions (Lucas et al., 2003) are 
available for download from the website (ICDAR Datasets, 2003). We use the robust OCR 
dataset containing JPEG single-character images in natural scenes. In particular, we select a 
total of 698 images from “Sample” subset. 
Figure 1 shows examples of images with a variety of image degradations and complex 
backgrounds.  

          
Fig. 1. Examples of images used in our experiments. 

 
3. Figure-ground discrimination of color characters in scene images 
 

In this section, we propose three kinds of techniques for figure-ground discrimination or 
correct binarization of color characters: determination of an optimal sequence of filters for 
binarization using GA, binarization using a maximum separability axis in a color space, and 
K-means clustering in a color space and figure-ground discrimination by SVM. 

 
 
 

3.1 Determination of an optimal sequence of filters for binarization using GA 
This technique is for binarization of color characters in scene images using genetic 
algorithms (GA) to search for an optimal sequence of filters through a filter bank. The filter 
bank contains simple image processing filters as applied to one of the RGB color planes and 
logical/arithmetic operations between two color planes. First, we classify images extracted 
from the ICDAR 2003 robust OCR dataset into several groups according to degradation 
categories. Then, in the training stage, by selecting training samples from each degradation 
category we apply GA to the combinatorial optimization problem of determining a filter 
sequence that maximizes the average fitness value calculated between the filtered training 
samples and their respective target images ideally binarized by humans. Finally, in the 
testing stage, we apply the optimal filter sequence to binarization of remaining test samples.  

 
3.1.1 Grouping of character images according to degradation categories 
By carefully examining a total of 698 images from “Sample” subset we classified them into 
six groups according to degradation categories: clear, background with pattern, character 
with pattern, character with rims, blurring, and nonuniform lighting. The criterion upon 
how to classify degradation categories is rather subjective just to show a wide variety of 
binarization problems. In practical application degradation categories should be selected 
automatically, and, also, it is necessary to automatically decide which degradation category 
a given input image belongs to. 
Figure 2 shows examples of images in six degradation categories. 
 

                
                            (a)         (b)              (c)               (d)              (e)               (f) 

Fig. 2. Examples of images in six degradation categories. (a) Clear. (b) Background with 
pattern. (c) Character with pattern. (d) Character with rims. (e) Blurring. (f) Nonuniform 
lighting.  

 
3.1.2 Image transformation by a sequence of filters and filter bank 
Figure 3 shows a total flow of image transformation using a sequence of filters as applied to 
an original image so that a filtered image approximates its target image ideally binarized by 
humans as closely as possible. 
We use GA in search of an optimal sequence of filters, equivalent to the image 
transformation L*,  while L specifies the ideal binarization. The degree of approximation of  
L* to L is evaluated in terms of the fitness value calculated between target and filtered 
images. 
Table 1 shows a list of filters in our filter bank. These filters are not sophisticated but rather 
primitive ones (Gonzalez & Woods, 2000). 
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an original image so that a filtered image approximates its target image ideally binarized by 
humans as closely as possible. 
We use GA in search of an optimal sequence of filters, equivalent to the image 
transformation L*,  while L specifies the ideal binarization. The degree of approximation of  
L* to L is evaluated in terms of the fitness value calculated between target and filtered 
images. 
Table 1 shows a list of filters in our filter bank. These filters are not sophisticated but rather 
primitive ones (Gonzalez & Woods, 2000). 
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Fig. 3. Total flow of image transformation by a sequence of filters. 
 

No. Filter name Function 
1 Mean local mean in a 3×3 window 
2 Min local min in a 3×3 window 
3 Max local max in a 3×3 window 
4 Sobel (1) horizontal differential 
5 Sobel (2) vertical differential 
6 Sobel (3) the norm of differential 
7 LightEdge Laplacian 
8 DarkEdge Laplacian + 255 
9 Erosion morphological erosion 

10 Dilation morphological dilation 
11 Inversion 255 – g; g = pixel value 
12 Logical sum max of two color planes  
13 Logical product min of two color planes 
14 Algebraic sum sum of two color planes – their product / 255 
15 Algebraic product product of two color planes / 255 
16 Bounded sum g = sum of two color planes; if g > 255, g = 255 
17 Bounded product product of two color planes – 255; if g < 0, g = 0 

Table 1. List of filters in a filter bank. 
 
Each filtering operation is specified in either of the following two ways.  
One way is to select one of one-operand filters from no. 1 to no. 11 and one of the RGB color 
planes to which the selected filter is applied. The other way is to select one of two-operand 
filters from no. 12 to no. 17 and two of the RGB color planes to which the selected filter is 
applied, where the filtering result is overwritten onto either of the two color planes.  
Hence, the total number of filtering operations is 3 × 11 plus 6 × 6, and equals sixty nine. 

 
 

3.1.3 Gene encoding and specifications of GA 
We use GA (Goldberg, 1989) to search for an optimal filter sequence that transforms an 
original image so as to yield the maximum fitness value against its target image ideally 
binarized by humans. Here, the fitness value serves as a similarity measure. 
As described in Section 3.1.2, the total number of filtering operations equals sixty nine. We 
specify each filtering operation by an ID number selected from one to sixty nine. Hence, a 
filter sequence or a chromosome is encoded as a string of 8-bit integers. Also, we set the 
maximum number of constituent filters in a chromosome at 80. 
The initial population of 300 is randomly generated. We adopt the roulette selection rule 
based on the fitness values in each generation. We use the modified one-point crossover 
method that exchanges respective tails with the rate of 80%. Mutation also exchanges every 
constituent ID number within a chromosome for a different one with the rate of 0.1%. 
Finally, we stop the GA process when the maximal fitness value of an elite chromosome 
exceeds the threshold value of 0.9 or when the number of generations arrives at the 
predetermined number of 800. 
Here, by denoting target and filtered images by T = { Tk (x, y) } and F = { Fk (x, y) } (k = R, G, 
B), respectively, we calculate a fitness value, f (T, F), between target and filtered images by 
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where Wx and Wy specify width and height of the image, respectively. 
Figure 4 shows examples of binarization of training samples belonging to the degradation 
category “nonuniform lighting” using an optimal sequence of filters determined via GA. 
 

                 
(a)                                             (b) 

Fig.4. Examples of binarization of training samples belonging to the degradation category 
“nonuniform lighting” using an optimal sequence of filters determined via GA. (a) Input 
images. (b) Binarized images. 
 

It is to be noted that this technique provides us with an optimal sequence of filters for 
binarization of color characters in each of predetermined degradation categories. In other 
words, this technique cannot generate a single, all-purpose filter sequence to deal with a 
wide variety of image degradations and complex backgrounds. In this sense, we can say that 
this approach is very powerful when we know in advance that all of input images being 
considered belong to a particular kind of degradation category. 

 
3.2 Binarization using a maximum separability axis in a color space 
This technique is for binarization of color characters in scene images following two steps. 
The first step is temporary binarization by selecting one optimal projection axis with a 
maximum two-class separability in the RGB color space and an approriate threshold on the 
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where Wx and Wy specify width and height of the image, respectively. 
Figure 4 shows examples of binarization of training samples belonging to the degradation 
category “nonuniform lighting” using an optimal sequence of filters determined via GA. 
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Fig.4. Examples of binarization of training samples belonging to the degradation category 
“nonuniform lighting” using an optimal sequence of filters determined via GA. (a) Input 
images. (b) Binarized images. 
 

It is to be noted that this technique provides us with an optimal sequence of filters for 
binarization of color characters in each of predetermined degradation categories. In other 
words, this technique cannot generate a single, all-purpose filter sequence to deal with a 
wide variety of image degradations and complex backgrounds. In this sense, we can say that 
this approach is very powerful when we know in advance that all of input images being 
considered belong to a particular kind of degradation category. 

 
3.2 Binarization using a maximum separability axis in a color space 
This technique is for binarization of color characters in scene images following two steps. 
The first step is temporary binarization by selecting one optimal projection axis with a 
maximum two-class separability in the RGB color space and an approriate threshold on the 
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axis. Here, we apply Otsu’s criterion to a two-class classification problem. The second step is 
figure-ground determination based on the figure-to-ground ratio on the image periphery 
and common characteristics that a character pattern should have.  

 
3.2.1 Temporary binarization via Otsu's criterion in the RGB color space 
First, color points of all pixels in an input image are projected onto an arbitrarily chosen axis 
in the RGB color space. Here, we adopt spherical polar coordinates, (r, θ, φ), in 3D color 
space, and try all axes with angles, (θ, φ), selected at intervals of one degree, respectively. 
Namely, a total of 180 × 180 axes in 3D color space are considered. 
Second, for each point distribution on a chosen axis we calculate maximum between-class 
separability by setting an optimal threshold according to the Otsu’s binarization technique 
(Otsu, 1979). We know that this idea is also based on the well-known Fisher criterion 
(Bishop, 2006) as applied to a two-class classification problem. Namely, the between-class 
separability, S, is defined as the difference of two means normalized by the averaged 
variance on the chosen axis according to 

( ) .axistheonbisectionaformax
σσ 2

2
2
1

2
21 →

+
−

=
mmS                                  (2) 

Finally, we select the axis that gives the largest between-class separability and the 
corresponding threshold for temporary binarization of the input image. Here, from the 
viewpoint of figure-ground discrimination it is clear that this binarization result is only 
temporary because there are two possibilities of either class being a character. 
Figure 5 shows projection of pixels onto a chosen axis in the RGB color space. 

 
Fig. 5. Projection of pixels onto a chosen axis in the RGB color space. 

 
3.2.2 Figure-ground determination using common characteristics of characters 
We assume that an input image contains only one character and a character belongs to 
alphanumeric characters as shown in Fig. 1.  
Granting this assumption, we can enumerate common characteristics that such single-
character images should have as follows. 

(1) The majority of pixels on the image periphery belong not to a character but to a 
background.  

(2) The number of connected components in a character is one except “i” and “j.” 
(3) The width of a character is narrower than that of a background. 

Based on these common characteristics we propose a procedure for figure-ground 
determination written in a pseudo-code as shown below. 
If the figure-to-ground ratio on the image periphery is less than a threshold value of Th, then 

consider the present binarized image as the correct one and goto END. 
Else if the figure-to-ground ratio on the image periphery is more than the inverse of Th, then 

consider the reversed image as the correctly binarized one and goto END. 
Else if the width of a figure is narrower than that of a ground, then consider the present 

binarized image as the correct one and goto END. Here, we define the width of a figure or 
a ground in the image as twice the number of erosion operations (Gonzalez & Woods, 
2000) applied to the corresponding region until it vanishes. 

Else consider the reversed image as the correctly binarized one and goto END. 
END: Select and save only the maximum connected component of the figure and output the 

resultant image as the final result of figure-ground discrimination. 
Figure 6 shows examples of binarization using a maximum separability axis in a color space. 
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a ground in the image as twice the number of erosion operations (Gonzalez & Woods, 
2000) applied to the corresponding region until it vanishes. 
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(a)                                                       (b) 

Fig. 6. Examples of binarization using a maximum separability axis in a color space. (a) 
Input images. (b) Binarized images. 
 
It is to be noted that this technique assumes that a character in an input image is made up of 
color pixels with similar values in the RGB color space and, hence, binarization is handled 
correctly as a two-class classification problem using only color information. Therefore, this 
technique is not well suited to deal with multi-color characters and/or characters with 
nonuniform backgrounds. 

 
3.3 K-means clustering in a color space and figure-ground discrimination by SVM 
This technique is for binarization of color characters in scene images following three steps. 
The first step applies K-means clustering in the HSI color space to points in an input image, 
and, then, generates a set of tentatively binarized images by every possible dichotomization 
of a total of K clusters or subimages. The second step calculates the degree of character-
likeness of each tentatively binarized image by SVM in an appropriately chosen feature 
space. In advance, SVM is trained to determine whether and to what degree each binarized 
image represents a character or non-character. The third step outputs the binarized image 
with the maximum degree of character-likeness as an optimal binarization result. 

 
3.3.1 K-means clustering in the HSI color space 
First, values of R, G, and B in the RGB color space are converted to values of H, S, and I in 
the HSI color space, where H, S, and I represent hue, saturation, and intensity, respectively 
(Gonzalez & Woods, 2000). In particular, we scale each value of H, S, and I to range from 0 
to 255 as follows. 
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When an input image of size Wx × Wy is given, a total of Wx × Wy points corresponding to 
those pixels are scattered in the HSI color space.  
Second, K-means clustering is applied to a total of Wx × Wy points in the HSI color space to 
generate K clusters, where a number of clusters, K, is determined in advance. The K-means 
clustering algorithm or nearest mean reclassification algorithm (Bishop, 2006) is as follows. 
Step 1:  Select K points at random from a total of Wx × Wy points scattered in the HSI color 

space as initial cluster centers, { μk(τ=0) }, (k = 1, …, K). τ specifies an iteration number. 
Then, assign each of Wx × Wy points to its nearest cluster center among { μk(τ=0) }, (k = 1, 
…, K), and a set of points assigned to the same cluster center forms one cluster. 

Step 2: Compute a mean vector of each cluster and set the mean vector as an update on its 
cluster center. Then, τ = τ + 1, and cluster centers thus updated are denoted by { μk(τ) }, (k 
= 1, …, K). 

Step 3:   Each point is re-assigned to a new set according to which is the nearest cluster 
center among { μk(τ) }, (k = 1, …, K), and each new set of points corresponds to a cluster. 
If there is no further change in the grouping of the data points, output the present K 
clusters as the clustering result and stop. Otherwise, go to Step 2. 

By inverse projection of a set of points forming each cluster in the HSI color space onto a 2D 
image plane, respectively, we obtain a total of K subimages the sum of which is equivalent 
to the input image. 

 
 

3.3.2 Generation of tentatively binarized images by dichotomization of K subimages 
We dichotomize K subimages into two groups, and set values of pixels belonging to the one 
group at 0 (black) and the other group at 255 (white). As a result, we obtain one binarized 
image, where black pixels represent figure and white pixels represent background. 
By considering every possible dichotomization of K subimages we can generate multiple 
tentatively binarized images the total number of which, Nbinary, is given by 
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where KCi denotes a binomial coefficient. 
Figure 7 shows one example of generation of tentatively binarized images from an input 
image. 
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Fig. 6. Examples of binarization using a maximum separability axis in a color space. (a) 
Input images. (b) Binarized images. 
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Second, K-means clustering is applied to a total of Wx × Wy points in the HSI color space to 
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Step 3:   Each point is re-assigned to a new set according to which is the nearest cluster 
center among { μk(τ) }, (k = 1, …, K), and each new set of points corresponds to a cluster. 
If there is no further change in the grouping of the data points, output the present K 
clusters as the clustering result and stop. Otherwise, go to Step 2. 

By inverse projection of a set of points forming each cluster in the HSI color space onto a 2D 
image plane, respectively, we obtain a total of K subimages the sum of which is equivalent 
to the input image. 

 
 

3.3.2 Generation of tentatively binarized images by dichotomization of K subimages 
We dichotomize K subimages into two groups, and set values of pixels belonging to the one 
group at 0 (black) and the other group at 255 (white). As a result, we obtain one binarized 
image, where black pixels represent figure and white pixels represent background. 
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where KCi denotes a binomial coefficient. 
Figure 7 shows one example of generation of tentatively binarized images from an input 
image. 
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                                                                       (c)  

Fig. 7. One example of generation of tentatively binarized images from an input image. (a) 
An input image. (b) K subimages obtained by K-means clustering (K = 5). (c) (2K – 2) 
tentatively binarized images.  
 
From Fig.7, it is seen that a correctly binarized image is included in a set of tentatively 
binarized images even when a character is represented by multiple colors in the original 
input image. 
It is to be noted that this technique has the possibility of correctly binarizing multi-color 
characters and/or characters with complex backgrounds. However, it is necessary to devise 
a means of selecting a correctly binarized image from a set of tentatively binarized images. 
Also, the total number of clusters, K, should be large enough to just guarantee that a 
correctly binarized image will be included in a set of (2K – 2) tentatively binarized images. 

 
3.3.3 Feature extraction from a binary image for estimating character-likeness 
We extract a feature vector from a binary image so that a feature vector should represent a 
kind of character-likness as much as possible. Selection of a good feature vector is a clue to 
the success of SVM that determines whether and to what degree each binary image 
represents a character or non-character in the given feature space. 
As preprocessing, position and size normalization is applied to each binary image by using 
moments (Casey, 1970). Namely, the center of gravity of black pixels is shifted to the center 
of the image, and the second moment around the center of gravity is set at the 
predetermined value. Here, we set a size of a preprocessed binary image at 80 × 120 pixels. 
Then, we extract three kinds of feature vectors all of which are well-known in the field of 
character recognition: mesh feature, direction code histogram feature, and weighted 
direction code histogram feature. 
Mesh feature
We divide the input binary image into a total number of 8 × 12 (= 96) square blocks each of 
which has a size of 10 × 10 pixels and, then, calculate the percentage of black pixels in each 
of blocks. Finally, those measurements together form the 96-dimensional mesh feature 
vector. 

: 

Direction code histogram feature
One of 4-directional codes, i.e., H (horizontal), R (right-diagonal), V (vertical), and L (left-
diagonal), is assigned to every contour pixel of black regions. Then, we divide the input 
binary image into a total number of 4 × 6 (= 24) square blocks each of which has a size of 20 
× 20 pixels. Finally, in each block we count the number of contour pixels assigned to H, R, V, 

: 

and L, respectively, and their measurements together form the 96-dimensional direction 
code histogram feature vector. 
Weighted direction code histogram feature
In order to improve robustness against shape distortion we introduce a locally weighted 
sum of the direction code histogram feature (Kimura et al., 1997). First, we divide the input 
binary image into a total number of 8 × 12 (= 96) square blocks each of which has a size of 10 
× 10 pixels. Hence, we obtain the 384-dimensional direction code histogram feature vector. 
Then, using a locally weighted sum around each block taken at intervals of two blocks, both 
horizontally and vertically, the dimension of the feature vector is reduced from 384 to 96. As 
a result, we obtain the 96-dimensional weighted direction code histogram feature vector.  

: 

Figure 8 shows a Gaussian mask for generating the weighted direction code histogram 
feature. 
 

 
Fig. 8. A Gaussian mask for generating the weighted direction code histogram feature. A 
circle denotes the loci of a block around which a locally weighted sum is calculated. 

 
3.3.4 Discrimination between character and non-character via SVM 
The support vector machines, SVM, (Vapnik, 2000) map the input feature vectors, x, into a 
high-dimensional feature space, Ф(x), through some nonlinear mapping, chosen a priori. In 
this space, an optimal separating hyperplane that maximizes the margin is constructed.  
The training data set comprises N input feature vectors x1, …, xN, with corresponding target 
values y1, …, yN where yi ∈ { −1, +1 }, and new data points x are classified according to the 
sign of f(x) given by 
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where (Ф(x)⋅Ф(y)) is an inner product in the high-dimensional feature space, and is replaced 
with the kernel function K(x, y) by making use of the kernel trick.  
Non negative coefficients { αi } that maximize the margin are determined by solving a 
convex quadratic programming problem. The data points { xk } for which coefficients { αk } 
are nonzero are called support vectors because they correspond to points that lie on the 
maximum margin hyperplanes in the high-dimensional feature space. 
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                                                                       (c)  

Fig. 7. One example of generation of tentatively binarized images from an input image. (a) 
An input image. (b) K subimages obtained by K-means clustering (K = 5). (c) (2K – 2) 
tentatively binarized images.  
 
From Fig.7, it is seen that a correctly binarized image is included in a set of tentatively 
binarized images even when a character is represented by multiple colors in the original 
input image. 
It is to be noted that this technique has the possibility of correctly binarizing multi-color 
characters and/or characters with complex backgrounds. However, it is necessary to devise 
a means of selecting a correctly binarized image from a set of tentatively binarized images. 
Also, the total number of clusters, K, should be large enough to just guarantee that a 
correctly binarized image will be included in a set of (2K – 2) tentatively binarized images. 
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direction code histogram feature. 
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Direction code histogram feature
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: 
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: 

Figure 8 shows a Gaussian mask for generating the weighted direction code histogram 
feature. 
 

 
Fig. 8. A Gaussian mask for generating the weighted direction code histogram feature. A 
circle denotes the loci of a block around which a locally weighted sum is calculated. 
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where (Ф(x)⋅Ф(y)) is an inner product in the high-dimensional feature space, and is replaced 
with the kernel function K(x, y) by making use of the kernel trick.  
Non negative coefficients { αi } that maximize the margin are determined by solving a 
convex quadratic programming problem. The data points { xk } for which coefficients { αk } 
are nonzero are called support vectors because they correspond to points that lie on the 
maximum margin hyperplanes in the high-dimensional feature space. 
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We implemented SVM via SVMlight (Joachims, 1998), and made use of the following three 
kinds of the kernel functions: linear, polynomial, and radial basis functions. 
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where parameter values are set at default ones: s = c = 1.0, d = 3 and  2σ2 = 1.0. 
Training data were prepared for the training phase of SVM to discriminate between two 
classes of character and non-character as follows. 
Training data for the character class
First, we selected correctly binarized images from a total of (2K – 2) tentatively binarized 
images obtained for each of training samples. Secondly, we added a total of 136 available 
font sets to the training data. 

: 

Training data for the non-character class
We selected incorrectly binarized images from a total of (2K – 2) tentatively binarized images 
obtained for each of training samples. 

: 

 
Figure 9 shows examples of training data for the character and non-character classes. 

                          
(a)                                                                               (b) 

 
 

          
(c) 

Fig. 9. Examples of training data. (a) Character class (correctly binarized images). (b) 
Character class (available fonts). (c) Non-character class (incorrectly binarized images). 

 
3.3.5 Selection of correctly binarized image via SVM 
For a given color character image a total of (2K – 2) tentatively binarized images are 
generated by K-means clustering. Then, feature vectors are extracted from each tentatively 
binarized image. Those feature vectors are fed into the trained SVM. SVM outputs the 
values of f(x) of Eq. (5), where positive and negative values of f(x) indicate character and 
non-character classes, respectively. 

Here, we regard the value of f(x) as estimating the degree of character-likeness, and, also, 
assume that the larger the value of f(x) is the more its character-likeness is. 
Then, we select a single tentatively binarized image with the maximum value of f(x) among 
those of (2K – 2) candidates as an optimal binarization result. 
It is to be noted that this technique tackles the problem of how to discriminate between 
character and non-character using SVM in the high-dimensional feature space based not on 
deterministic but on probabilistic means. In particular, this technique has a possibility for 
correctly binarizing both multi-color characters and/or characters with nonuniform 
backgrounds. Of course, K-means clustering in the HSI color space should generate a 
sufficient number of subimages for obtaining a successful dichotomization that corresponds 
to a correctly binarized image. 

 
4. Distortion-tolerant character recognition as elastic template matching 
 

In this section, we compare two competing techniques of distortion-tolerant template 
matching or elastic image matching. The first one is our global affine transformation (GAT) 
correlation technique (Wakahara et al., 2001). GAT correlation absorbs distortion expressible 
by affine transformation by determining optimal affine parameters that maximize a 
normalized cross-correlation value between  an affine-transformed input image and a 
template. The second one is the well-known tangent distance (TD) (Simard et al., 1993). The 
tangent distance absorbs distortion expressible by a linear combination of predefined 
geometric and topographical transformations as applied to both an input image and each 
template. 
First of all, considering that there is only a limited quantity of data against a wide variety of 
fonts and image degradations we dare to take the position that only a single template is 
provided for each character category.  
Here, we use the “HGP Gothic E“ font set for 62 alphanumeric characters as templates. As 
preprocessing, positon and size normalization together with blurring operation is applied to 
each template. We set a size of each preprocessed gray-scale template at 28 × 28 pixels. 
Figure 10 shows examples of templates. 
 

 
 

Fig. 10. Examples of templates. 

 
4.1 GAT correlation 
This technique provides a computational model for determining optimal affine parameters 
that deform an original input image, f, so as to yield the maximum correlation value against 
a template image, g. 
First, both an input image, f = {f(r)}, and each template, g = {g(r)}, are linearly transformed to 
take the zero mean and the unit variance. As a result, a normalized cross-correlation value is 
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kinds of the kernel functions: linear, polynomial, and radial basis functions. 
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where parameter values are set at default ones: s = c = 1.0, d = 3 and  2σ2 = 1.0. 
Training data were prepared for the training phase of SVM to discriminate between two 
classes of character and non-character as follows. 
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sufficient number of subimages for obtaining a successful dichotomization that corresponds 
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4.1 GAT correlation 
This technique provides a computational model for determining optimal affine parameters 
that deform an original input image, f, so as to yield the maximum correlation value against 
a template image, g. 
First, both an input image, f = {f(r)}, and each template, g = {g(r)}, are linearly transformed to 
take the zero mean and the unit variance. As a result, a normalized cross-correlation value is 
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made equal to an inner product (f, g). It is to be noted that image matching by means of 
normalized cross-correlation was shown to be robust against image blurring and additive 
random noise (Sato, 2000). 
We denote the GAT-superimposed input image by Affine[f]. Here, Affine[•] stands for the 
operation of affine transformation in the 2D space, defined by a 2 × 2 matrix, A, representing 
rotation, scale-change, and shearing, and a 2D translation vector, b: 
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The objective function Φ to maximize the value of (Affine[f], g) is given by 
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Then, to avoid an exhaustive search for optimal A and b, we employ another objective 
function Ψ with Gaussian kernels given by 
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where the weight function γ serves as matching constraints. Also, D controls the spread of 
the Gaussian kernel. 
Here, we explain how to practically design the values of γ and D. 
First, γ of Eq. (9) is a function of ∇f and ∇g as matching constraints with the aim of 
promoting matching between pixels with the similar gradients. Here, we propose the 
concrete form of γ given by 
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where gradients ∇f and ∇g are quantized into eight directions at intervals of π/4. The 
introduction of γ into Ψ has an effect that optimal affine transformation forces matched 
pixels to have the same gradient direction. 
Second, the parameter D of Eq. (9) controls the spread of the Gaussian kernel or the radius 
of search area for matching pixels by affine transformation. Hence, a suitable selection of D 
is the key to stabilizing the whole matching process. We propose to adaptively determine 

the value of D proir to GAT application according to the disparity of input and template 
images in a gradient space as follows. 
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where Av stands for an averaging operation over either input or template images. Namely, 
D is the average minimum distance between two points, one in f and the other in g, with the 
same gradient direction. 
Now, by setting the derivatives of Ψ with respect to each of six unknown parameters, a00, a01, 
a10, a11, b0, and b1, equal to zero, respectively, we obtain a set of nonlinear equations. Next, by 
using the 0th order approximation that sets A = I and b = 0 in the Gaussian kernel, we have a 
set of simultaneous linear equations. Finally, we solve these simultaneous linear equations 
by conventional techniques and obtain a sub-optimal solution of A and b.  
In order to obtain the true optimal GAT of Eq. (8), we use the successive iteration method by 
iteratively updating the input gray-scale image by sub-optimal affine parameters of Eq. (9) 
until the value of Φ arrives at a maximum.  

 
4.2 Tangent distance 
This technique encourages invariance of distance-based methods to a set of predefined 
transformations, which realizes distortion-torelant template matching.  
Concretely, by using a set of predefined geometric or topographical transformations 
applicable to an input image, f, and each template, g, we generate a tangent vector 
corresponding to each geometric or topographical transformation. Here, it is to be noted that 
all elements of both input/template images and tangent vectors are gray-scale values in the 
image plane. 
The tangent distance, DT(f, g), is calculated as the minimum distance between two hyper-
planes expanded by a set of tangent vectors around input and template images given by 
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where matrices Tf and Tg have their corresponding tangent vectors as column vectors. Also, 
αf and α g represent expansion coefficient vectors. 
Tangent vectors are obtained via convolution between input/template images and Gaussian 
filters operated in advance by corresponding geometric or topographical transformations. 
Here, 2D Gaussian filters are given by 
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where Av stands for an averaging operation over either input or template images. Namely, 
D is the average minimum distance between two points, one in f and the other in g, with the 
same gradient direction. 
Now, by setting the derivatives of Ψ with respect to each of six unknown parameters, a00, a01, 
a10, a11, b0, and b1, equal to zero, respectively, we obtain a set of nonlinear equations. Next, by 
using the 0th order approximation that sets A = I and b = 0 in the Gaussian kernel, we have a 
set of simultaneous linear equations. Finally, we solve these simultaneous linear equations 
by conventional techniques and obtain a sub-optimal solution of A and b.  
In order to obtain the true optimal GAT of Eq. (8), we use the successive iteration method by 
iteratively updating the input gray-scale image by sub-optimal affine parameters of Eq. (9) 
until the value of Φ arrives at a maximum.  

 
4.2 Tangent distance 
This technique encourages invariance of distance-based methods to a set of predefined 
transformations, which realizes distortion-torelant template matching.  
Concretely, by using a set of predefined geometric or topographical transformations 
applicable to an input image, f, and each template, g, we generate a tangent vector 
corresponding to each geometric or topographical transformation. Here, it is to be noted that 
all elements of both input/template images and tangent vectors are gray-scale values in the 
image plane. 
The tangent distance, DT(f, g), is calculated as the minimum distance between two hyper-
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where matrices Tf and Tg have their corresponding tangent vectors as column vectors. Also, 
αf and α g represent expansion coefficient vectors. 
Tangent vectors are obtained via convolution between input/template images and Gaussian 
filters operated in advance by corresponding geometric or topographical transformations. 
Here, 2D Gaussian filters are given by 
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where the value of σ was set at σ = 0.7, and the size of a convolution mask was 19 × 19. 
We deal with seven kinds of geometric or topographical transformations: X-translation, Y-
translation, rotation, scaling, parallel hyperbolic transformation, diagonal hyperbolic 
transformation, and thickening (Simard et al., 1993). 
Figure 11 shows examples of tangent vectors.  
 

           
(a)                              (b)                             (c)                             (d) 

 

        
                                             (e)                              (f)                              (g)        
 

Fig. 11. Examples of tangent vectors. (a) X-translation. (b) Y-translation. (c) Rotation. (d) 
Scaling. (e) Parallel hyperbolic transformation. (f) Diagonal hyperbolic transformation. (g) 
Thickening. 

 
5. Experimental results 
 

In this section, we show two kinds of experimental results using ICDAR 2003 robust OCR 
dataset: figure-ground discrimination of color characters in scene images and distortion-
torelant character recognition as elastic template matching.  

 
5.1 Abilities of figure-ground discrimination of color characters in scene images 

Figure 12 shows examples of binarization results obtained for both training and test samples 
in all of six degradation categories. 

Determination of an optimal sequence of filters for binarization using GA:  

From Fig. 12, it is found that binarization of test samples is remarkably successful even if 
embedded characters in training and test samples are totally different in shape. 
Moreover, In order to evaluate the ability of binarization in a more quantitative manner, we 
calculated a normalized cross-correlation value between optimally filtered images and their 
respective target images ideally binarized by humans. 
Figure 13 shows relations between average correlation values and image degradation 
categories obtained from both training and test samples against their target images.  
From Fig. 13, it is found that optimal sequences of filters determined by GA have the 
marked ability to achieve a fairly high correlation value, more than 0.9, between filtered and 
target images against most of all image degradation categories.  

These results show clearly that we can select the optimal filter sequence for binalization of a 
given image if its degradation category is automatically determined. In other words, when 
we deal with the case where the cause of degradation is found to be unique and specific, this 
technique for binarization using the optimal filter sequence is expected to be very powerful. 
 

Group   Training samples Test samples 

(a) 

      

 

      

(b) 

                

(c) 
              

(d) 

            

(e) 
                 

(f) 

                
Fig. 12. Examples of binarization results. (a) Clear. (b) Background with pattern. (c) 
Character with pattern. (d) Character with rims. (e) Blurring. (f) Nonuniform lighting. 
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Fig. 13. Relations between correlation values and image degradation categories. (a) Clear.  
(b) Background with pattern. (c) Character with pattern. (d) Character with rims. (e) 
Blurring. (f) Nonuniform lighting. 
 

Table 2 shows rates of successful and unsuccessful binarization. 
Binarization using a maximum separability axis in a color space:  

Figure 14 shows examples of unsuccessful figure-ground discrimination. 
From Table 2 and Fig. 14, it is found that the task of temporary binarization poses a more 
serious problem than that of figure-ground determination does. 
 

Results Rates 
Successful binarization 75.3% 
Unsuccessful temporary binarization 17.5% 
Unsuccessful figure-ground determination 7.2% 

Table 2. Rates of successful and unsuccessful binarization. 
 

                 
(a)                                                                            (b) 

Fig. 14. Examples of unsuccessful figure-ground discrimination. (a) Unsuccessful temporary 
binarization. (b) Unsuccessful figure-ground determination. 
 

K-means clustering in a color space and figure-ground discrimination by SVM:
The number of clusters, K, in the K-means clustering was set at 5, and, hence, a total number 
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the data to assess performance. We set at the value of S at 10. 
Based on evaluation of false reject/acceptance rates (FRR, FAR) according to the sign of f(x) 
of Eq. (5), we found that the radial basis function (RBF) as a kernel function of SVM 
achieved the minimum sum of FRR and FAR. 
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Fig.15. Distribution of SVM outputs for test samples using the RBF kernel and the weighted 
direction code histogram feature. 
 
Figure 16 shows ROC (Receiver Operating Characteristic) curves obtained by moving a 
threshold for discrimination between character and non-character on the SVM output.  
From Fig. 16, it is found that SVM fed with the weighted direction code histogram feature is 
the top of the three feature vectors and achieved the minimum equal error rate, EER, of 6.2%. 
Next, we investigated the ability of selecting a correctly binarized image from a total of 30 
tentatively binarized images based on the values of SVM outputs. Here, we selected the 
binarized image with the maximum value of SVM outputs as an optimal binarization result. 
Namely, a total of 30 candidate binary images were arranged in the decreasing order of 
SVM outputs, and the top one was selected as a correctly binarized image. 
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Fig. 13. Relations between correlation values and image degradation categories. (a) Clear.  
(b) Background with pattern. (c) Character with pattern. (d) Character with rims. (e) 
Blurring. (f) Nonuniform lighting. 
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Fig.16. ROC curves obtained for three kinds of feature vectors via SVM with the RBF kernel. 
 
Figure 17 shows cumulative binarization rates via SVM. The kth cumulative binarization 
rate is an average rate at which the top k candidate binary images contain a correctly 
binarized image.  
From Fig. 17, it is found that the correct binarization rate or the 1st cumulative binarization 
rate is 92.2%, and the 7th cumulative binarization rate is over 99.0%.  
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Fig.17. Cumulative binarization rates via SVM. 

 
5.2 Abilities of distortion-tolerant character recognition as elastic template matching 
In this subsection, we show results of distortion-tolerant recognition of correlctly binarized 
characters by the GAT correlation and the tangent distance (Wakahara, 2008).  

Input images were normarized with respect to position and size, and were set at a size of 28 
× 28 pixels. The matching measure of the GAT correlation is a normalized cross-correlation 
value, while the matching measure of the tangent distance is a pixelwise distance in gray-
scale values, as described in Section 4. The dimension of a feature vector is 28 × 28. It is to be 
noted that f(r) and g(r) in the GAT correlation can be any features extracted from images as 
far as they are a function of 2D loci vectors, r. On the other hand, the tangent distance can 
use no features besides gray-scale values. 
Table 3 shows recognition rates for correctly binarized characters. The matching measure of 
simple correlation is a normalized cross-correlation value calculated between an input 
image and each template. Moreover, in the GAT correlation, we tried the well-known 
gradient features for correlation matching. Here, the dimenstion of a gradient feature vector 
is 28 × 28 × 8, where an original 2D gray-scale image is decomposed into eight gradient 
images calculated along the direction at intervals of π/8. 
 

Methods Recognition rates (%) 
Simple correlation (gray-scale values) 80.4 
GAT correlation (gray-scale values) 90.3 
GAT correlation (gradient values) 94.1 
Tangent distance (gray-scale values) 91.6 

Table 3. Recognition rates for correctly binarized characters. 
 
From Table 3, it is first found that both GAT correlation and tangent distance reduced the 
error rate of the simple correlation more than by half. Secondly, it is found that the use of 
gradient features in GAT correlation improved the recognition accuracy markedly. 
Figure 18 shows examples of correctly recognized and misrecognized images by both of 
GAT correlation and tangent distance. 

                    
(a)                                                                          (b) 

Fig. 18. Examples of correctly recognized and misrecognized images by both of GAT 
correlation and tangent distance. (a) Correctly recognized. (b) Misrecognized. 
 
Furthermore, in order to evaluate the robustness of GAT correlation and tangent distance 
against rotation which cannot be compensated by position and size normalization, we fed 
each of recognizers with artificially rotated templates to be matched against upright 
templates. 
Figure 19 shows relations between rotation angles and mean of normalized cross-correlation 
values, where elastic image matching was performed between each upright template and 
their artificially rotated templates from -45 degrees to +45 degrees at intervals of 5 degrees.  
From Fig. 19, it is clear that the GAT correlation is superior to the tangent distance in 
robustness against rotation at an angle of more than 20 degrees. 
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Fig. 19. Relations between rotation angles and mean of normalized cross-correlation values. 

 
6. Discussion and future work 
 

We tackled two challenging problems: figure-ground discrimination or correct binarization 
of color characters in scene images as a crucial step to the success of subsequent recognition, 
and distortion-tolerant character recognition under the condition of a small sample size. 
Regarding the first problem, we proposed three kinds of techniques. Although each of three 
techniques showed promising preliminary results, we dare to enumerate their weak points, 
respectively, as follows. 
The first technique of generating an optimal sequence of filters for binarization using GA 
had the following two disadvantages: not automatic but manual selection of degradation 
categories and the limited ability against a wide variety of complex backgrounds even if the 
degradation category is specified. 
The second technique of using a maximum separability axis in a color space based on Otsu's 
criterion had also one major disadvantage: the insufficient adaptability to multi-color 
characters and/or characters with nonuniform backgrounds. 
The third technique of using K-means clustering in a color space and figure-ground 
discrimination by SVM showed the most promising preliminary results mainly because of 
its potential ability to deal with multi-color characters and/or characters with nonuniform, 
complex backgrounds.  
Hence, we enumerate several issues concerning the third technique of using K-means 
clustering in a color space and figure-ground discrimination by SVM still need to be 
addressed. 

(1) Adaptive and stable determination of the optimal number of clusters in K-means 
clustering, 

(2) Selection of more efficient feature vectors for evaluating character-likeness, and 
(3) Systematic expansion of training data in SVM using a kind of degradation or 

deformation models. 

Regarding the second problem, we compared two competing techniques as elastic template 
matching: GAT correlation and tangent distance. Although both of them achieved 
recognition rates of more than 90% for correctly binarized characters, the recognition 
accuracy still needs to be much improved to meet the practical demands of the market. 
From this viewpoint, the following issues remain to be solved. 

(1) Appropriate selection of multiple templates per category, and 
(2) Cooperation between distortion-tolerant template matching and statistical pattern 

recognition techniques. 
Finally, it is necessary and interesting to extend and apply techniques of recognizing single-
character images to recognition of character strings in scene images.  
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Fig. 19. Relations between rotation angles and mean of normalized cross-correlation values. 
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1. Introduction  

Humans can perform usual target recognition without too much effort. However, by 
computer the task of recognizing specific object in an image, one of the most difficult topics 
in the field of computer vision or digital image processing. Vehicle license plate detection 
(VLPD) task is quite challenging from vehicle images due to the multi-style plate formats, 
view point changes and the nonuniform outdoor illumination conditions during image 
acquisition (Anagnostopoulos et al., 2008) and (Jiao et al., 2009). In addition, VLPD system 
should operate fast enough (real time) to satisfy the needs of intelligent transportation 
systems (ITSs) and not to miss a single interest object from the vehicle image. VLPD is also 
very interesting in finding license plate area from vehicle image. The VLPD is widely used 
for detecting speeding cars, security control in restricted areas, in unattended parking zones, 
for traffic law enforcement and electronic toll collection, etc. With the rapid development of 
highway and the wide use of vehicles, people have started to pay more and more attention 
to the advanced, efficient, and accurate ITSs. Recently, the necessity of vehicle license plate 
recognition (VLPR) has increased significantly. The license plate detection is a crucial and 
indispensable component of VLPR system. One of the major problems in LP detection is 
determining LP systems. This system must guarantee robust detection under various 
weather and lighting conditions, independent of orientation and scale of the plate. 
In the recent years developments dealing with simple images have been achieved with 
acceptable results. However, recent researches have been addressed to processing complex 
images with unconstrained conditions (Matas, 2005). The proposed license plate detection 
framework deals with such vehicle images. 
In this proposed VLPD method, consists of two main stages. Initially, HSI color model is 
adopted for detecting candidate regions. According to different colored LP, these candidate 
regions may include LP regions; geometrical properties of LP are then used for 
classification. The proposed method is able to deal with candidate regions under 
independent orientation and scale of the plate. More than one license plate can be detected 
in the same image. Finally, the decomposition of candidate regions contain predetermined 
LP alphanumeric characters by using position in the histogram to verify and detect vehicle 
license plate region. 
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The focus of this chapter is on the consolidation of a new method to select automatically 
statistical threshold value in HSI color model for detecting candidate regions. Generally, as a 
common way of color-based VLPD system, threshold value is defined by predetermined 
coefficients or by user. It provides stable result, but in poor lighting condition it is too 
sensitive. Whereas in our experiments we calculate threshold value in a statistical way, 20% 
of sample data (only green, yellow and white LP areas) are randomly selected for training. 
After training from those sample data, the mean and standard deviation values of hue are 
computed for detection of green and yellow LP pixels. Detecting white license plate pixels, 
the mean and standard deviation values of saturation and intensity are computed to detect 
green, yellow and white LP from vehicle images.  
In addition, the proposed method is able to deal with plates (candidate regions) under 
independent orientation and scale of the plate. More than one license plate can be detected 
in the same image. Furthermore, candidate regions may include LP regions; geometrical 
properties of LP are then used for classification. Finally, the decomposing of candidate 
region which contains predetermined LP alphanumeric character, by using position in the 
histogram to verify and detect vehicle license plate region is performed.  

 
2. Relevant work 

This section provides a descriptive summary of some methods that have been implemented 
and tested for VLPD. As far as detection of the plate region is concerned, researchers have 
found many methods of locating license plate. For example, survey paper (Anagnostopoulos 
et al., 2008), offers to researchers a link to a public image database to define a common 
reference point for VLPR algorithmic assessment. In addition, this survey paper discusses 
about current trends and anticipated research in VLPR system. In (Anagnostopoulos et al., 
2006), a method based on image segmentation technique named as sliding windows (SW) 
has also been proposed for detecting candidate region (LP region). The main thought of 
image segmentation technique in LP can be viewed as irregularities in the texture of the 
image and therefore abrupt changes in the local characteristics of the image, manifest 
probably the presence of an LP. A conventional statistical classifier, based on the k nearest 
neighbor rule, is used to classify every pixel of a test image to obtain a pixel map where 
group of positive samples probably indicates the location of a license plate. In this system, 
time-consuming texture analysis is presented in (Cano & Perez-Cortes, 2003), where a 
combination of a “kd-tree” data structure and an “approximate nearest neighbor” was 
espoused. The computational resource demand of this segmentation technique is the main 
drawback, taking an average of 34 seconds to process of single image. In (Chacon & 
Zimmerman, 2003), the pulse-coupled neural network (PCNN) is proposed to generate 
candidate regions that may contain a license plate. If the license plate is not located in the set 
of candidate regions, the PCNN network parameters are adjusted to generate new regions 
for LP identification. 
Fuzzy logic has been applied in detecting license plates. Authors made some intuitive rules 
to describe the license plates and gave some membership functions for fuzzy sets e.g. 
“bright,” “dark,” “bright and dark sequence,” “texture,” “yellowness” to get the horizontal 
and vertical plate positions (Chang et al., 2004). A technique based on extracts candidate 
regions by finding vertical and horizontal edges from vehicle region had also been proposed 
and this segmentation method is named as sliding concentric windows. Finally, vehicle 

 

license plate is verified and detected by using HSI color model and position histogram, 
respectively in (Deb et al., 2008a). Prior knowledge of LP and color collocation has been 
used to locate the license plate in the image (Gao et al., 2007) as part of the procedure of 
location and segmentation. In (Hongliang & Changping, 2004), a hybrid license plate 
localization algorithm based on the edge statistics and morphology for monitoring the 
highway ticketing system is proposed. This technique can be divided into four sections, 
which are, vertical edge detection, edge statistical analysis, hierarchical-based license plate 
location, and morphology-based license plate extraction. The average accuracy of locating 
license plate is an impressive rate of 99.6%. However, input images were acquired from a 
fixed distance and view point and therefore, candidate regions in a specific position are 
devote priority as already depicted. The license plate locations in images are identified by 
means of integrated horizontal and vertical projections that are scanned using a search 
window (Huang et al., 2009). Moreover, a character recovery method is exploited to enhance 
the success rate. A region-based license plate detection method has been presented in (Jia et 
al., 2007), which firstly applies a mean shift procedure in spatial-range domain to segment a 
color vehicle image in order to get candidate regions. According to the statistical analysis 
performed for comparison to other LP like objects; LPs adhere to a unique feature 
combination of rectangularity, aspect ratio, and edge density. These three features were then 
estimated to candidate regions to decide whether these regions interpret an LP or not. A 
usual failure of this method is the failure to detect license plates when vehicle bodies and 
their license plate have similar colors. In (Jiao et al., 2009), a method for multi-style LP 
recognition has been presented. This method has introduced the density-based region 
growing algorithm for LP location, the skew refinement algorithm, the multi-line LP 
separation algorithm, the optimized character segmentation algorithm and trainable 
character recognition method for character recognition. Hough Transform (HT) for line 
detection has been proposed on the assumption that the shape of license plate has been 
defined by lines in (Kamat & Gansen, 1995). 
A modified color texture-based method for detecting license plate in images has been 
presented in (Kim et al., 2002). A support vector machine (SVM) has been used to analyze 
the color and texture properties of LPs and to locate their bounding boxes applied by a 
continuous adaptive mean shift algorithm (CAMShift). The combination of CAMShift and 
SVMs produces efficient LP detection as time-consuming color texture analysis for less 
relevant pixels is restricted, leaving only a small part of the input image to be analyzed. In 
addition, finding candidate areas by using gradient information, it has been verified 
whether it contains the plate area among the candidates and adjusting the boundary of the 
area by introducing a template of the LP in (Kim et al., 2002). Other approaches using 
mathematical morphology method to detect license plate area (Martin et al., 2002) and an 
approach for segmentation of vehicle plates such as edge image improvement to detect a 
number of car plates in (Ming et al., 1996) have also been proposed. The proposed method 
in (Nomura et al., 2005) is committed to the task of character segmentation, describing a 
morphology-based adaptive approach for degraded plate images.  
Moreover, assuming that LP regions are detectable even in noisy low resolution presented, a 
robust superresolution algorithm for video sequences (Suresh et al., 2007) has been 
proposed to enhance the LP text of moving vehicles with promising results. In (Wang et al., 
2007), a cascade framework, utilizing plate characteristics and developing fast one pass 
algorithms, has been used for a real-time plate recognition system. 
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2007), a cascade framework, utilizing plate characteristics and developing fast one pass 
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Currently, some researchers prefer a hybrid detection algorithm, where license plate 
location method based on corner detection, edge detection, characteristics of license shape, 
character's connection, and projection has been presented in (Xu & Zhu, 2007), (Zhang et al., 
2007) and (Yang et al., 2006) is another method which is based on the color collocation of the 
plate's background and characters combined with the plate's structure and texture to locate 
the VLP. In (Zhang et al., 2006), a cascade classifier for license plate detection algorithm 
using both global statistical features and local Haar-like features is proposed. Using Haar-
like features makes classifier be invariant to the brightness, color, size and position of license 
plates. On the other hand, using global statistical features makes the final classifier simple 
and efficient. Image enhancement and sobel operator to extract out vertical edges and finally 
search plate region by a rectangular window has been presented in (Zheng et al., 2005). 

 
3. Specific features of Korean VLP 

In this section, the color arrangements of the plate and outline of the Korean VLPs that are 
considered in this study have been discussed. 

 
3.1 Color arrangement of the plate 
Korean license plates are well classified as shown in Fig. 1. Each style has a different plate 
color and/or character color. However, in all, only five distinct colors like white, black, 
green, yellow, and deep blue are used in these license plates. It is worth paying attention to 
three different plate colors while searching for LP in an input image. Other types of vehicles, 
such as diplomatic cars and military vehicles, are not addressed since they are rarely seen. 
Color arrangements for the Korean VLPs are shown in Table 1. 
 

 
Fig. 1. Outline of the Korean license plate 

 
3.2 Outline of the Korean VLP 
Standard LP contains Korean alphabets and numbers which are shown in Fig. 1. Few LPs 
contain Korean alphabets and numbers in two rows; in future these kinds of LPs are to be 
converted into single-row types. Where plate color is white and character color is black, they 
contain seven alphanumeric characters written in a single line. In Fig. 1, where plate color is 
green and character color is white, they contain Korean LP in two rows. The upper row 
consists of two small Korean characters of region name followed by one or two numbers of 
class code or two numbers and one Korean character. The lower row is one Korean character 
and four big numbers or only four big numbers to indicate the usage and serial number, 
respectively. When plate color is yellow and character color is black, some LPs contain all 

 

alphanumeric characters written in a single line and another type of yellow LP is found that 
contain Korean LP in two rows. The upper row consists of two small Korean characters of 
region name followed by one or two numbers of class code. The lower row contains one 
Korean character and four big numbers to indicate the usage and serial number, 
respectively. 
 

Vehicle type Plate color Character color 

Private automobile 
White Black 
Green White 

Taxi, truck, and bus Yellow Deep blue 
Government vehicle Yellow Black 

Table 1. Styles of license plates 

 
4. Proposed LP detection framework 

In the author's previous work (Deb & Jo, 2008b), HSI color based vehicle license plate 
detection method was presented. We propose in this chapter an enhanced version of the 
framework for VLPD as shown in Fig. 2. Like the traditional LP detection method, automatic 
focus and white balancing of camera often cause the changing illumination. To overcome 
this problem, we propose an adaptive LP detection method for detecting white license plate 
pixels; we use it in the case of really high- or low-illumination condition as shown in Fig. 4. 
And also distinguish with the traditional LP detection method, as license plates can appear 
at many different angles to the camera's optical axis, each rectangular candidate region is 
rotated until they are all aligned in the same way before the candidate decomposition. The 
proposed framework can efficiently determine and adjust the rotated plate as shown in Fig.  
8. Measurements such as center of area and the least second moment are employed to solve 
the rotation adjustment problem. The least second moment provides the principal axis as the 
orientation with the candidate object. General framework for detecting VLP region is shown 
in Fig. 2. In the proposed framework, detection is based on color properties of LP, shape-
based verification and position histogram. 

 
5. Vehicle license plate detecting module 

The VLPD sequence is shown in Fig. 2, which is proposed in this paper, consists of four 
distinct parts. The first one deals with, by using HSI color model, the detection of the 
candidate region, i.e., the license plate. The second part allows procedures for refining 
candidate region by using labeling and filtering. According to different colored LP these 
candidate regions may include rectangular LP regions; geometrical properties of LP such as 
area, bounding box, and aspect ratio are then used for classification. The third part includes 
operations for determining the angle of the candidate  rotation adjustment. Measurements 
such as center of area and the least second moment are employed to solve the rotation 
adjustment. The fourth part includes performances for candidate's decomposition and 
finally, the decomposition of candidate region which contains predetermined LP 
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alphanumeric character by using position in the histogram to verify and detect vehicle 
license plate (VLP) region. 

 
Fig. 2. Vehicle license plate detection framework 

 
5.1 Segmenting color 
In the proposed method, input vehicle images are converted into HSI color images. Then the 
candidate regions are found by using HSI color model on the basis of using hue, saturation 
and/or intensity. Many applications use the HSI color model. Machine vision uses HSI color 
space in identifying the color of different objects.  
The RGB color model consists of the three additive primaries: red, green, and blue. Spectral 
components of these colors combine additively to produce a resultant color. Typically, HSI 
colors are not described on the basis of percentages of primary colors, but rather by their 
hue, saturation and intensity. The saturation is the "pureness" of the color, the hue is the 
color itself and intensity describes the brightness of the color. The HSI color model separates 
all the color information, described by hue and saturation, from the intensity component. 
The HSI color model is based on color descriptions that are more natural to humans and 
hence can provide an ideal tool for image processing algorithms. The HSI color space is 
represented by the diamond, as shown in Figure 3. The hue H is represented as angle 0, 
varying from 0° to 360°. Adjusting the hue will vary the color from red at 0°, through yellow 
at 60°, green at 120°, blue at 240° and back to red at 360°. Saturation S corresponds to the 
radius, varying from 0 to 1. When S =0, color is a gray value of intensity 1. When S =1, color 
is on the boundary of top cone base. Intensities I vary along Z axis with 0 being black and 1 
being white. 
 

 

 
Fig. 3. The HSI color space 
 
The transform from (R, G, B) to (H, S, I) in (Umbaugh, 1998)  is  
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Plate color information is used to detect candidate regions in our experiments, and shape 
properties of LP allow reducing number of LP-like candidates. One of the common ways of 
color-based vehicle license plate detection can be formalized as follows: 
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where R, G and B are red, green and blue components of x  y image.   and  are 
predefined coefficients. Equation (2) sets up limitations for the minimal values of pixel 
components. Equation (3) formalizes dependencies between pixel components for LP. 
Generally, common way of using color-based vehicle license plate detection is based on two 
types of restrictions: first, restriction is based on Eps. (2) and (3). It provides good results in 
good lighting conditions. However, it is not good for low-contrast images. Pixel belongs to 
green and yellow LP, respectively like following Eqs. (4) and (5) 
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Plate color information is used to detect candidate regions in our experiments, and shape 
properties of LP allow reducing number of LP-like candidates. One of the common ways of 
color-based vehicle license plate detection can be formalized as follows: 
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where R, G and B are red, green and blue components of x  y image.   and  are 
predefined coefficients. Equation (2) sets up limitations for the minimal values of pixel 
components. Equation (3) formalizes dependencies between pixel components for LP. 
Generally, common way of using color-based vehicle license plate detection is based on two 
types of restrictions: first, restriction is based on Eps. (2) and (3). It provides good results in 
good lighting conditions. However, it is not good for low-contrast images. Pixel belongs to 
green and yellow LP, respectively like following Eqs. (4) and (5) 
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where bgreen and byellow  are green and yellow candidate binary masks.  The second restriction 
is based on Eqs. (4) and (5), and a threshold value is taken heuristically. It provides stable 
result whereas in bad lighting condition it is too sensitive. 
In this proposed method, LP detection is based on its color properties, namely mean and 
standard deviation values of hue. For detection of green and yellow LP pixels, hue 
parameter of HSI color is used in our experiment. To detect white LP pixels hue value is 
meaningless, hence only saturation and intensity parameters are important for this case. To 
estimate these properties, we used 30 images of LP taken under different lighting and 
weather conditions. After training from those sample data, the mean and standard deviation 
values of hue are computed for detection of green and yellow LP pixels. Detecting white 
license plate pixels, the mean and standard deviation values of saturation and intensity are 
computed to detect green, yellow and white LP from vehicle images. For detection of green 
and yellow LP pixels, the binarization process can be formulated as follows: 
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where H(x, y), S(x, y), and I(x, y) are hue, saturation and intensity components of xth, yth 
pixel, respectively. H and H are mean hue and hue standard deviation values for green and 
yellow LP of sample data, respectively. 
However, the automatic focus and white balancing of camera often cause the changing 
illumination. Our proposed LP detection method can work well in normal illumination 
condition, but it seems not good enough to work in bad illumination conditions. To 
overcome this problem, we use an adaptive LP detection method; we use it in the case of 
really high- or low-illumination condition. 
For normal, low- and high-illumination conditions of white license plate pixels, the 
binarization process can be formulated as follows, respectively: 

    
( )

1,    ( ,  )      &    ( ,  )   0.25  
  

0,                                                                                         
S S I I

white n
S x y I x y

b
otherwise

            


 

    
( )

1,    ( ,  )      &    ( ,  )   -  0.33  
  

0,                                                                                        
S S I I

white l
S x y I x y

b
otherwise

           


 

 
(8) 

 
 
 

(9) 
 

 

    
( )

1,    ( ,  )      &    ( ,  )   0.50  
  

0,                                                                                         
S S I I

white h
S x y I x y

b
otherwise

            


 
 
 

(10) 
 

 
where S(x, y) and I(x, y) are saturation and intensity components of xth, yth pixel 
respectively. S and I are mean values for saturation and intensity, S, I are standard 
deviation values for saturation, intensities of white LP of sample data, respectively. bwhite(n), 
bwhite(l) and bwhite(h) are white candidate binary masks. An LP image and its color segmentation 
results are depicted in Fig. 4(a) – (c) (green, yellow and white back ground LP), respectively. 
 

 
Fig. 4. An LP image (left) and its color segmentation results (right) using HSI color model 
 
Color segmentation parameters are very sensitive in order to detect as many candidates as 
possible. All false candidates will be filtered out on the next stages. According to the prior 
knowledge of vehicle LP inspection, all license plates must be rectangular in shape and have 
the dimensions and have all alphanumeric characters written in one or two rows, in LP 
region. After the segmentation, there may still exist noises in the image and that is not ideal. 
These noises have many types, such as small holes or/and bulges of the target candidate 
regions. The problem may be resolved by using mathematical morphology processing 
method. Mathematical morphology is used as a potent tool for image analysis which is 
based on shapes in the image, not pixel intensities. The two principal morphological 
operations are dilation and erosion. Dilation allows objects to expand and erosion shrinks 
objects by etching away (eroding) their boundaries. These operations can be customized by 
the proper selection of the structuring element, which determines exactly how the objects 
will be dilated or eroded. Dilation and erosion are combined into other two operations: 
opening and closing.  In this part of the application, we use the closing operation which is 
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where bgreen and byellow  are green and yellow candidate binary masks.  The second restriction 
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possible. All false candidates will be filtered out on the next stages. According to the prior 
knowledge of vehicle LP inspection, all license plates must be rectangular in shape and have 
the dimensions and have all alphanumeric characters written in one or two rows, in LP 
region. After the segmentation, there may still exist noises in the image and that is not ideal. 
These noises have many types, such as small holes or/and bulges of the target candidate 
regions. The problem may be resolved by using mathematical morphology processing 
method. Mathematical morphology is used as a potent tool for image analysis which is 
based on shapes in the image, not pixel intensities. The two principal morphological 
operations are dilation and erosion. Dilation allows objects to expand and erosion shrinks 
objects by etching away (eroding) their boundaries. These operations can be customized by 
the proper selection of the structuring element, which determines exactly how the objects 
will be dilated or eroded. Dilation and erosion are combined into other two operations: 
opening and closing.  In this part of the application, we use the closing operation which is 
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dilation followed by erosion to fill in holes and gaps smaller than the structuring element on 
the plate image. Removal of those holes plays an important role in calculating bounding box  
region. Implementation of morphological closing operation is depicted in Fig. 5(c) – 7(c), 
respectively. 

 
5.2 Labeling and filtering 
After the candidate regions are obtained by applying color segmentation, features of each 
region are to be extracted in order to correctly differentiate the LP regions from others. Next 
step of proposed algorithm is labeling the connected components. In the proposed method, 
a recursive algorithm is implemented for connected component labeling operation. 
Recursive algorithm (Shapiro et al., 2001) works on one component at a time, but can move 
all over the image. In this step we extract candidate regions which may include LP regions 
from the binary mask obtained in the previous step. During this step, main geometrical 
properties of LP candidate such as area, bounding box, and aspect ratio are computed. 
Following the successful connected component labeling operation in image, measurements 
such as the area, the bounding box and the aspect ratio for every binary object in the image 
are performed.  
A bounding box is a rectangle whose horizontal and vertical sides enclose the region and 
touch its topmost, bottommost, leftmost, and rightmost points. Rectangularity is defined as 
the ratio of the area of candidate object's MER (minimum enclosing rectangle) and the area 
of the object. Here, the area is measured in pixels and indicates the relative size of the object. 
The aspect ratio (also called elongation or eccentricity), is defined by the ratio of the 
bounding box of an object. This can be found by scanning the image and the minimum and 
maximum values on the row and the columns, where the object lies. This ratio is defined by 
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where c and r indicate columns and row, respectively. Objects which satisfy A (aspect ratio) 
bounds 1 to 3 for green, 1 to 2 for yellow, and 1 to 6 for white LPs are considered as 
candidate regions. These parameters are used for filtering operation to eliminate LP-like 
objects from candidate list. Filtering operation is done on geometrical properties of LP 
regions. Figs. 5 - 7 illustrate the steps for license plate segmentation: (a) an LP image, (b) 
color segmentation result, (c) implementation of morphological closing operation for 
removing small holes in candidate region, (d) detected candidate after filtering, and (e) 
candidate region detection. The most important LP-parameters are grouped in Table 2. 
 

Filtering parameter CR (green) CR (yellow) CR (white) 

Bounding box [0.6, 1.0] [0.7, 1.0] [0.7, 1.0] 

Aspect ratio [1.0, 3.0] [1.0, 2.0] [1.0, 6.0] 
Possible shapes Rectangle 

Table 2. Filtering properties 
 
 

 

Here CR indicates candidate region. 

 
Fig. 5. Illustration of license plate segmentation: (a) an LP image in a night time, (b) color 
segmentation result, (c) implementation of morphological closing operation for removing 
small holes in candidate region, (d) detected candidate after filtering, and (e) candidate 
region detection 

 
Fig. 6. Illustration of license plate segmentation: (a) an LP image in a strong sunshine, (b) 
color segmentation result, (c) implementation of morphological closing operation for 
removing small holes in candidate region, (d) detected candidate after filtering, and (e) 
candidate region detection 

 
Fig. 7. Illustration of license plate segmentation: (a) an LP image in a strong sunshine 
reflected by vehicle mirror and also a light post located in front of vehicle, (b) color 
segmentation result, (c) implementation of morphological closing operation for removing 
small holes in candidate region, (d) detected candidate after filtering, and (e) candidate 
region detection 

 
5.3 Determining the angle of the candidate - rotation adjustment 
As license plates can appear at many different angles (in our experiment is more robust 
when LP is rotated from -15 to +15 degree) to the camera's optical axis, each rectangular 
candidate regions is rotated until they are all aligned in the same way before the candidate 
decomposition. Following the successful filtering operation in image, measurements such as 
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dilation followed by erosion to fill in holes and gaps smaller than the structuring element on 
the plate image. Removal of those holes plays an important role in calculating bounding box  
region. Implementation of morphological closing operation is depicted in Fig. 5(c) – 7(c), 
respectively. 
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all over the image. In this step we extract candidate regions which may include LP regions 
from the binary mask obtained in the previous step. During this step, main geometrical 
properties of LP candidate such as area, bounding box, and aspect ratio are computed. 
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are performed.  
A bounding box is a rectangle whose horizontal and vertical sides enclose the region and 
touch its topmost, bottommost, leftmost, and rightmost points. Rectangularity is defined as 
the ratio of the area of candidate object's MER (minimum enclosing rectangle) and the area 
of the object. Here, the area is measured in pixels and indicates the relative size of the object. 
The aspect ratio (also called elongation or eccentricity), is defined by the ratio of the 
bounding box of an object. This can be found by scanning the image and the minimum and 
maximum values on the row and the columns, where the object lies. This ratio is defined by 
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where c and r indicate columns and row, respectively. Objects which satisfy A (aspect ratio) 
bounds 1 to 3 for green, 1 to 2 for yellow, and 1 to 6 for white LPs are considered as 
candidate regions. These parameters are used for filtering operation to eliminate LP-like 
objects from candidate list. Filtering operation is done on geometrical properties of LP 
regions. Figs. 5 - 7 illustrate the steps for license plate segmentation: (a) an LP image, (b) 
color segmentation result, (c) implementation of morphological closing operation for 
removing small holes in candidate region, (d) detected candidate after filtering, and (e) 
candidate region detection. The most important LP-parameters are grouped in Table 2. 
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Fig. 5. Illustration of license plate segmentation: (a) an LP image in a night time, (b) color 
segmentation result, (c) implementation of morphological closing operation for removing 
small holes in candidate region, (d) detected candidate after filtering, and (e) candidate 
region detection 

 
Fig. 6. Illustration of license plate segmentation: (a) an LP image in a strong sunshine, (b) 
color segmentation result, (c) implementation of morphological closing operation for 
removing small holes in candidate region, (d) detected candidate after filtering, and (e) 
candidate region detection 

 
Fig. 7. Illustration of license plate segmentation: (a) an LP image in a strong sunshine 
reflected by vehicle mirror and also a light post located in front of vehicle, (b) color 
segmentation result, (c) implementation of morphological closing operation for removing 
small holes in candidate region, (d) detected candidate after filtering, and (e) candidate 
region detection 

 
5.3 Determining the angle of the candidate - rotation adjustment 
As license plates can appear at many different angles (in our experiment is more robust 
when LP is rotated from -15 to +15 degree) to the camera's optical axis, each rectangular 
candidate regions is rotated until they are all aligned in the same way before the candidate 
decomposition. Following the successful filtering operation in image, measurements such as 
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center of area and the axis of least second moment are employed to solve the rotation 
adjustment problem. 
The center of area (centroid), is the midpoint along each row and column axis corresponding 
to the “middle” based on the spatial distribution within candidate object. This feature used 

to locate an object in the 2D image plan is defined by the pair  , :i ir c  
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where ir and ic  indicates row and column coordinate of the center of area for the ith object. 
The area, iA , is measured in pixels and indicates the relative size of the object. 
The least second moment provides the principal axis as the orientation with the candidate 
object. For getting principal axis of detected candidate region, we compute central moments 
of detected candidate region. The central moments are defined as 
 

     
1 1

0 0

       ,  
N N p q

pq
r c

r r c c I r c
 

 

     
 

(14) 

We apply this result to obtain a direction of principal axis by centroid of detected candidate 
region. Angle of principal axis moments is obtained as 
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where  denotes an angle between basis horizontal coordinate and principal axis of region. 
Figure 8 portrays a sequence of successful license plate identification. 
 

 
Fig. 8. Illustration of license plate segmentation: (a) an LP image (b) detected candidate after 
filtering (c) principal axis (d) rotation adjustment, and (e) extracted candidate 

 
5.4 Decomposing candidate’s 
Information extracted from image and intensity histograms plays a basic role in image 
processing, in areas such as enhancement, segmentation, and description. In this section, 

 

verification and detection of the VLP region as well as character segmentation are 
considered and discussed in this study. The algorithm scheme for candidate decomposition 
is shown in Fig. 9.  
Once the candidate area is binarized, the next step is to extract the information. At first, 
regions without interest such as border or some small noisy regions are eliminated; the 
checking is made by height comparison with other plate characters height. Following 
procedure is performed when LP color is green and yellow: first we proceed by performing 
horizontal position in the histogram; two objects are found where each object corresponds 
with one row. Then the rows are isolated and processed separately. As mentioned before in 
Sect. 3, two types of plate are considered. 
 

 
Fig. 9. Algorithm scheme for candidate decomposition 
 
Processing of the upper row: first filter phase is performed to eliminate the regions without 
interest. Then vertical position histogram is processed. The upper row also has two different 
types as we mentioned in Sect. 3. As it can be observed, usually in the upper row we can 
find two plate-fixing dots as shown in Fig. 1. The right plate-fixing dot does not even appear 
in the binarization process due to the fact that it is printed green. The left plate-fixing dot is 
also eliminated. The checking is made by height comparison. From the vertical position in 
the histogram we can find isolated alphanumeric characters.  
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where  denotes an angle between basis horizontal coordinate and principal axis of region. 
Figure 8 portrays a sequence of successful license plate identification. 
 

 
Fig. 8. Illustration of license plate segmentation: (a) an LP image (b) detected candidate after 
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considered and discussed in this study. The algorithm scheme for candidate decomposition 
is shown in Fig. 9.  
Once the candidate area is binarized, the next step is to extract the information. At first, 
regions without interest such as border or some small noisy regions are eliminated; the 
checking is made by height comparison with other plate characters height. Following 
procedure is performed when LP color is green and yellow: first we proceed by performing 
horizontal position in the histogram; two objects are found where each object corresponds 
with one row. Then the rows are isolated and processed separately. As mentioned before in 
Sect. 3, two types of plate are considered. 
 

 
Fig. 9. Algorithm scheme for candidate decomposition 
 
Processing of the upper row: first filter phase is performed to eliminate the regions without 
interest. Then vertical position histogram is processed. The upper row also has two different 
types as we mentioned in Sect. 3. As it can be observed, usually in the upper row we can 
find two plate-fixing dots as shown in Fig. 1. The right plate-fixing dot does not even appear 
in the binarization process due to the fact that it is printed green. The left plate-fixing dot is 
also eliminated. The checking is made by height comparison. From the vertical position in 
the histogram we can find isolated alphanumeric characters.  
 



Pattern Recognition414

 

 
Fig. 10. Example images: (a) different illuminations, (b) complex scenes, (c) various 
environments, and (d) damaged license plates 
 
Processing of the lower row: first filter phase is performed to eliminate the regions without 
interest. Then vertical position histogram is performed and from the vertical position 
histogram the alphanumeric characters are isolated. 
According to the prior knowledge of vehicle LP inspection, all white LPs contain seven 
alphanumeric characters as well as written in a single row. The following procedure is 
performed for character segmentation: After eliminating border area, vertical position in the 
histogram is performed for segmenting predetermined alphanumeric characters. As it can 
be observed, usually we can find also two plate-fixing dots in upper area of plate region. 
The right plate fixing dot or both plate-fixing dots do not even appear in the binarization 

 

process due to the fact that it is printed white. The left plate-fixing dot is also eliminated; 
this checking is made by height comparison.  
Figure 11 shows the following steps for verifying predetermined alphanumeric characters 
(white back ground LP): (a) extracting candidate region, (b) vertical position histogram with 
LP border, (c) horizontal position histogram with LP border, (d) horizontal position 
histogram without LP border,(e) view of normalization candidate region after removing 
border and noisy area, (f) vertical position histogram (seven peaks for predetermined seven 
alphanumeric characters in LP region), and (g) character extraction. 

 
6. Experimental results  
 

All experiments have been done on Pentium-IV 2.4 GHz with 1024 MB RAM under Matlab 
environment. In the experiments, 150 images were used the size is 640  480 pixels, some 
images which are shown in Fig. 10. The images are taken from (a) different illuminations 
(night time, strong sunshine, and shadow), (b) complex scenes where several objects such as 
trees, light post in front of vehicles, (c) various environments in campus parking, access 
areas and more than one license plates in the same image, and (d) damaged LP as bent or 
old. They were taken in distance from 2 up to 8 m and the camera was focused in the plate 
region. Under these conditions, success of LP detection has reached to more than 94%. 
Results of candidate region detection are shown in Table 3. 
 

Image group Total images Detected LPs Success rate (%) 

Different illuminations 57 53 92.98% 
Complex scenes 15 14 93.34% 

Various environmants 73 69 94.52% 
Damaged LP 5 5 100% 

Total 150 141 94% 
Table 3. Detection results 
 
A common drawback of the proposed VLPD system is the failure to detect the boundaries or 
border of license plates. This occurs when vehicle bodies and their license plate possess 
similar colors. The average computational time for the color segmentation and filtering 
operations of the proposed method are shown in Table 4. 
 

Stage Avg time (s) Std. deviation (s) 

Color segmentation 0.16 0.07 
Filtering 0.07 0.02 

Table 4. Average computation time 
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A common drawback of the proposed VLPD system is the failure to detect the boundaries or 
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operations of the proposed method are shown in Table 4. 
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Fig. 11. Steps for verify predetermined alphanumeric characters (white back ground LP): (a) 
extracting candidate region, (b) vertical position histogram with LP border, (c) horizontal 
position histogram with LP border, (d) horizontal position histogram without LP border,(e) 
view of normalization candidate region after removing border and noisy area, (f) vertical 
position histogram (seven peaks for predetermined seven alphanumeric characters in LP 
region), and (g) character extraction. 

 
7. Conclusion 
 

In conclusion, a new method is adopted in this paper to select statistical threshold value in 
HSI color model. In the proposed method candidate regions are found by using HSI color 
model. These candidate regions may include LP regions; geometrical properties of LP are 
then used for classification. The proposed method is able to deal with candidate regions 
under independent orientation and scale of the plate. Finally, VLP regions containing 
predetermined LP alphanumeric character are verified and detected by using position 
histogram. Color arrangement and predetermined LP alphanumeric character of the Korean 
license plate are important features for verification and detection of license plate regions. 
While conducting the experiments, different illumination conditions and varied distances 
between vehicle and camera often occurred. In that case, the result that has been confirmed 
is very much effective when the proposed approach is used. However, the proposed method 
is sensitive when vehicle bodies and their license plates possess similar colors. We leave 
these issues to be considered in future studies. 
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Fig. 11. Steps for verify predetermined alphanumeric characters (white back ground LP): (a) 
extracting candidate region, (b) vertical position histogram with LP border, (c) horizontal 
position histogram with LP border, (d) horizontal position histogram without LP border,(e) 
view of normalization candidate region after removing border and noisy area, (f) vertical 
position histogram (seven peaks for predetermined seven alphanumeric characters in LP 
region), and (g) character extraction. 

 
7. Conclusion 
 

In conclusion, a new method is adopted in this paper to select statistical threshold value in 
HSI color model. In the proposed method candidate regions are found by using HSI color 
model. These candidate regions may include LP regions; geometrical properties of LP are 
then used for classification. The proposed method is able to deal with candidate regions 
under independent orientation and scale of the plate. Finally, VLP regions containing 
predetermined LP alphanumeric character are verified and detected by using position 
histogram. Color arrangement and predetermined LP alphanumeric character of the Korean 
license plate are important features for verification and detection of license plate regions. 
While conducting the experiments, different illumination conditions and varied distances 
between vehicle and camera often occurred. In that case, the result that has been confirmed 
is very much effective when the proposed approach is used. However, the proposed method 
is sensitive when vehicle bodies and their license plates possess similar colors. We leave 
these issues to be considered in future studies. 
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1. Introduction  
 

Plant branching pattern, depends on the nature and on the spatial arrangement of each of 
plant parts (i.e. botanical entities, metamers or growth units, etc.), at any given time, is the 
expression of an equilibrium between endogenous genetic controlled growth processes and 
exogenous stimulations exerted by the nutrients supply and the micro-environmental 
climate, as well as the competition or cooperation from population (community). From 
botanical perspective, this expression can be viewed as the result of the repetition of 
elementary botanical entities through the three main and fundamental morphogenetic 
processes of growth, branching and reiteration (Barthélémy & Caraglio, 2007). Repetition of 
these entities induces gradual or abrupt changes reflecting different stages of differentiation 
in the meristems (Nicolini & Chanson, 1999), which are ordered in time and correspond to 
the notion of physiological age of meristems (Barthélémy & Caraglio, 2007).  
Due to both endogenous control and exogenous effects, the development of meristem leads 
to some basic branching patterns that make the whole plant exhibits complex structures 
(Barthélémy & Caraglio, 2007). These basic branching patterns can be roughly divided into 
four types: 1) terminal or lateral branching, no branching (depends on the position of the 
active meristem, is the apical or axillary one), 2) monopodial or sympodial branching 
(depends on the indeterminate or determinate growth pattern of meristem, as shown in Fig. 
1, Harris & Woolf, 2006), 3) immediate or delayed branching (depends on immediately or 
delayed initiation of meristem), and 4) rhythmic or continuous branching (depends on 
whether all the axillary meristems of a stem develop into lateral axes, or whether lateral axes 
are grouped as distinct tiers with an obvious regular alternation of a succession of 
unbranched and branched nodes on the parent stem). 
As an intelligent organism (Trewavas, 2005), plant exhibits some kinds of intelligent 
behavioral capabilities through phenotypic plasticity (e.g. phototropism) other than 
movement, which is the nature of animals or human beings. This phenomenon 
demonstrates that the development of plant results from the mutual effect between structure 
and endogenous physiological process. The branching pattern analysis make it possible to 
identify these endogenous processes and to separate them from the plasticity of their 
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expression resulting from external influences by means of observation and sometimes 
experimentation. Applicable to any kind of plant, branching pattern analysis has proved to 
be one of the most efficient means currently available for the study of the organization of 
complex arborescent plants. Therefore, the study of plant pattern and revelation of the 
corresponding meristem states will lead us to get a deeper and better understanding of 
plant development and also provide a convenient tool for growth rules construction for 
functional-structural plant modelling (virtual plants), which emerged as a new scientific 
discipline in the last decades.   

 
Fig. 1. Stem branching patterns (Source: Harris & Woolf, 2006). 

 
Nevertheless, plant branching pattern extraction and the corresponding meristem states 
revelation by no means a simple task. The extensive methodology used for analyzing the 
structures produced by meristems needs to be investigated. This can be seen as a 
methodology that aims to solve an inverse problem in which one tries to infer meristem 
functioning from the complex structures they produce (Fig. 2). Moreover, this analysis needs 
to be carried out at different spatial and temporal scales. Generally, the implementation of 
plant pattern extraction is usually composed of three steps: first, acquiring plant topological 
and geometrical data via manual work, image processing and pattern recognition, or 3D 
laser digitizing; second, analyzing these data to reveal hidden relations between plant 
entities (metamers or growth units) through statistical computing or topological operation; 
third, extracting the evolutionary rule set that reflecting the variation of meristem states 
from the second step to validate analysis and to guide the plant modelling. Therefore, the 
plant branching pattern extraction could be regarded as a complex machine learning system, 
in which many software and hardware tools as well as artificial intelligence methods are 
involved.  
This chapter reviews detailed methods and approaches in relation to the complex machine 
learning system of automatic branching pattern extraction. First, we will introduce plant 
topological and geometrical description, encode database or structure used for storage of 
measured plant structure. And then, the most important part of this chapter, we will discuss 
recent methods and theories used for plant topology and geometry acquisition, statistical 
and structural analysis as well as branching rule extraction for any species of plant. Finally, 

 

some unsolved problems and challenges need to be addressed in future research are 
outlined. 
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Fig. 2. Schematic description of meristem physiological states revelation and plant 
branching pattern extraction. Dash-line marked rounded-rectangles and green arrows 
represent plant branching mechanism and process, while the gray rounded-rectangles and 
dark arrows represent the branching pattern extraction process.   

 
2. Plant Data Acquisition 
 

Data acquisition is the starting point for extraction of plant branching patterns, yet the type 
of data used may vary greatly. The description of plant architecture therefore must be 
investigated and the corresponding architecture model or data structure for recording 
measured data needs to be established prior to the process of plant architecture 
measurement.  
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Data acquisition is the starting point for extraction of plant branching patterns, yet the type 
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2.1 Description of plant architecture 
As discussed by Prusinkiewicz (1998), on the most qualitative end of the spectrum, the 
architectural unit (metamer or growth unit) introduced by Edelin (1977) is well-suited to 
characterize plants within the conceptual framework of architectural models proposed by 
Hallé et al. (1978). The morphological characteristics incorporated into an architectural unit 
must be directly observed, estimated or measured. They include: the orientation of branches 
(e.g. orthotropic or plagiotropic), type of branching (monopodial or sympodial), persistence 
of branches (indefinite, long or short), degree of lateral shoot development as a function of 
their position on the parent branch (acrotony, mesotony or basitony), type of meristematic 
activity (rhythmic or continuous), number of internodes per growth unit, leaf arrangement 
(phyllotaxis), and position of reproductive organs on the branches (terminal or lateral). An 
authoritative description of these and other notions used to specify plant architecture was 
presented by Bell (1991) and Caraglio and Barthélémy (1997). The architectural unit acting as 
the basic component that make up the canopy consist of a set of these characteristics, and 
satisfy with all branch orders. Examples of architectural description of specific plants in 
terms of architectural units also have been investigated by Atger and Edelin (1995). terms of architectural units also have been investigated by Atger and Edelin (1995).

 
Fig. 3. Plant architecture representation: the multiscale tree graph (MTG). (Source: Godin 
and Caraglio, 1998). 
 
Nevertheless, this qualitative characterization of architecture unit is insufficient to construct 
a spatial structure for a plant. The relations among architecture units are exact needed to be 
taken into consideration. Plant architecture is a dynamic expression of these basic 
architecture units, in the sense that the observed structural features reflect plant 
development over time. As stated by Hallé et al. (1978), "The idea of a form implicitly 
contains also the history of such a form." Correspondingly, the architecture of plant canopy 

 

may be viewed as a sequence of branch patterns created over time, rather than merely a set 
of branch patterns. "In this sequence, leading from axis 1 to the ultimate axes following the 
specific branching pattern, each branch is the expression of a particular state of meristematic 
activity and the branch series as a whole can be considered to be tracking the overall 
activity" (Barthélémy et al., 1991).  
Plant maps (McClelland, 1916; Constable, 1991) may be considered the first attempt to 
characterize the structure for particular plants. This method of description captures the 
branching topology, i.e. the arrangement of branches, organs, and other features with no 
respect to the plant's geometry (e.g. the lengths of internodes and the magnitudes of the 
relative branching angles: the azimuth and the inclination). Plant maps can be recorded 
using different notations, e.g. Hanan and Room (1996) adapted the idea of plant maps using 
the bracketed string notation introduced by Lindenmayer (1968), which can be regarded as 
one of the most notable characters of the L-System (Prusinkiewicz et al., 1990). A different 
notation was presented by Rey et al. (1997). A refinement of the topological description of 
plants, named multiscale tree graphs (MTG, as shown in Fig. 3) has been proposed by Godin 
and Caraglio (1998). This makes it possible to specify plant topology at different scales and 
levels of detail, and incorporate temporal aspects into a single framework. Multiscale tree 
graphs form the basis of a coding language implemented in AMAPmod, an interactive 
program for analyzing the topological structure of plants (Godin et al., 1997a,b). The 
advantages and detailed descriptions for multiscale representation of plant architecture 
have also been discussed by Remphrey and Prusinkiewicz (1997).  
For each species of plants, at each stage of development and in each environmental 
condition, the qualitative and quantitative topology and geometry can be measured via 
manual labour, depending on the complexity of the architecture. Small plants can be 
observed, manipulated and measured directly but this work is hardly accomplished when 
plants reach several metres high, furthermore it can be extremely time consuming. 
Therefore, automatic acquisition methods are preferred, e.g. image processing and pattern 
recognition, 3D magnetic-scan based digitizing as well as 3D laser scanning techniques.  

 
2.2 Image-based Approaches 
Varjo et al., (2006) proposed a digital camera based method for estimating the stem 
diameters of growing trees for forest inventory purposes. The imaging system consists of a 
single camera, a laser distance measurement device and a calibration stick placed beside the 
tree to be measured. To carry out the task, the camera geometry parameters are first 
determined using linear pinhole camera and nonlinear lens distortion models. In addition of 
the accurate camera calibration, the viewing geometry has to be determined for 3-D 
measurement purpose with the help of the calibration stick. The estimation of the stem 
diameters is carried out by combining the stem curve information from the image with a 
priori stem form model.  
Lin et al. (2001) reported capturing top-view and lateral images taken from two color CCD 
cameras to measure several geometric features, such as seedling height, average projection 
area, leaf area index, leaf and stem node number, coordinates of stem nodes and leaf 
endpoints. The position and approximate shape of overlapped seedling leaves were initially 
located using elliptical Hough transform. Based on this information, the hidden leaf 
boundary can be further reconstructed and the total leaf area can be calculated without pre-
determined calibration relationship. This image-processing algorithm is incorporated into a 
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stereo machine vision system to dynamically measure selected vegetable seedlings. 
However, this approach is better for small plant such as vegetables and bushes, not well-
suited for large woody plants because of the difficult of image capturing.  
Biskup et al. (2007) presented an area-based, binocular field stereo system to measure 
structural canopy parameters such as leaf angle distribution by using techniques such as 
calibration of cameras and stereo rig, epipolar rectification, colour segmentation of foliage 
and stereo matching.  
Recently, Qu et al. (2009) proposed an image-analyzing-based method to analyze tree 
structure. In their method, any hand-held cameras with enough resolution (megapixels) can 
be employed to capture the image sequences of the unfoliaged deciduous plant of interest 
from a number of different overlapping views. Usually, about 30 to 45 images need to be 
taken, with coverage 360° around each plant. Then the camera parameters and a collection 
of 3D cloud points were recovered and extracted from point correspondences and running 
structure from motion on the captured image sequences. Standard computer vision methods 
(Hartley & Zisserman, 2000) have been used to estimate the point correspondences across 
the images and the camera parameters. Moreover, the method proposed by Lhuillier and 
Quan (2005) was used to compute a semi-dense cloud of reliable 3D points in space. Their 
image-based process shows a reasonable results for 3D skeleton extraction (Fig. 4). 
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(d) (e) (f) 

Fig. 4.  Image-processing-based plant 3D skeleton recovery. (Source: Qu et al, 2009). 

 
2.3 3D digitizing Approaches 
Sinoquet and Rivet (1997) proposed a method for the measurement of the 3D architectural of 
a 20-year-old and 7-meter-high walnut tree. Their approach combines a 3D digitizing device 
(3SPACE FASTRAK, Polhemus) associated with the software DiplAmi designed for 
digitizer control and data acquisition management. It works at the shoot level and 

 

simultaneously measures the plant topology, geometry and the shoot morphology. Di iorio 
et al. (2005) used a low-magnetic-field digitizing device (Fastrak, Polhemus) to measure the 
geometry and topology of structural root with a diameter of 1cm for a single-stemmed 
Quercus pubescens tree. In their method, several root architecture characteristics are 
extracted by macros, including root volume, diameter, length, number, spatial position and 
branching order.  
The algorithms proposed in (Gorte & Pfeifer, 2004) and (Pfeifer et al., 2004) took laser data 
as input, and created a voxel-based occupancy grid represetentation of the data. 
Morphological operations were used to find the underlying branching structure and fit 
cylinders to the branches. Moreover, these algorithms can be used to extract metric 
parameters of the tree, such as branch length, radius and rotation angles. Xu et al. (2007) 
proposed a method to reconstruct realistic looking trees from laser scan data. The laser data 
is first converted to a points cloud, a graph-based technique is used to find the 3D skeleton, 
and then the 3D information is used to measure the relative geometric parameters of plant 
branching structures. A similar approach was employed by Tan et al (2008) to find overall 
branch structures, but images instead of laser range scans are used as input, a structure from 
motion algorithm is used to create a 3D point cloud from the images. The 3D point cloud 
and the raw images are then used to find the branching structures. 
However, aforementioned methods being developed for digitization of plant architecture 
are based on direct measurements of position and shape of every plant organ in space. 
Although they provide accurate results, these methods are particularly time consuming. 
More automatized methods are now required in order to collect plant architecture data of 
various types and sizes in a systematic way, i.e. these processes need to be completely 
implemented by hardware (3D scanner) instead of software.  

 
3. Data Analysis 
 

From botanical perspective, plant architecture is the result of repetitions that occur through 
growth and branching processes. During plant ontogeny, changes in the morphological 
characteristics of botanical entities exhibit either similar or very contrasted characteristics, 
which can be characterized as homogeneous zones. These homogeneous zones were 
discovered in most plant species with diverse characteristics (length, number of nodes, 
number of growth units, number of branches, non-flowering/flowering character) attached 
to the elementary botanical entities, these botanical entities being either built by the same 
meristem or derived from one another by branching. These results can be related to the 
notion of “physiological age of a meristem”. The physiological age of a meristem may be 
defined by a particular combination of morphological, anatomical and functional 
characteristics of a given botanical entity produced by this meristem (Barthélémy et al., 1997; 
Barthélémy & Caraglio, 2007). For identifying the physiological age of plant entities, it seems 
at first sight the most relevant to analyze directly the whole plant structure described at a 
given scale is to use appropriate analysis methods. 
In the last two decades, coupled with precise morphological observations, architectural 
analysis of several plant species (Caraglio & Edelin, 1990) revealed that, under given 
environmental conditions, the structure and features of a particular elementary botanical 
entity are predictable and strongly dependent on both (1) its topological location in the 
comprehensive architecture of a plant and (2) the ontogenetic stage of the organism. At the 
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level of the whole plant, the "morphogenetic gradients" notion was defined (Barthélémy et 
al.,1997) in order to take into account the intrinsic organization rules of plant structure and 
branching pattern and was shown to be a powerful concept (Prusinkiewicz et al., 2001) to 
explain the observed structure and series of modifications of botanical entities during the 
ontogeny of any plant species. 
In order to enhance the understanding of this filed, some frameworks of investigation are 
required to reveal the hidden effects (the morphogenetic gradients) of the ontogenetic 
growth behavior, which should rely on appropriate analysis methods (most being statistical 
approaches). One challenge of this work is the complexity of the data which are tree-
structured with variables of heterogeneous types (binary, count, quantitative, etc.) attached 
to each botanical entity. In the following section, we will focus on the discussion of statistical 
approaches to plant architecture and branching pattern, which are organized as the order of 
structural complexity: from axis to the entire shoot system.  
 
3.1 Statistical Approaches 
As discussed by Costes and Guédon (2002), it has been shown that over several growth 
periods, the growth and consequently the number of lateral, decreases rapidly with ageing 
(Ouellette & Young, 1995). Such a decrease in the growth and branching characteristics with 
plant development and ageing has been represented by Gatsuk et al. (1980) and Barthélémy 
et al. (1997) and has been discovered in most woody plants. As a consequence, when 
growing conditions are keeping optimal, the first annual growth of the stem developing 
from the grafted bud is the longest in the tree and bears the limbs which will later make up 
the plant architecture. This make it possible that evaluate plant growth and branching habits 
by analyzing the branching pattern of the first annual shoot of the trunk. 
To test the aforementioned assumption, Costes and Guédon (2002) proposed a method of 
branching pattern analysis on 1-year-old trunks of six apple cultivars (Malus domestica 
Borkh.) using the AMAPmod software (developed by Godin et al., (1997,1999). Before the 
analysis procedure, the number of metamers (White, 1979), the location and the length of the 
sylleptic shoots were recorded from the shoot that had developed from the retained bud at 
the end of the first year of growth. Furthermore, at the end of second year of growth, three 
other types of axillary bud fate which led to proleptic development were recorded, they 
include: 1)spur or short shoot consisting of preformed organs only, with no or little 
elongation of the internodes, 2)long shoot, where the corresponding internodes are 
elongated and 3) bourse, resulting from the differentiation of the meristem into an 
inflorescence after the development of a few preformed leaves. Then the branching model 
on the trunks of these 1-year-old apple cultivars was established using the Hidden semi-
Markov chain (HSMC, as shown in Fig. 5), which is particularly useful for identifying 
homogeneous zones within sequences and detecting transitions between zones (Ephraim & 
Merhav, 2002). In the model each state corresponding to a branching zone is denoted as a 
circle and the possible transitions between states are represented by arcs associating with 
probabilities. The occupancy distributions are listed above the corresponding states, as are 
the possible lateral types (denoted by symbol: 0, latent bud; 1, proleptic spur; 2, proleptic 
long shoot; 3, bourse; 4, sylleptic shoot) observed in each state.  
 

 

 
Fig. 5. Modelling branching on 1-year-old trunks using a hidden semi-Markov chain. 
(Source: Costes and Guédon, 2002) 
 
Their analysis results show that the succession of lateral types along trunks as discrete 
sequences highlighted the existence of successive zones within which the lateral type 
composition was homogeneous, but changed between zones. The five zones that were 
common to and located in the same position in all cultivars studied demonstrate that 
successive developmental stages occur in the same order over a growing season and can be 
used to explain the fate of meristems.  
Although plant architecture are composed of repetition of growth units (White, 1979; 
Barlow, 1994), these growth units always show diversity on length with plant age and 
branching order (Gatsuk et al., 1980; Barthélémy et al, 1997). Plant branching patterns are 
likely to change with the length of growth units depending on plat growth stage (Costes et 
al. 2003) . To investigate this phenomenon, Renton et al. (2006) use the Hidden semi-Markov 
chain model to explore the similarities and gradients in growth unit branching patterns 
during plant ontogeny. Their experimental data (two 6-year-old Fuji apple trees) were 
encoded into a database corresponding to entire plant described at the node scale. Within 
this database, four types of growth units were measured: short (length < 5cm), medium 
(length between 5 and 20 cm), long (length > 20 cm) and floral growth units. And 
accordingly, five types of lateral growth were identified: latent buds, short lateral growth 
units, medium lateral growth units, long lateral growth units and floral growth units. Their 
Hidden semi-Markov chain model relies on three assumptions: 1) the branching types 
within a different zones (i.e. hidden states) are independent of growth unit length, year of 
growth and branch order, 2) each branching zone may be present or absent depending on 
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growth unit length, year of growth and branch order, and 3) some branching zones may be 
longer or shorter, depending on growth unit length.  
Analysis results of Renton et al. (2006) show that growth branching patterns exhibited both 
similarities and gradients during plant ontogeny. The degree of similarity of growth units 
over the years depends on their sharing certain zones, the floral and the short-lateral zones. 
Complex branching structures with more than one median branching zone tended to 
decrease in number towards the periphery, while the percentage of unbranched medium 
growth units progressively increased. Two phenomena also have been discovered: first, the 
two median zones disappeared with increasing plant age and branch order and second, the 
floral zone length decreased with the parent growth unit length.  
The aforementioned statistical analysis of sequential data from plant architecture are mainly 
based on Markovian model, for instance the Hidden semi-Markov chains for investigating 
homogeneous zones of botanical entities (e.g. growth units). These models, although 
accurately accounting for the structure contained along remarkable paths in the plant (e.g. a 
plant trunk), are not suited for identifying tree-structured zones, because the dependencies 
among botanical entities of disjoint sequences are eluded. The complete topology has to be 
included in the investigation for the existence of multiple dependent successors or 
descendants to be considered in the distribution of zones. The statistical framework of the 
Hidden Markov tree (HMT) introduced by Crouse et al. (1998) in the signal-processing 
engineering just provides the appropriate solution for the analysis of tree-structured data.  
Durand et al. (2005) proposed the Hidden Markov tree model to label the homogeneous 
zones in plant, which architecture is modelled by assigning one hidden state to each growth 
unit. The hidden state represents the class of the growth units. Each class contains growth 
units that have similar statistical properties or attributes such as the number of internodes, 
connection type (succession or branching), etc. Although the HMT is quite close to the 
Hidden Markov chains, both of which have the same parameter set and are based on local 
dependency assumptions between hidden states, the parameter estimation (EM algorithm, 
refer to Arthur Dempster et al. 1977) for HMT is different from Hidden Markov chains 
(Durand et al. 2004). Two successive steps: the parameter estimation from the measured 
entities and state tree restoration are executed in Durand et al. (2005) proposed approach. 
The state tree restoration makes the underlying zones (i.e. the hidden states) directly 
apparent : different zones in a same state have equivalent attribute distributions. The 
different distributions can be interpreted as an underlying stage of differentiation: the 
physiological age of the meristems. The plant is therefore automatically segmented into 
comparable parts, whereas states changes highlight where the ruptures (physiological states 
of meristems) are (as shown in Fig. 6). This HMT model assume that the transitions of 
hidden states conform to the first-order semi-Markov dynamics, because the first-order 
model is enough to reflect the statistical properties of plant and is easy to be learned. 
However, from a biological point of view, it is as yet a simplified assumption. 
Plant development is controlled by the combined effect of gene activity and environmental 
constraints, which in turn combine with ontogenetic gradients. At a given date, a plant 
architecture is thus the outcome of three complex combination: 1) an endogenous 
component which is assumed to be structured as a succession of roughly stationary phases 
separated by marked change points asynchronous between individuals (Guédon et al., 
2007), while the 2) environmental component which regulate the plant development are 
mainly of climatic origin such as light, rainfall or temperature, 3) the individual component 

 

corresponds to the local environment of each individual such as pathogen infestation or 
competitions between trees for light or nutrient resources. These factors are rarely 
measurable and not considered by aforementioned approaches.  

 
Fig. 6. Restored hidden state tree for the apple tree data set. Each growth unit is coloured 
according to its hidden state. (Source: Durand et al. 2005). 
 
Incorporating both the influence of environmental variables and inter-individual 
heterogeneity in a hidden Markovian model is a challenging problem. Guédon et al. (2007) 
proposed a set of methods for analyzing the endogenous and the exogenous components. In 
particular, hidden semi-Markov chains with simple observation distributions were applied 
to plant growth data. In this case, the underlying semi-Markov chain represents the 
succession of growth phases and their lengths while the environmental component is 
characterized globally. Hidden semi-Markov chains (Guédon, 2003) generalize hidden 
Markov chains (Ephraim and Merhav, 2002) with the distinctive property of explicitly 
modeling the sojourn time in each state. Based on above works, Chaubert-Pereira et al. 
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(2008) introduced semi-Markov switching linear mixed models that generalize both Markov 
switching linear mixed models and hidden semi-Markov chains. These models can be 
regarded as a finite mixture of linear mixed models with semi-Markovian dependencies and 
make it possible to identify and to characterize the different growth components (e.g. 
endogenous, exogenous effects and competition or cooperation from population) of plants. 
The utilization of climatic covariates and individual-state-wise random effects renders the 
endogenous growth component more synchronous between individuals than with a simple 
Gaussian hidden semi-Markov chain. Moreover, the behavior of each plant within the 
population can be explored on the basis of the predicted individual-state-wise random 
effects. 
Up to now, approaches we discussed merely focus on the topological relations among 
botanical entities of plant. However, the geometry of plant entities and spacial architecture 
of them are equally important to the revelation of meristems' hidden states, and 
furthermore, these information also make great help to plant architecture 3D modelling and 
reconstruction. Wang et al. (2006) proposed a novel tree modeling approach, efficiently 
synthesizing trees based on a set of tree samples captured from the real world. They 
designed a two-level statistical model for characterizing the stochastic and specific nature of 
trees. At the low level, the plantons, which are a group of similar organs, to depict tree 
organ details statistically. At the high level, a set of transitions between plantons is provided 
to describe the topological and geometrical relations between organs. The authors designed 
a maximum likelihood estimation algorithm to acquire the two-level statistical tree model 
from single samples or multi- samples. 

 
3.2 Structural Analysis-based Approaches 
As reviewed as Barthélémy and Caraglio (2007), most plants repeat their architectural unit 
during their development, late in ontogeny. Oldeman (1974) named this process 
"reiteration" and defined it as a morphogenetic process through which the organism 
duplicates its own elementary architecture, i.e. its architectural unit at different scale (node, 
metamer, growth unit, etc.). The result of this process is called a "reiterated complex" (Hallé 
et al., 1978; Barthélémy et al., 1988, 1991) or a "reiterate" (Millet et al.,1998). This property of 
plant architecture can be also called the "self-similarity" and consequently, provides an 
alternative to investigate the plant architecture and branching pattern.   
Plant structures are usually represented by either ordered or unordered rooted tree 
(Prusinkiewicz & Lindenmayer, 1990; Godin & Caraglio, 1998). The intrinsic property of 
self-similarity make plant structure has some kind of redundancy, in some sense, that is the 
tree structure (graph) can be reduced to a minimum structure (graph) with the isomorphic 
structure to the previous one. The graph isomorphism can be defined as the edit-distance 
between two structures, as stated by Ferraro and Godin (2000). To study the redundancy of 
structure embedded at various levels in tree architectures, Godin and Ferraro (2009) 
investigated the problem of approximating trees by trees with particular self-nested 
structures. Self-nested trees are such that all their subtrees of a given height are isomorphic. 
Their investigation show that these trees present remarkable compression properties, with 
high compression rates. In order to measure how far a tree is from being a self-nested tree, a 
quantitative measure of the degree of self-nestedness for any tree has been introduced. For 
this, a self-nested tree has been constructed to minimize the distance of the original tree to 
the set of self-nested trees that embed the initial tree. To solve this optimization problem,  a 

 

polynomial-time algorithm has been designed to make it quantify the degree of self-
nestedness of a tree in a precise manner. The distance to this nearest embedding self-nested 
tree (NEST) is then used to define compression coefficients that reflect the compressibility of 
a tree.  
From the view point of the structural analysis of botanical plants, one therefore can give a 
biological interpretation of the NEST of a tree based on the hypothesis that isomorphic tree 
structures at macroscopic levels are actually produced by meristems in identical 
physiological states. This makes it possible to show that the reduction graph of the NEST of 
a plant may be interpreted as the maximum sequence of differentiation states that any 
meristem of a plant may go through. Analysis results showed that the NEST of one plant 
may be interpreted in biological terms and reveals important aspects of the plant growth 
(Barthélémy and Caraglio, 2007).  

 
4. Results Utilization 
  

The statistical and topological analysis approaches discussed above make it possible to 
formally reveal the sequences of meristem physiological state differentiation corresponding 
to each axis of a given plant. These open up the perspective to use such an analysis on 
various plant species as a guiding principle to develop some applications or functional-
structural plant models, and even to further explore the notion of meristem state and 
differentiation at a bio-molecular and genetic levels, in the spirit of the pioneering work 
described in (Prusinkiewicz et al., 2007). 
 

 
Fig. 7. Simulated apple trees using the MAPPLET model. (Source: Costes et al. 2008). 
 
A new type of structure-function model named MAPPLET (Markov Apple Tree) has been 
developed by Costes et al. (2008). In MAPPLET, the statistical approach, which is inspired 
by the hierarchical Hidden Markov model has been carried out to model the development of 
apple trees (over the first six years of the growth). The tree topology of MAPPLET, i.e. both 
the succession of growth units along axes and the branching structures of growth units at 
node scale are controlled by the hidden states and spatial transitions between them, which 
are the results of the statistical approach: the Hidden Markov model. Moreover, the 
biomechanical model of MAPPLET simulates the bending of branches under fruit and 
branch weight. Therefore, from the global perspective, the MAPPLET is an integrated 
developmental framework can capture both the apple tree topology and its form (the shape 
of the branches, as determined dynamically by the gravity and the wood properties). The 
core simulation of MAPPLET is implemented using a L-system implemented with the L+C 
language (Karwowski & Prusinkiewicz, 2003) with which the statistical analysis module of 

Pattern Recognition430



 

(2008) introduced semi-Markov switching linear mixed models that generalize both Markov 
switching linear mixed models and hidden semi-Markov chains. These models can be 
regarded as a finite mixture of linear mixed models with semi-Markovian dependencies and 
make it possible to identify and to characterize the different growth components (e.g. 
endogenous, exogenous effects and competition or cooperation from population) of plants. 
The utilization of climatic covariates and individual-state-wise random effects renders the 
endogenous growth component more synchronous between individuals than with a simple 
Gaussian hidden semi-Markov chain. Moreover, the behavior of each plant within the 
population can be explored on the basis of the predicted individual-state-wise random 
effects. 
Up to now, approaches we discussed merely focus on the topological relations among 
botanical entities of plant. However, the geometry of plant entities and spacial architecture 
of them are equally important to the revelation of meristems' hidden states, and 
furthermore, these information also make great help to plant architecture 3D modelling and 
reconstruction. Wang et al. (2006) proposed a novel tree modeling approach, efficiently 
synthesizing trees based on a set of tree samples captured from the real world. They 
designed a two-level statistical model for characterizing the stochastic and specific nature of 
trees. At the low level, the plantons, which are a group of similar organs, to depict tree 
organ details statistically. At the high level, a set of transitions between plantons is provided 
to describe the topological and geometrical relations between organs. The authors designed 
a maximum likelihood estimation algorithm to acquire the two-level statistical tree model 
from single samples or multi- samples. 

 
3.2 Structural Analysis-based Approaches 
As reviewed as Barthélémy and Caraglio (2007), most plants repeat their architectural unit 
during their development, late in ontogeny. Oldeman (1974) named this process 
"reiteration" and defined it as a morphogenetic process through which the organism 
duplicates its own elementary architecture, i.e. its architectural unit at different scale (node, 
metamer, growth unit, etc.). The result of this process is called a "reiterated complex" (Hallé 
et al., 1978; Barthélémy et al., 1988, 1991) or a "reiterate" (Millet et al.,1998). This property of 
plant architecture can be also called the "self-similarity" and consequently, provides an 
alternative to investigate the plant architecture and branching pattern.   
Plant structures are usually represented by either ordered or unordered rooted tree 
(Prusinkiewicz & Lindenmayer, 1990; Godin & Caraglio, 1998). The intrinsic property of 
self-similarity make plant structure has some kind of redundancy, in some sense, that is the 
tree structure (graph) can be reduced to a minimum structure (graph) with the isomorphic 
structure to the previous one. The graph isomorphism can be defined as the edit-distance 
between two structures, as stated by Ferraro and Godin (2000). To study the redundancy of 
structure embedded at various levels in tree architectures, Godin and Ferraro (2009) 
investigated the problem of approximating trees by trees with particular self-nested 
structures. Self-nested trees are such that all their subtrees of a given height are isomorphic. 
Their investigation show that these trees present remarkable compression properties, with 
high compression rates. In order to measure how far a tree is from being a self-nested tree, a 
quantitative measure of the degree of self-nestedness for any tree has been introduced. For 
this, a self-nested tree has been constructed to minimize the distance of the original tree to 
the set of self-nested trees that embed the initial tree. To solve this optimization problem,  a 

 

polynomial-time algorithm has been designed to make it quantify the degree of self-
nestedness of a tree in a precise manner. The distance to this nearest embedding self-nested 
tree (NEST) is then used to define compression coefficients that reflect the compressibility of 
a tree.  
From the view point of the structural analysis of botanical plants, one therefore can give a 
biological interpretation of the NEST of a tree based on the hypothesis that isomorphic tree 
structures at macroscopic levels are actually produced by meristems in identical 
physiological states. This makes it possible to show that the reduction graph of the NEST of 
a plant may be interpreted as the maximum sequence of differentiation states that any 
meristem of a plant may go through. Analysis results showed that the NEST of one plant 
may be interpreted in biological terms and reveals important aspects of the plant growth 
(Barthélémy and Caraglio, 2007).  

 
4. Results Utilization 
  

The statistical and topological analysis approaches discussed above make it possible to 
formally reveal the sequences of meristem physiological state differentiation corresponding 
to each axis of a given plant. These open up the perspective to use such an analysis on 
various plant species as a guiding principle to develop some applications or functional-
structural plant models, and even to further explore the notion of meristem state and 
differentiation at a bio-molecular and genetic levels, in the spirit of the pioneering work 
described in (Prusinkiewicz et al., 2007). 
 

 
Fig. 7. Simulated apple trees using the MAPPLET model. (Source: Costes et al. 2008). 
 
A new type of structure-function model named MAPPLET (Markov Apple Tree) has been 
developed by Costes et al. (2008). In MAPPLET, the statistical approach, which is inspired 
by the hierarchical Hidden Markov model has been carried out to model the development of 
apple trees (over the first six years of the growth). The tree topology of MAPPLET, i.e. both 
the succession of growth units along axes and the branching structures of growth units at 
node scale are controlled by the hidden states and spatial transitions between them, which 
are the results of the statistical approach: the Hidden Markov model. Moreover, the 
biomechanical model of MAPPLET simulates the bending of branches under fruit and 
branch weight. Therefore, from the global perspective, the MAPPLET is an integrated 
developmental framework can capture both the apple tree topology and its form (the shape 
of the branches, as determined dynamically by the gravity and the wood properties). The 
core simulation of MAPPLET is implemented using a L-system implemented with the L+C 
language (Karwowski & Prusinkiewicz, 2003) with which the statistical analysis module of 

Automatic Approaches to Plant Meristem States 
Revelation and Branching Pattern Extraction: A Review 431



 

V-Plants (Renton et al., 2006) has been integrated. The simulation results of MAPPLET are 
shown in Fig. 7.  

 
Fig. 8. L-Peach model output shows the development of the structure of a 3-year-old 
unpruned peach tree. (Source: Lopez et al., 2008). 
 

 
Fig. 9. Schematic structure of the Bidimensional Hierarchical Automaton (BHA), where 
cycles marked with MSi,j,k . etc. represent the physiological states of meristems (hidden states 
of the Hidden Markov tree model), while the light blue cycles denote the different types of 
metamers (with different length of internodes). (Source: Qu et al., 2008).  
 
Following this first integration of advanced stochastic processes for modeling tree topology 
with mechanistic processes, the approach was extended through the integration of 
Markovian models with the carbon-based source-sink model L-Peach (Lopez et al., 2007), 
which was developed from the original version of L-Peach (Allen et al., 2005). In the newest 
version of L-Peach, the Hidden semi-Markov chain is used to control the branching 
structure, it successfully reproduced peach trees that were similar to the peach trees 
observed in the real world (Fig. 8).  

 

The branching patterns of plants not only can make convenience to the functional-structural 
plant model, but also open up the new perspective to plant architecture 3D reconstruction 
(Wang et al., 2006) as well as growth rule extraction (Qu, et al., 2008), which emerges a new 
scientific attempt. Over the last decades, L-System has been widely used as a powerful tool 
in plant modeling, in particular the plant branching control. However, it is really a difficult 
work to manually develop a L-System for a given plant species depending only on 
imagination or experience. Qu, et al. (2008) proposed a novel approach of automatic L-
System discovery via branching pattern analysis of unfoliaged trees. In their approach, three 
steps are involved for L-System extraction: 1) image processing as well as pattern 
recognition methods are employed to recover topological and geometrical information for 
growth units and metamers from multiple images of unfoliaged trees, 2) Markovian 
methods are used to further analyze data which have been extracted in the first step for 
capturing the hidden relations between plant entities and, 3)the L-System has been 
generated via the runtime of a Bidimensional Hierarchical Automaton (BHA), which is 
constructed from the analysis result of the second step for describing plant branching 
structure, as shown in Fig. 9. 

 
5. Conclusion 
  

This chapter reviewed the approaches and theories in relation to the plant branching pattern 
extraction, those include plant architecture description, measurement and acquisition for 
topology and geometry of plant botanical entities, statistical and structural analysis for the 
revelation of physiological states of meristem as well as the utilization of these analysis 
results for plant modelling and 3D structure reconstruction.  
The study of plant branching pattern requires detailed metric data about the plant 
architecture. Acquiring these metric information can be extremely time conuming when 
using manual labor. To address this issue, many researches contributed to the theoretical 
and applied approaches to automatically acquire plant topology and geometry, such as 3D 
laser scanning as well as image recognition. However, there are still some deficits in data 
acquisition need to be overcome. For instance the image processing based approaches, in 
which usually several images have been taken, if branch is not seriously occluded, a 
reasonable 3D branching structure can still be generated, but it will be obviously failed 
when a branch is fully occluded by other branches or leaves. Moreover, regarding the 3D 
digitizing approach, more automatized methods are now required in order to collect plant 
architecture data of various types and sizes in a systematic way, i.e. these processes 
(including laser scanning, 3D cloud computation and branching skeleton extraction ) need to 
be completely implemented by hardware (3D scanner) instead of software.  
Plant branching structure can be interpreted as the indirect transformation of different 
physiological states of the meristems, thus connected entities may exhibit either similar or 
very contrasted characteristics. During the last decades, some statistical models (e.g. Hidden 
semi-Markov chain, Hidden Markov tree, semi-Markov switching linear mixed model, etc.) 
have been employed by botanists and statisticians to discover and characterize 
homogeneous entity zones and transitions between them in different temporal scales within 
plant topological and geometrical data. These analytical methods and models lead to a 
clustering of the entities into classes sharing the similar statistical properties that help to find 
the tendency of the differentiation of meristems. One limitation of these stochastic methods 
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must be mentioned is that one assume that the transitions of botanical entities conform to 
the first-order Markov dynamics, because the first-order model is enough to reflect the 
statistical properties of plants and also is easy to be learned. However, from the perspective 
of botany, it is as yet a simplified assumption. As an alternative approach, analysis of 
structural similarity has been explored to reduct a complex structure to a simplest one that 
may be interpreted as the maximum sequence of differentiation states that any meristem of 
a plant may go through. 
In addition, Computer scientists proposed theoretical methods to integrate these hidden 
relations as growth rules into some classic complex systems such as parametric probabilistic 
L-System, Bidimensional Hierarchical Automaton, etc. Naturally, the mapping between 
plant growth process and these complex systems used for plant branching rules description 
are built. Moreover, these complex systems provide an open interface so that any virtual 
plants models can access it easily as long as they are compatible with this interface.  
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1. Introduction  
 

Batik and Songket motifs (Ismail, 1997) are traditional Malaysian-Indonesian cloth designs, 
with intrinsic artistic value and a rich and diverse history. Despite having a history 
spanning centuries, they are still valued today for their beauty and intricacy, commonplace 
amongst today’s fashion trends. These patterns and motifs, however, defy a simple means of 
systematic cataloguing or indexing, and categorization. Linguistic terms are not accurate 
enough to identify or categorize, with sufficient accuracy, a particular textile motif, save for 
a few common design patterns due to the diversity of patterns.  
The motifs themselves are usually highly stylised abstract designs derived from nature or 
mythology. The interesting thing about them, from the point of pattern recognition, is that 
the patterns are non-repeating but unmistakably belong to the same category; that is, 
according to the general theme of the non-repeating motifs, they belong to the same textile. 
Therefore, the pattern identification would have to be by example; making this ideal for 
content-based image retrieval and recognition. 
While there are other approaches that try to classify individual patterns within the textile 
motifs, we approach problem as a form of "macro textures". Texture can be described as 
patterns of "non-uniform spatial distribution" of pixel intensities, that is to say that, intensity 
patterns are varying across space. In a similar manner, the Batik and Songket individual 
patterns vary across the textile but maintaining a similar theme. Therefore we adapt the 
approach for texture recognition and expand it to account for macro level variation as 
opposed to at pixel level. We are able to get good results on it, and considered among the 
best results reported.  
In this paper, we will be using test images will be from a collection of traditional Batik and 
Songket design motifs. They will be used as input for performing classification and 
recognition by extending previous research on textile and texture recognition. The collection 
consists of 180 different samples (Ismail, 1997), sourced from 30 different texture classes (6 
samples per class). Refer to Figure 1 for samples of the classes used in this paper.  
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Fig. 1. Samples of texture motifs from 4 different classes used as sample data for this 
research. 

 
2. Related Work 
 

Grey Level Co-occurrence Matrix or GLCM (also known as Spatial-dependence Matrix) has 
been known as a powerful method (Davis, 1981; Walker et al., 1997) to represent the 
textures. Textures can be described as patterns of “non-uniform spatial distribution” of gray 
scale pixel intensities. Allam et. al (1997), citing Wezka et al. (1976) , and Conners and 
Harlow (1980) found that co-occurrence matrices yield better results than other texture 
discrimination methods. Haralick (1973) achieved a success rate of approximately 84% by 
using the extraction and calculation of summary statistics of the GLCM found in grayscale 
images, having an advantage in speed compared with other methods. Based on the good 
acceptance of GLCM approaches to texture recognition, in this research, we have adopted 
the use of GLCM as the basis for our textile motifs recognition. GLCM-based texture 
recognition have been used in combination with other techniques, including combining its 
statistical features with other methods, such as genetic algorithms (Walker et al., 1997). 
Practical applications of GLCM in image classification and retrieval include iris recognition 
(Zaim et al., 2006), image segmentation (Abutaleb, 1989) and CBIR in videos (Kim et al., 
1999).  
For use in colour textures, Arvis et al. (2004) have introduced a multispectral variation to the 
GLCM calculation that supports multiple colour channels, by separating each pixel’s colour 
space into RGB components, and uses pairings of individual colour channels to construct 
multiple co-occurrence matrices.  
We will be using the six RGB multispectral co-occurrence matrices – generated by 
separating each colour pixel into its Red, Green, and Blue components. RGB colour space is 
selected as opposed to others such as YUV and HSV, as it yields a reasonable (Chindaro et 
al., 2005) rate of success. The orthogonal polynomial moments for these six matrices are 
used as descriptors for the matrices in place of the summary statistics such as Haralick’s 

 

measures (Davis et al., 1981). Allam et al. (1997) have also devised a method using 
orthonormal descriptors in their work on texture recognition on a 2-class problem, with a 
less than 2% error rate. Jamil et al. (2006a, 2006b) have worked on retrieval of Songket 
patterns based on their shapes using geometric shape descriptors from gradient edge 
detectors. Their method achieved their best “precision value of 97.7% at 10% recall level and 
70.1% at 20% recall level” (Jamil et al., 2006a). Other approaches to textile recognition 
include using regular texel geometry (Han et al., 2009)  

 
3. Description of approach 
 

3.1 Co-occurrence Matrices in Image Representation 
A source image with 256 possible colours is defined as I(x, y), with (x, y) determining the 
pixel coordinates, and the restriction of pixel values overlapping print: given by 0 ≤ I(x, y) ≤ 
255. The multispectral co-occurrence matrix (Arvis,  2004) represents the total number of 
pixel pairs in I(x, y) having a colour value i (from the channel a), and value j (from channel 
b). 
A vector T may separate the pixel pairs where: 

(x2, y2) = (tx+x1, ty+y1)    
(1) 

given (x1, y1) as coordinate of the first pixel, (x2, y2) for the second pixel. The reason that we 
introduce the vector T is to provide some degree of freedom when dealing with textures of a 
different scale (macrotextures have a larger T, microtextures on the other hand need a 
smaller T). To yield a co-occurrence matrix with rotation-invariance (to deal with all 
possible orientations of neighbouring pixels), the set of all possible tx and ty values must 
satisfy x2 + y2 = r2,  r ∈ Z, representing a fixed distance from the centre pixel. 
Therefore, a co-occurrence matrix from channels a and b (a, b ∈ {R, G, B}) in I(x, y), separated 
by a vector T is represented mathematically as: 
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An elements of the above matrix, cab(ia, jb) has the mathematical definition: 

cab(ia, jb) =∑ ∑ ∈
−++×−

yx Utytx yx jtytxIiyxI
, ,

]),([]),([ δδ              (3) 

 
ia and jb are intensity values from channels a and b respectively, T is the distance vector as 
defined in (1) and  x, y ∈ I. δ is is the Kronecker Delta. 
Each of the six individual multispectral matrices, Cab (a, b ∈ {R, G, B}) is converted to a 
grayscale image (having 256 possible shades of gray), Gab(i, j), such that 0 ≤ i, j ≤ 255. The 
pixel intensity at any given position (i, j) correlates directly with the value in the co-
occurrence matrix Cab(i, j), through the following equation: 
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include using regular texel geometry (Han et al., 2009)  

 
3. Description of approach 
 

3.1 Co-occurrence Matrices in Image Representation 
A source image with 256 possible colours is defined as I(x, y), with (x, y) determining the 
pixel coordinates, and the restriction of pixel values overlapping print: given by 0 ≤ I(x, y) ≤ 
255. The multispectral co-occurrence matrix (Arvis,  2004) represents the total number of 
pixel pairs in I(x, y) having a colour value i (from the channel a), and value j (from channel 
b). 
A vector T may separate the pixel pairs where: 
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given (x1, y1) as coordinate of the first pixel, (x2, y2) for the second pixel. The reason that we 
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Therefore, a co-occurrence matrix from channels a and b (a, b ∈ {R, G, B}) in I(x, y), separated 
by a vector T is represented mathematically as: 
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An elements of the above matrix, cab(ia, jb) has the mathematical definition: 
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ia and jb are intensity values from channels a and b respectively, T is the distance vector as 
defined in (1) and  x, y ∈ I. δ is is the Kronecker Delta. 
Each of the six individual multispectral matrices, Cab (a, b ∈ {R, G, B}) is converted to a 
grayscale image (having 256 possible shades of gray), Gab(i, j), such that 0 ≤ i, j ≤ 255. The 
pixel intensity at any given position (i, j) correlates directly with the value in the co-
occurrence matrix Cab(i, j), through the following equation: 
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After normalization, min(cab(i, j)) will have gab = 0, while max(cab(i, j)) has gab = 255.  
Histogram equalization is applied to improve the contrast of the generated matrices, which 
will improve visibility of outlying values in the graphical representation of the matrices. 
Images in the same texture class will have a similar combination of six matrices which is 
distinct to a particular class (figure 2). 

 
Fig. 2. Multispectral RGB co-occurrence matrices for ‘Batik’ motifs. Each row shows: ‘Batik’ 
motif and its corresponding matrices from the RR, GG, BB, RG, GB, and BR channels. 

 
3.2 Orthogonal polynomial decomposition  
We use orthogonal polynomials as a means of representing the information found in the co-
occurrence matrices. Most GLCM or multispectral co-occurrence matrix-based methods of 
texture recognition uses a set of ‘summary statistics’ summarizing important textural 
features found in a particular image’s matrix. Examples would be the five common features 
(Arvis, 2004) are derived from Haralick’s (1973) original set of thirteen. 
See et al. (2008) have shown that discrete orthogonal polynomials such as the Tchebichef 
discrete orthogonal polynomial can be an effective way of representing any 2D function. 
Various orthogonal polynomial moments, such as Zernike (Wang et al., 1998) and Hermite 
(Krylov et al., 2005) have been applied to texture classification. However, our approach 
differs in that we apply the orthogonal polynomial moments on the co-occurrence matrix 
image, not on the image directly.  

 

Our approach require that the multispectral co-occurrence matrices to be treated as an 
image, and hence can be represented as a series of image moments (See et al., 2008; Kotoulas 
et al., 2005). We propose the usage of “shape” information from the multispectral matrices, 
by means of orthogonal polynomial decomposition, as a basis in texture recognition and 
classification. The decomposition coefficients would be larger but they contain more textural 
information as compared to the summarized set of 5 common Haralick features.  
The Tchebichef orthogonal polynomial is used for the purposes of decomposition of the 
multispectral matrices. In the research of See et al. (2008), the Tchebichef orthogonal 
polynomial outperforms other polynomials in general, second only to the Discrete Cosine 
Transform which is used as the basis for comparison. Other orthogonal polynomials have 
limitations which render them unsuitable for decomposing our multispectral co-occurrence 
matrices. Specifically, Krawtchouk moments only work for binary images, Hahn only work 
for specific cases in which the foreground is significantly whiter than the background, and 
Poisson-Charlier generally yields unsatisfactory results [15]. Hence, the Tchebichef 
orthogonal polynomial is ideal for decomposing the six generated multispectral co-
occurrence matrices and using the resulting moment coefficients as basis for texture 
discrimination.  
The limited finite expansion of the moments allow only prominent features to be preserved 
while discarding those moments which carry little or no information. The first few moments 
encode gross overall shape and other moments carry finer details; thus, by discarding 
higher moments, we are able to save on complexity while preserving the entire set of 
second-order textural statistics in the multispectral matrix. 
The transformation of image intensity into moment orders is defined mathematically as Mpq 
(See et al,. 2008): 
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0 ≤ p, q, x, y ≤ N-1; mn(x) is a set of finite discrete orthogonal polynomials, w(x) the weight 
function, and ρ(n) the rho function. 
The Tchebichef polynomial is defined mathematically as (See et al, 2008): 
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where mn is the n-th Tchebichef polynomial, ρ(n) the rho function and w(x) the weight 
function. Further details can be found in See et al (2008). 
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4. Classification 
 

Firstly we compared the compared the results obtained from the Batik/Songket database 
and the VisText database. Images used are 100-by-100 pixel samples. For the 
‘Batik’/’Songket’ database, 132 images from 16 different classes are used; for the VisTex 
database, 200 images from 40 different classes are used. A pixel radius of one unit, i.e. r = 1 
is used for the construction of the multispectral matrices as it has been identified from prior 
research in GLCM to give optimum results. This results in 256 x256 GLCM matrices per 
image. We also need to compare the results obtained from varying orders from the discrete 
orthogonal polynomials.  
For comparing two sample images S and T, we need to calculate the distance the visual 
representation Sab and the visual representation Tab (a, b ∈ {R, G, B}). The distance between 
the N2 pairs of coefficients would have to be calculated.  The distance( Sab, Tab)  is defined as 
the Euclidean distance in the N2 dimension between coefficients of Sab and Tab. Once the six 
distances for each of the six multispectral representations have been obtained, the final 
difference score, diff(S, T) is then obtained from the Euclidean distance (in the 6th 
dimension) of these six values. Hence, the smaller diff(S, T), the more similar S and T are 
,diff(S, T) is 0 iff S=T; and diff(S, T) is symmetrical.  
The k-nearest neighbor classifier is used to evaluate our findings, where k = 3. In order to 
estimate the moment order to use, we tested it from order 5 to 20. The percentage of correct 
classifications for the DCT and Tchebichef methods applied to our two data sets, versus the 
number of moment orders used in the process, is given in Figure 2 below. The best success 
rate was found using the Tchebichef orthogonal polynomial, with 10 as the best order of 
moments used. Some of these results have appeared in Cheong & Loke (2008a, 2008b). 
Overall the results using Vistex is better than using the Batik image database. 
The Tchebichef orthogonal polynomial the reconstructed multispectral matrices strike a 
balance between preserving the shape of the matrices’ visual representation and a good 
degree of variance when matching with other samples. DCT also creates a good 
approximation of the matrix pattern, however its reconstructions create a more rigid pattern 
while discarding certain outlying values visible in the matrix; this rigidity allows little room 
for error and will sometimes reject similar patterns. An order of 10 seems to allow for 
adequate intra-class variance. Lesser orders fail to capture the matrix shape well; greater 
orders result in a detailed reconstruction lacking in variance, causing certain samples to be 
rejected as false negatives. 

 

 
Fig. 2. Graph of average classification rate vs. number of moment orders used, for all sample 
data with both DCT and Tchebichef methods. 
 
The best results we obtained (Figure 2) was using the 3kNN at 99.5% for VisTex textures and 
95.28% for the Batik/Songket motifs. 
Using Weka (Witten et al., 2005), we tested with various other classification methods to see 
if further improvements can be obtained using the best Tchebichef polynomial 
decomposition moment order set of 10. We also increased the number of samples to 180 
encompassing 30 classes. 
We used two unsupervised clustering algorithms and two supervised classifiers to classify 
our sets of generated moment coefficients. 
The unsupervised clusterers are IBk (k-means with the k value set to the number of expected 
classes, i.e. 30), FarthestFirst (an optimized implementation of the k-means method); while 
the two supervised classifiers are BayesNet and kNN (k-nearest neighbour, with the k value 
set to 5). All of them use default parameters as defined in Weka. For the supervised 
classifier, we use 10-fold cross-validation to automatically partition the test and training 
data: the collection of sample data is partitioned into 10 mutually-exclusive partitions (called 
folds) (Kohavi, R., 1995).  
The k-means algorithm by McQueen (1967) works to partition our sample data 
(unsupervised) into k distinct clusters. The naïve K-means algorithm does so by minimizing 
total intra-cluster variance; in the context of our methods, it tries to identify the samples 
which minimize the variance within a particular texture class, thereby properly grouping 
these samples by texture class. FarthestFirst (Hochbaum et al., 1985) is an implementation of 
an algorithm by Hochbaum and Shmoys, cited in Dasgupta and Long (2005). It works “as a 
fast simple approximate clusterer” modeled after the naïve k-means algorithm. kNN (the k-
nearest neighbour) classifier works by assigning a texture (whose class is yet unknown) to 
the class in which the majority of its k neighbours belong to. In this case, we compare the 
linear distance between a texture sample and each of its k (we fix the value of k=5) 
neighbors, finally assigning it a class based on the majority of its 5 neighbours. The 
BayesNet Bayesian network learning algorithm in Weka uses the K2 hill-climbing strategy 
to construct a Bayesian network from the given coefficient data; by constructing a model to 
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determine Bayesian probability of a single sample image as belonging to a class (Korb et al. 
2004). The results have improved from earlier results, increasing the classification rate from 
95.28% to 99.44% using the BayesNet and to 97.78% using the 5kNN classifier. Even the 
FarthestFirst returned better results compared to earlier classification runs. 
 
The results are presented below. 

Method Samples Correct  Incorrect  Percentage  

Supervised: BayesNet 180 179 1 99.44% 

Supervised: 5NN (kNN) 180 176 4 97.78% 
Unsupervised: FarthestFirst 180 173 7 96.11% 
Unsupervised: k-means (IBk) 180 167 13 92.78% 

Table 1. Experimental results as determined in Weka for each of the four methods. 

 
Fig. 3. Graph comparing the correct classification percentage for each of the four methods 
used  

 
5. Dimension Reduction 
 

The number of attributes generated, in order of 700, prompted us to study if the 
dimensionality can be reduced. As previously mentioned, using the Tchebichef orthogonal 
polynomial decomposition (with 10 moment orders) on 6 co-occurrence matrices yields a 
total of 726 attributes. The high number of attributes increases the complexity in storing the 
pattern descriptors. Another issue is the extended runtimes, deteriorating performance of 
the classification algorithms, and inefficiency of the knowledge discovery process due to 
irrelevant or redundant attributes, which could be compounded by the existence of a large 
number of samples in the knowledge base. Occam’s Razor - in our case, the principle of 
using only the features that are necessary for textile classification - is the basis for our 
motivation to counter the 'curse of dimensionality’. Therefore, it is necessary to examine the 
effects of the reduced number of attributes on the accuracy of the classification. 
If N is the number of moment orders used for the decomposition process then the total 
number of coefficients resulting from the decomposition process for each matrix is N2. For 
the 6 matrices involved, the total number of coefficients per sample image is therefore 6N2. 
The Tchebichef orthogonal polynomial used in the decomposition of the 6 generated 

 

multispectral matrices resulted in the many attributes in the order of 700. This resulted in 
6(10+1)2 = 726 moment coefficients because 10th order moments were used. 
We first generate the 726 moment coefficients on our set of 180 texture samples (each being 
16.7 million colours, of size 100-by-100 pixels). The total number of classes is 30 with 6 
samples in each class. The coefficient data obtained is fed into Weka (Witten et al., 2005) for 
classification (see 4.1). Five-fold cross validation was used for testing. The co-occurrence 
matrix coefficients are generated from the database of 180 sample images of 30 classes of 
‘Batik’ and ‘Songket’ textures. The coefficients are then stored in CSV format and imported 
into Weka for further analysis. 
InfoGain (Dumais et al., 1998), one of the simplest attribute ranking methods, work by 
determining the Shannon information After testing using the entire raw coefficients, we 
further tested with dimension reduction on the coefficients. Different attribute-selection 
filters are applied on the data to reduce the dimensions of the coefficient. For each filter, 
‘maximum attribute’ parameter is set to values ranging from 2 to 16, i.e. reducing to 
dimension to 2 to 16.  Experiments were performed using 5-fold cross-validation to classify 
the data.  
The Weka FilteredClassifier and AttributeSelectionFilter options are used for this purposes 
to ensure that the same attribute selections are applied for training set and test set. The 
attribute-selection filters used are independent of the classification algorithms used. The list 
of filters selected were the ones used in Hall et al (2003) and (Deegalla et al. 2007). They are 
the Information Gain Attribute Ranking method (InfoGain), the RELIEF method, and finally 
Principal Components Analysis (PCA).  
InfoGain (Dumais et al., 1998), one of the simplest attribute ranking methods, work by 
determining the Shannon information gain between an attribute and its class; the higher the 
information gain, the more relevant the attribute is. RELIEF (Kira et. al 1992; Konoeneko, 
1994) randomly samples an instance from the data, locates its nearest neighbours and uses 
their attribute values in turn to update relevance scores for each attribute. The underlying 
principle behind RELIEF is that useful attributes are similar for instances of the same class, 
and vice versa.  
Random projection (RP) (Bingham et al., 2001) uses a random matrix to project the original 
data set into a lower dimensional subspace. RP depends on the Johnson and Lindenstrauss 
theorem (Dasgupta et al., 2003) which states that any points in a d-dimensional Euclidean 
space can be mapped to a smaller k-dimensional Euclidean space while maintaining all pair-
wise distance within an arbitrarily small factor.  
PCA uses a linear transform to project the original attribute space to a lower dimensional 
subspace. Both PCA and RP are unsupervised in that class information is not required, 
whereas InfoGain and RELIEF are supervised, i.e. it uses class information for attribute 
selection. 
For classification testing, we used the k-nearest neighbor lazy classifier (Aha et al., 1991), 
with k=1 (IB1) and k=3 (IB3), and the Bayesian Network (BayesNet) classifier. The k-nearest 
neighbor classifier works by assigning a sample to the class in which the majority of its k 
neighbors belong to. BayesNet in Weka constructs a Bayesian network from the data; by 
constructing a model to determine Bayesian probability of a single sample as belonging to a 
class. The advantage of BayesNet is that it can take into consideration the conditional 
dependency of attributes.  
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information gain, the more relevant the attribute is. RELIEF (Kira et. al 1992; Konoeneko, 
1994) randomly samples an instance from the data, locates its nearest neighbours and uses 
their attribute values in turn to update relevance scores for each attribute. The underlying 
principle behind RELIEF is that useful attributes are similar for instances of the same class, 
and vice versa.  
Random projection (RP) (Bingham et al., 2001) uses a random matrix to project the original 
data set into a lower dimensional subspace. RP depends on the Johnson and Lindenstrauss 
theorem (Dasgupta et al., 2003) which states that any points in a d-dimensional Euclidean 
space can be mapped to a smaller k-dimensional Euclidean space while maintaining all pair-
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whereas InfoGain and RELIEF are supervised, i.e. it uses class information for attribute 
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For classification testing, we used the k-nearest neighbor lazy classifier (Aha et al., 1991), 
with k=1 (IB1) and k=3 (IB3), and the Bayesian Network (BayesNet) classifier. The k-nearest 
neighbor classifier works by assigning a sample to the class in which the majority of its k 
neighbors belong to. BayesNet in Weka constructs a Bayesian network from the data; by 
constructing a model to determine Bayesian probability of a single sample as belonging to a 
class. The advantage of BayesNet is that it can take into consideration the conditional 
dependency of attributes.  
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5.1 Dimension Reduction Results 
The experimental results obtained via Weka  are presented in the following figures 4-7.   
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Fig. 4. Plot of classification rate versus number of attributes using Principal Components 
Analysis with 5-fold cross-validation. 
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Fig. 5. Plot of classification rate versus number of attributes using Random Projection with 
5-fold cross-validation. 
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Fig. 6. Plot of classification rate versus number of attributes using RELIEF Attribute 
Evaluation with 5-fold cross-validation. 
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Fig. 7. Plot of classification rate versus number of attributes using Info Gain Attribute 
Evaluation with 5-fold cross-validation. 
 
Results in figures 4-7 were obtained on the same data set using 5-fold cross validation. 
Results in figure 8 were obtained using a new test set of 60 samples, each class represented 
by 2 samples, and trained entirely on the data set used in the 5-fold cross validation test.  
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Fig. 7. Plot of classification rate versus number of attributes using Info Gain Attribute 
Evaluation with 5-fold cross-validation. 
 
Results in figures 4-7 were obtained on the same data set using 5-fold cross validation. 
Results in figure 8 were obtained using a new test set of 60 samples, each class represented 
by 2 samples, and trained entirely on the data set used in the 5-fold cross validation test.  
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Fig. 8. Plot of classification rate versus number of attributes using Principal Components 
Analysis with new test data set. 
 
The computation of the model using RP took the least time, ranging from 0.02-0.08 seconds. 
This was followed by Info Gain which took around 0.6s, RELIEF about 4s, and finally PCA 
which ranges around 8s.  
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Fig. 9. Comparison of attribute selection of InfoGain and RELIEF 

 
The results from dimension reduction are rather mixed. The supervised method of attribute 
reduction InfoGain and RELIEF returned the worse results. BayesNet did not particular 
work well on RELIEF. However the 1-NN returned respectable results using InfoGain 
attributes. Analyzing the attribute top 40 rankings from RELIEF indicate that it preferred 
attributes selected from the RR, BB and GG  co-occurrence matrix whereas InfoGain 
preferred BB and BR attributes higher (see figure 9). There was considerable overlap in the 
BB, RG and CB. 
The best results are obtained on unsupervised methods using subspace projection namely 
PCA and RP method. PCA returned the best results peaking at 8 attributes for 1-NN, 10 
attributes for 3-NN, and 20 attributes for BayesNet, the results returned respectively are 

 

98.9%, 98.9% and 98.3% correct classification rates. Random projection required twice the 
amount of attributes to reach their best values, for 1-NN and 3-NN at 16 attributes, and 20 
attributes for BayesNet. The returned results are 98.3%, 97.8% and 95.6% correct 
classification rates respectively. The results on PCA reduction using 20 attributes only 
differs by only 1% using the full attribute set. The results using nearest neighbour 
classification in fact is better than obtained using the full attribute set.  
The results obtained for PCA and RP are in agreement with the results obtained in (Deegalla 
et al., 2007), that is random projection requires a larger number of dimensions compared to 
PCA to achieve comparable results. In this case 1-NN and 3-NN classification peaked at 
around 8 attributes for PCA compared to 16 for RP. This is a significant reduction from 726 
attributes needed in the original method. Even though nearest neighbour classification is not 
efficient for large datasets, this reduction in the number of attributes will increase the 
computational efficiency.  
To confirm the results, we did additional testing on a new set of test data not included 
earlier. The data set consists of 30 classes with 2 samples in each class. This will also allow 
us to test if using a larger training set will increase the accuracy of the model. The results are 
in figure 8. The results showed that the results have improved when trained on a larger 
training set. 100% correct classification was achieved using 8 PCA attributes for 1-NN and 3-
NN, while BayesNet reached 100% classification using 10 PCA attributes.  

 
6. Discussion and Analysis 
 

Prior research on the GLCM has focused predominantly on textures. Arvis et al. (2004) with 
their multispectral co-occurrence matrix method, with a 5-Nearest Neighbours classifier 
yielding a 97.9% percentage of good classification for VisTex textures. Previous research 
work involving color texture analysis using a combination of Gabor filtering and the 
multispectral method on the Outex (Ojala et al., 2002) database has yielded a rate of success 
of 94.7%. Allam’s (1997) result of a 2% error rate differs in the fact it is only applied to a 2-
class problem, restricted to grayscale texture. This differs in our motivation of using the 
“shape” of the co-occurrence pattern, and we achieved between 98%-100% classification on 
Batik/Songket.  
The results for ‘Batik’ and ‘Songket’ achieved here are among the best for such kinds of 
irregular textile patterns based on the limited prior research found. Our experimental tests 
on co-occurrence matrices using summary statistics suggest that summary statistics may not 
always capture the full representation of the co-occurrence matrix.  The rationale being that 
it is possible for many similar distributions to have the possibility of producing a similar 
value (Walker et al., 1995). An illustration of such a case is as follows, whereby the 5 
common Haralick features combined with the 6 multispectral matrices yield a very low 
Euclidean difference even though the two samples (below, figure 10) are of visually 
different texture, highlighting the inadequacy of the statistical measure especially in non-
uniform and colored texture images. 
However, for development of a successful end-user application, some issues still need to be 
addressed, namely lighting variation and scale.  
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Analysis with new test data set. 
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Fig. 10. Sample of two images with similar Euclidean distance using Haralick features. 
 
Textile design motifs such as those found in these textiles tend to have a more non-uniform 
distribution in the GLCM as opposed to textures. This also makes it difficult to be captured 
by Haralick’s summary statistics as the “shape” information is not adequately represented. 
Our method has the best success rate using the Tchebichef orthogonal polynomial, with 10 
order of moments used (Cheong et al., 2008). This is due to the fact that with Tchebichef, the 
reconstructed matrices strike a balance between preserving the shape of the matrices’ visual 
representation and a good degree of variance when matching with other samples. 
 

 
Fig. 11. (Top) The full Batik cloth. (Bottom) Sampled regions used for training are not 
identical but bear “family resemblance”. 
 
The results indicate that nearest neighbour classification perform slightly better than 
BayesNet. This is probably because the textile patterns that we used are not identical, nor 
are they, considered on the whole, statistically uniform. They are more akin in a “family 
resemblance” manner (Wittgenstein, 1953). This can be explained by that no sample within 
the same class shares all the features, but each sample in the class shares overlapping 
features with each neighbours (see figure 11). Or as Wittgenstein puts it: “Something runs 
through the whole thread - namely the continuous overlapping of those fibres". 
Reduction from 726 to 8 attributes means that only 1.1% of the original information is 
significant for classification. Arvis (2004), which achieved 97.9% on VisTex textures, still 
required 30 attributes based on 5 measures specified on each colour pair co-occurrence 
matrix.  Based on the results presented here a reduction of down to 2% from the original 
attributes is adequate for classification.  

 
 

 

7. Potential Applications 
 

A simple non-textual access to textile patterns is capable of opening up a wealth of 
applications. For designers it could unlock their creative potential, by using access to textile 
pattern collection for inspiration or to stimulate innovation. One such project is Fashion and 
Apparel Browsing for Inspirational Content (FABRIC) (Ward et al., 2008). They could use it 
compare the designs, or to study them by browsing, or to survey the trend. It could also be 
used to avoid copyright issues, and to distinguish one’s work by stamping their uniqueness 
on it.  
There are also cultural aspects to it, because an accessible collection of patterns could be 
used for archival purposes, storing the narrative, the times and trends of particular groups 
of people through history, as well as charting the changes. It would be useful for 
understanding historical trends, as many of the patterns may shed different narratives 
throughout their history. In the Malay Archipelago, textiles, apart from artistic expression 
are also linked to religious and cultural beliefs. The patterns in the textile are a means of 
communication between the human and spirit world, and play a significant role in birth and 
death rites, whereby it is thought that the more powerful patterns, the more potent 
protection they offer (Hout, 1999). 
Commercially an efficient method of comparing and recognizing textile patterns could spur 
the application of visual comparison shopping for fashion and clothing. A visual-based 
search engine could let shoppers select similar items based on colour, shape and pattern, in 
addition to price.  Useful categories for such comparison shopping include shoes, handbags, 
and clothing. A usage scenario would that a shopper has some clothes of a particular 
pattern, but would like a matching pattern for the shoes, or sees a pattern that he or she 
likes, and wants possibly a matching pattern for shoes or clothing. This could be extended to 
mobile-based comparison shopping. In this scenario, the mobile phone camera snaps an 
image of the pattern, and the online store searches for similar items available.  

 
8. Conclusion 
 

We have successfully demonstrated the multispectral co-occurrence matrices method for use 
in the recognition of Batik and Songket design motifs and introduced the use of the 
Tchebichef orthogonal polynomial to decompose each of these matrices into a series of 
moments as a means to capture more complete second-order pixel statistics information.  
The advantage to this method is having a good degree of accuracy as compared to the use of 
summary statistics which is commonly used in GLCM research. We have also shown that 
this method is viable in matching non-uniform design motifs as opposed to only textures. 
This makes our approach suitable to be used in image retrieval applications for not only 
traditional Batik and Songket textile motifs but other design motifs. While Haralick’s 
measures (1973) have been successfully applied to texture recognition, it is not so good for 
non-uniform patterns like textile motifs. 
We have shown that a significant reduction in attributes down to about 2% of the original 
attributes contributed only slight deterioration of classification rate.  
This makes this approach, combined with an appropriate attribute selection scheme, 
suitable for fast content-based retrieval applications, not only for traditional Batik and 
Songket textile motifs, but other design motifs where the patterns are overlapping in 
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similarity. In particular, the application of principal components attribute reduction 
provided the highest accuracy at a higher computational cost. If computational cost is an 
issue, then the random projection method returned respectable results, the next best 
compared to other methods tested.  
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1. Introduction 

The latest advances in sonar technology permit to observe the underwater environment 
with improved resolution and coverage, with the latest side-scan and synthetic aperture 
sonar (SAS) systems able to produce images with a resolution of a few centimetres. This 
capability enables the seabed configuration to be determined relatively easily by visual 
inspection of the sonar images —rocks, sand ripples and underwater plants can be clearly 
identified visually, for instance. This process of seafloor characterization can be automated 
by analyzing the characteristics of the image texture at any given point. The resulting 
classification is useful for diverse applications, including environmental monitoring, 
security, and defence. 
Seabed classification is the process by which one divides (or segments) an image of a 
typically large area of seabed into different regions based on their local characteristics. The 
characteristics (or features) used for classification and the specific classes chosen will depend 
on the application. 
For mine countermeasures (MCM), for instance, an area may be segmented into flat, rippled 
and complex regions, which roughly divide the surveyed area into sub-regions of increasing 
mine-hunting difficulty. Another example could be the estimation of fishing density in an 
area over time, which can be determined by examining the number of trawl marks on the 
seabed. 
Regardless of the particular application, the basic desired output of a seabed classification 
algorithm is a ‘map’ of the seabed indicating where each seabed type is present. 
Furthermore, as with more traditional remote sensing modalities, analyzing collected data 
in an automated manner is vital when dealing with vast quantities of data. 
In this chapter, approaches to automatic classification of seabed into different types or 
classes are discussed. The chapter is organized as follows. Section 2 gives an overview of the 
different general approaches for seabed classification. Section 3 discusses more detailed 
aspects of these general approaches, such as feature extraction, classifiers, and fusion of 
multiple views. In Section 4, a few specific classification approaches, which span the variety 
of possible methods, are described. Example results on real sonar imagery are also shown 
for these particular approaches. Finally, conclusions are summarized in Section 5. 
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2. Overview 

Many different approaches for addressing the task of automatic seabed classification exist. 
One useful categorization of these approaches is based on the knowledge that is possessed 
about the problem. From this point of view, all seabed classification approaches can be 
divided into three broad categories. 
In the most ideal case, a priori knowledge about specific seabed types that one will encounter 
is available. This information in turn permits a model-based approach, in which a 
mathematical model that characterizes certain specific seabed types can be constructed. One 
can then use the degree to which a portion of seabed matches the defined model as a metric 
for performing classification. The main advantage of a model-based approach is that the 
algorithm can be tailored specially for a seabed type of particular interest. 
Unfortunately, it is usually difficult or impossible to accurately model most types of seabed. 
Because of the characteristic complexity or natural variations within a given type of seabed, 
one must therefore typically employ an alternative seabed classification approach that 
assumes less specific knowledge of the problem. Another disadvantage of model-based 
approaches is their poor flexibility, being very specific and requiring new models for any 
new classes that may have to be added to the system. 
Rather than knowing detailed information about certain seabed types to be encountered, 
one may instead know only about general classes of seabed types. Often, this general 
knowledge is provided in the form of labelled training data. That is, data for which the true 
identity of different seabed types from some location is possessed. When such information is 
available and is exploited, the resulting approach is referred to as supervised. 
The advantage of employing a supervised approach is that the resulting classification of the 
seabed will be in terms of types or classes known a priori. Thus, the resulting segmentation 
of the seabed will be in terms of specific seabed types that are important for the application 
at hand. As briefly mentioned in the introduction, MCM operations typically seek to 
segment an area of seabed into one of three basic types -- flat, benign seabed; seabed 
characterized by sand ripples; and complex seabed that contains rocks or other clutter 
objects. By possessing labelled training data (or ground-truth) of these three classes, an 
algorithm that seeks to discriminate among these seabed types can be developed. 
One drawback to the use of supervised approaches for seabed classification is that the 
process of acquiring labelled seabed data is expensive and time-consuming. In addition to 
acquiring the data at sea, a human would be required to tediously hand-label the data as 
specific seabed types. Moreover, this ground-truthing process is inherently subjective and 
could vary from one human operator to another. 
Another potential source of concern regarding supervised methods is the implicit 
assumption that the underlying statistics that generated the training and test data are the 
same. In real applications, this assumption is often violated, leading to what is known as 
covariate shift (Sugiyama et al., 2007), sample selection bias (Zadrozny, 2004), or concept 
drift (Widmer & Kubat, 1996; Liao et al., 2005). For example, if one collects training data and 
learns a classifier from one site, but then attempts to classify test data collected at a different 
location, a fundamental mismatch in class statistics can lead to poor classification 
performance.  
This scenario motivates the use of the third general approach to seabed classification, in 
which no labelled training data is required. This unsupervised approach is appropriate 

 

when no labelled training data exists or when little a priori information about the seabed 
types to be encountered is available. 
Since in principle any information known in advance about the seabed classification task at 
hand should be exploited, the relevance of unsupervised classification algorithms arises 
when no such knowledge is possessed. This lack of knowledge about the problem is 
reflected by the numerous drawbacks that plague unsupervised approaches. For one, the 
resulting groups into which the seabed is segmented may not be valuable divisions for the 
application. Moreover, the number of seabed types must often be specified, though it is not 
always known a priori. Lastly, with an unsupervised approach, human intervention is 
required to associate the groups into which the data is segmented with distinct seabed 
types. Despite these drawbacks, when no information or training data is available, there is 
little alternative to unsupervised methods. 
 
3. Features, Classifiers, Outputs, and Fusion 

Model-based seabed classification approaches are specially tailored for specific seabed types 
and certain scenarios. More commonly, seabed classification approaches fall under the 
purview of supervised or unsupervised methods. In both supervised and unsupervised 
approaches, features must be extracted from the seabed and a subsequent classifier must be 
built. The number of possible combinations of choices for these two requirements is endless. 
Thus, rather than attempting to provide an exhaustive list of such approaches, a 
representative sample of commonly used techniques will be presented in this chapter.  
The purpose of the feature extraction stage is to represent an image of a given area of seabed 
in a succinct manner. The features that are extracted should be such that they are capable of 
discriminating among the different seabed types of interest. That is, the feature values of one 
particular seabed type should be differentiable from those of other seabed types.  
A few examples of types of features useful for seabed classification include moment-based 
features, wavelet-based features, and features derived from eigendecompositions. Moment-
based features calculate certain properties of the distributions of the gray-level pixel 
intensities for a given area of seabed. These features are motivated by the fundamental sonar 
scattering physics of the seabed. For example, the amount of acoustic energy scattered back 
to the sonar receiver from areas of seabed characterized by sand ripples or rocks is larger 
than the amount scattered from flat, benign seabed.  
Features based on wavelet decomposition are popular because they can be used to 
characterize textural properties of seabed images. Namely, the wavelet coefficient energy 
will be large when the orientation and scale match the orientation and scale of high-energy 
texture components in an image (Mallat, 1999).  
Feature sets based on spectral clustering (Meila & Shi, 2000; Ng et al., 2001), which exploits 
the eigenvectors of a matrix composed of distances between data points, have also been 
used with success. Spectral clustering will effectively transform a feature vector into a new 
feature vector in a lower dimensional space by retaining only the eigenvectors 
corresponding to the largest eigenvalues.  
After feature extraction, classification must be performed on the resulting set of feature 
vectors. The objective of the classification stage is to develop a rule that will successfully 
discriminate among the various seabed types by discriminating their corresponding feature 
vectors in feature space. When an unsupervised approach is employed, no training data is 
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2. Overview 

Many different approaches for addressing the task of automatic seabed classification exist. 
One useful categorization of these approaches is based on the knowledge that is possessed 
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mathematical model that characterizes certain specific seabed types can be constructed. One 
can then use the degree to which a portion of seabed matches the defined model as a metric 
for performing classification. The main advantage of a model-based approach is that the 
algorithm can be tailored specially for a seabed type of particular interest. 
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Because of the characteristic complexity or natural variations within a given type of seabed, 
one must therefore typically employ an alternative seabed classification approach that 
assumes less specific knowledge of the problem. Another disadvantage of model-based 
approaches is their poor flexibility, being very specific and requiring new models for any 
new classes that may have to be added to the system. 
Rather than knowing detailed information about certain seabed types to be encountered, 
one may instead know only about general classes of seabed types. Often, this general 
knowledge is provided in the form of labelled training data. That is, data for which the true 
identity of different seabed types from some location is possessed. When such information is 
available and is exploited, the resulting approach is referred to as supervised. 
The advantage of employing a supervised approach is that the resulting classification of the 
seabed will be in terms of types or classes known a priori. Thus, the resulting segmentation 
of the seabed will be in terms of specific seabed types that are important for the application 
at hand. As briefly mentioned in the introduction, MCM operations typically seek to 
segment an area of seabed into one of three basic types -- flat, benign seabed; seabed 
characterized by sand ripples; and complex seabed that contains rocks or other clutter 
objects. By possessing labelled training data (or ground-truth) of these three classes, an 
algorithm that seeks to discriminate among these seabed types can be developed. 
One drawback to the use of supervised approaches for seabed classification is that the 
process of acquiring labelled seabed data is expensive and time-consuming. In addition to 
acquiring the data at sea, a human would be required to tediously hand-label the data as 
specific seabed types. Moreover, this ground-truthing process is inherently subjective and 
could vary from one human operator to another. 
Another potential source of concern regarding supervised methods is the implicit 
assumption that the underlying statistics that generated the training and test data are the 
same. In real applications, this assumption is often violated, leading to what is known as 
covariate shift (Sugiyama et al., 2007), sample selection bias (Zadrozny, 2004), or concept 
drift (Widmer & Kubat, 1996; Liao et al., 2005). For example, if one collects training data and 
learns a classifier from one site, but then attempts to classify test data collected at a different 
location, a fundamental mismatch in class statistics can lead to poor classification 
performance.  
This scenario motivates the use of the third general approach to seabed classification, in 
which no labelled training data is required. This unsupervised approach is appropriate 

 

when no labelled training data exists or when little a priori information about the seabed 
types to be encountered is available. 
Since in principle any information known in advance about the seabed classification task at 
hand should be exploited, the relevance of unsupervised classification algorithms arises 
when no such knowledge is possessed. This lack of knowledge about the problem is 
reflected by the numerous drawbacks that plague unsupervised approaches. For one, the 
resulting groups into which the seabed is segmented may not be valuable divisions for the 
application. Moreover, the number of seabed types must often be specified, though it is not 
always known a priori. Lastly, with an unsupervised approach, human intervention is 
required to associate the groups into which the data is segmented with distinct seabed 
types. Despite these drawbacks, when no information or training data is available, there is 
little alternative to unsupervised methods. 
 
3. Features, Classifiers, Outputs, and Fusion 

Model-based seabed classification approaches are specially tailored for specific seabed types 
and certain scenarios. More commonly, seabed classification approaches fall under the 
purview of supervised or unsupervised methods. In both supervised and unsupervised 
approaches, features must be extracted from the seabed and a subsequent classifier must be 
built. The number of possible combinations of choices for these two requirements is endless. 
Thus, rather than attempting to provide an exhaustive list of such approaches, a 
representative sample of commonly used techniques will be presented in this chapter.  
The purpose of the feature extraction stage is to represent an image of a given area of seabed 
in a succinct manner. The features that are extracted should be such that they are capable of 
discriminating among the different seabed types of interest. That is, the feature values of one 
particular seabed type should be differentiable from those of other seabed types.  
A few examples of types of features useful for seabed classification include moment-based 
features, wavelet-based features, and features derived from eigendecompositions. Moment-
based features calculate certain properties of the distributions of the gray-level pixel 
intensities for a given area of seabed. These features are motivated by the fundamental sonar 
scattering physics of the seabed. For example, the amount of acoustic energy scattered back 
to the sonar receiver from areas of seabed characterized by sand ripples or rocks is larger 
than the amount scattered from flat, benign seabed.  
Features based on wavelet decomposition are popular because they can be used to 
characterize textural properties of seabed images. Namely, the wavelet coefficient energy 
will be large when the orientation and scale match the orientation and scale of high-energy 
texture components in an image (Mallat, 1999).  
Feature sets based on spectral clustering (Meila & Shi, 2000; Ng et al., 2001), which exploits 
the eigenvectors of a matrix composed of distances between data points, have also been 
used with success. Spectral clustering will effectively transform a feature vector into a new 
feature vector in a lower dimensional space by retaining only the eigenvectors 
corresponding to the largest eigenvalues.  
After feature extraction, classification must be performed on the resulting set of feature 
vectors. The objective of the classification stage is to develop a rule that will successfully 
discriminate among the various seabed types by discriminating their corresponding feature 
vectors in feature space. When an unsupervised approach is employed, no training data is 
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available to perform the classification and the classification stage typically only clusters the 
data. Common unsupervised approaches include k-means clustering and methods based on 
modelling the data as mixtures of Gaussians. 
When a supervised approach is employed, labelled training data is used to build a classifier 
to which unlabeled test data is subsequently submitted. Many different discriminative 
classification approaches exist, such as decision trees (Breiman, 1993), support vector 
machines (Shawe-Taylor & Cristianini, 2000), relevance vector machines (Tipping, 2001), 
and Gaussian processes (Rasmussen & Williams, 2006).    
Depending on the classification approach employed, the result of the algorithm can be in 
different forms. For example, each area of seabed may be assigned a probability or score of 
belonging to each seabed type. Alternatively, each area of seabed may be classified as a 
certain seabed type directly via a hard decision. 
When multiple views of an area of seabed are available, different data fusion approaches 
can be used to combine them. There exist two general approaches to perform such fusion. In 
one approach, each view of the seabed is considered independently and then the multiple 
decisions or seabed type scores are combined in some particular manner. In the second 
approach, all views of the seabed are considered jointly so that a single decision regarding 
seabed type is produced. An example of the former fusion approach is Dempster-Shafer 
theory (Shafer, 1976), while an example of the latter fusion approach would be the result of a 
fully Bayesian framework (Berger, 1993). 

 
4. Example Classification Approaches and Results 

To provide more specific examples of seabed classification methods, three particular 
algorithms are described in greater detail in this section. Two of them (model-based and 
unsupervised) have been applied to SAS images acquired by the MUSCLE autonomous 
underwater vehicle (AUV), while the other method (supervised) is demonstrated on side-
scan data collected by a Remus AUV. 
MUSCLE images were obtained by the NATO Undersea Research Centre (NURC) during 
the Colossus II sea trial in the Baltic Sea off the coast of Latvia. In that trial, high-resolution 
sonar data was collected by the MUSCLE AUV, which is equipped with a 300 kHz sonar 
capable of constant image resolution of approximately 3 cm x 3 cm at ranges up to 200 m. 
The Remus images were collected during a NURC exercise in Capo Teulada, Sardinia, 
where an area of five square kilometres was observed by multiple sensors. The Remus 
vehicle is equipped with a 900 kHz Marine Sonic sonar capable of forming images of about 
8.6 cm x 12 cm in resolution at ranges up to 30 m. 

 
4.1 Model-based Classification Example 
Model-based classification algorithms are useful when the classification target can be 
described mathematically. The case of sand ripples exemplifies this situation, given the 
similarity between sand ripples and a striped pattern or sinusoidal function. By applying 
image correlation (Lewis, 1995) the response of the image to a bank of predefined filters 
based on those patterns can be used to quantify the “ripplicity” of every image pixel. 
Since a single sinusoidal crest will correlate also with lines or any proud object on the 
seafloor (showing a highlight followed by a shadow, just like the ripples), the filters are 
designed to contain three sinusoidal periods—the idea being that only rippled areas will 

 

respond to them fully. The filters cover a range of orientations and scales so that rippled 
areas of various sizes and directions can be detected. Figure 1 shows the configuration of the 
filter bank using six orientations. The angle and size of the individual filter that produces 
the highest response will give the approximate orientation and size of the ripples in that 
area. The estimated angles and sizes, however, will only be meaningful when ripples are 
actually present in the region. 

 
Fig. 1. Filter bank containing six orientations that is used by the model-based ripple 
classification algorithm. 
 
In order to determine whether a given response value is to be considered high enough to 
indicate the presence of ripples, a calibration step is used to derive lower and upper 
thresholds for the responses to the filter bank. In this way the values returned when 
convolving with the filters can be scaled from 0 to 1, providing a continuous measure that 
ranges from “no ripple” to “perfect ripple”. The thresholds are obtained by filtering two 
predetermined images: one containing a synthetic image of alternate black and white bands 
(which will determine the high threshold for the filters) and an image containing random 
pixels (which will determine the lower threshold). Both images are tuned to the scale of the 
filters—the bands being exactly half a period of the sinusoidal component, and the random 
image being median-filtered to produce blobs of the relevant scale. To ensure the lower 
threshold is safely set, it is actually obtained as the median response from twenty of those 
random images. 
The specificity of this filter-based method can be further increased by targeting the 
differences in response to orthogonal directions. The underlying idea being that a rippled 
area will produce a high response to a ripple filter of the adequate orientation and a low 
response to the filter tuned to the orthogonal direction, whereas an area showing no ripples 
will produce responses of similar strength to any filter orientation. This is the approach used 
to produce the results shown in Figure 2, where ripples have been detected in a MUSCLE 
SAS image using six orientations and three filter sizes of 0.5, 0.6 and 0.7 meters. 
 

 



Approaches to Automatic Seabed Classification 465

 

available to perform the classification and the classification stage typically only clusters the 
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4. Example Classification Approaches and Results 
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algorithms are described in greater detail in this section. Two of them (model-based and 
unsupervised) have been applied to SAS images acquired by the MUSCLE autonomous 
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scan data collected by a Remus AUV. 
MUSCLE images were obtained by the NATO Undersea Research Centre (NURC) during 
the Colossus II sea trial in the Baltic Sea off the coast of Latvia. In that trial, high-resolution 
sonar data was collected by the MUSCLE AUV, which is equipped with a 300 kHz sonar 
capable of constant image resolution of approximately 3 cm x 3 cm at ranges up to 200 m. 
The Remus images were collected during a NURC exercise in Capo Teulada, Sardinia, 
where an area of five square kilometres was observed by multiple sensors. The Remus 
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4.1 Model-based Classification Example 
Model-based classification algorithms are useful when the classification target can be 
described mathematically. The case of sand ripples exemplifies this situation, given the 
similarity between sand ripples and a striped pattern or sinusoidal function. By applying 
image correlation (Lewis, 1995) the response of the image to a bank of predefined filters 
based on those patterns can be used to quantify the “ripplicity” of every image pixel. 
Since a single sinusoidal crest will correlate also with lines or any proud object on the 
seafloor (showing a highlight followed by a shadow, just like the ripples), the filters are 
designed to contain three sinusoidal periods—the idea being that only rippled areas will 

 

respond to them fully. The filters cover a range of orientations and scales so that rippled 
areas of various sizes and directions can be detected. Figure 1 shows the configuration of the 
filter bank using six orientations. The angle and size of the individual filter that produces 
the highest response will give the approximate orientation and size of the ripples in that 
area. The estimated angles and sizes, however, will only be meaningful when ripples are 
actually present in the region. 

 
Fig. 1. Filter bank containing six orientations that is used by the model-based ripple 
classification algorithm. 
 
In order to determine whether a given response value is to be considered high enough to 
indicate the presence of ripples, a calibration step is used to derive lower and upper 
thresholds for the responses to the filter bank. In this way the values returned when 
convolving with the filters can be scaled from 0 to 1, providing a continuous measure that 
ranges from “no ripple” to “perfect ripple”. The thresholds are obtained by filtering two 
predetermined images: one containing a synthetic image of alternate black and white bands 
(which will determine the high threshold for the filters) and an image containing random 
pixels (which will determine the lower threshold). Both images are tuned to the scale of the 
filters—the bands being exactly half a period of the sinusoidal component, and the random 
image being median-filtered to produce blobs of the relevant scale. To ensure the lower 
threshold is safely set, it is actually obtained as the median response from twenty of those 
random images. 
The specificity of this filter-based method can be further increased by targeting the 
differences in response to orthogonal directions. The underlying idea being that a rippled 
area will produce a high response to a ripple filter of the adequate orientation and a low 
response to the filter tuned to the orthogonal direction, whereas an area showing no ripples 
will produce responses of similar strength to any filter orientation. This is the approach used 
to produce the results shown in Figure 2, where ripples have been detected in a MUSCLE 
SAS image using six orientations and three filter sizes of 0.5, 0.6 and 0.7 meters. 
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Fig. 2. Results of model-based sand ripple characterization. (a) A MUSCLE SAS seabed 
image. (b) Segmentation into rippled (red) and non-rippled (cyan) areas. (c) Local ripple 
orientation in degrees. 

 
4.2 Supervised Classification Example 
When model-based classification is not feasible or practical, a more general approach is to 
use a supervised system. In a supervised approach, an algorithm is trained to recognize 
particular characteristics that permit the assignment of objects to different classes. 
A supervised system is more flexible in the sense that there is no need to devise a new 
model every time a previously unseen class has to be considered. For seabed classification 
this is especially important when using data from different sensors (Coiras, 2007). The 
multi-sensor seabed classification system presented here uses an independent supervised 
binary classifier (detector) for every class considered. The detectors are trained using a given 
set of ground-truth samples in sensor space (that is, not yet geo-referenced), and their 
classification performances are estimated in order to determine their individual confusion 
matrices. 
The training samples are manually ground-truthed with an image editing application (in 
this case, Photoshop). A small set of images from the mission that are representative of the 
classes to consider are selected, and a binary map is created for each of them. In the training 
example shown in Figure 3, three binary segmentations have been manually produced for 
flat, posidonia and rock classes. 
 

 

    

 
Fig. 3. Manual segmentation of a side-scan image to train a supervised classifier. Counter-
clockwise from top-left: (a) side-scan image; (b) segments for flat, posidonia and rock areas; 
(c) colored side-scan image using the flat, posidonia, and rock segment images as blue, 
green, and red channels. 
 
The subsequent classification is based on texture analysis (Chang & Kuo, 1993) and uses 
wavelet decomposition to generate the feature vectors. Four bi-orthogonal wavelets (Mallat, 
1999) in two scales generate feature vectors of 16 components that are then classified using a 
decision tree. This results in three maps for each class, as shown in Figure 4, which 
correspond to the probability of each image pixel belonging to each of the classes 
considered. 
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wavelet decomposition to generate the feature vectors. Four bi-orthogonal wavelets (Mallat, 
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Fig. 4. Supervised segmentation of a side-scan image. Counter-clockwise from top-left: (a) 
side-scan image; (b) probability images for flat, posidonia and rock classes; (c) colored side-
scan image using the flat, posidonia, and rock segment images as blue, green, and red 
channels. 
 
A decision regarding the actual class of a pixel can be taken at this point by selecting, for 
instance, the class that has the highest probability. In our case, the decision is delayed until 
after geo-referencing. This choice is made because in our seabed observation missions, each 
seafloor point is observed more than once, and ideally all gathered evidence should be used 
to make a more informed classification decision. 
At this stage, the performance of the sensor for each class can be taken into account and 
used to modulate the probabilities given by the decision tree, as described in (Coiras, 2007) 
for the multi-sensor case. 
After all images have been processed in sensor space, they are geo-referenced into an area 
mosaic. The different observations available for every seabed point are combined using data 
fusion. In our case, the Dempster-Shafer theory of evidence (Shafer, 1976) is used because of 
its ability to cope with conflicting information, which is particularly important for the multi-
sensor case. The result of the data fusion stage is a set of three mosaics of the area composed 
of the belief that each pixel corresponds to the flat, posidonia, and rock classes. 
The final classification map for the observed area is determined by the maximum-belief 
decision rule, which selects a single class for each of the image pixels. Figure 5 shows the 
final classification result for the Capo Teulada survey, in south-eastern Sardinia. 
 

 

   
Fig. 5. Results of supervised segmentation for a full side-scan mission covering an area of 
five square kilometres. (a) Overview of the covered area showing all side-scan tracks. (b) 
Result of the supervised classification of the seabed into the following three classes: flat 
seabed (green), posidonia formations (orange) and rocky seabed (red). 

 
4.3 Unsupervised Classification Example 
Next we consider an unsupervised seabed classification algorithm (or more appropriately, 
seabed segmentation algorithm, since the seabed classes are not known). In this particular 
approach, the “atomic” unit for seabed classification is assumed to be a 2 m x 2 m area of 
seabed. That is, each 2 m x 2 m area of seabed corresponds to one data point. This particular 
size was chosen as a compromise among several factors. The larger the area chosen, the 
more likely that a single data point will have the unfavourable property of containing 
multiple types of seabed. However, if the area is too small, the distinguishing characteristics 
of the seabed that indicate a certain seabed type may be lost. 
We consider four different unsupervised segmentation approaches, which differ both in the 
set of features employed and in the clustering method used. Specifically, segmentation is 
performed when using (i) moment features with k-means clustering, (ii) moment features 
with spectral clustering, (iii) wavelet features with k-means clustering, and (iv) wavelet 
features with spectral clustering. 
The wavelet-based features consist of 16 features that are derived from the coefficients of a 
bi-orthogonal wavelet decomposition (Mallat, 1999) of each SAS image block (i.e., data 
point). The moment-based are the mean, variance, skewness, and kurtosis of the distribution 
of pixel values of an image block (i.e., data point). Finally, spectral clustering can be 
performed on either set of features to effectively transform a feature vector into a new 
feature vector, in a lower dimensional space. These 16 wavelet features and 4 moment 
features are extracted for each data point (2 m x 2 m area of seabed). 
We perform unsupervised seabed segmentation on a MUSCLE SAS image that spans an 
area of 56 m x 56 m of seabed. To allow an assessment of the segmentation results, we 
manually ground truth this SAS image, shown in Figure 6, into three seabed types (namely, 
flat, rippled, and rocky seabed). The result of this ground-truthing is also shown in Figure 6. 
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flat, rippled, and rocky seabed). The result of this ground-truthing is also shown in Figure 6. 
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Fig. 6. (a) A SAS image, and (b) its corresponding ground truth (where green, yellow, and 
blue correspond to flat, rippled, and rocky seabed, respectively). 
 
In the four feature and clustering combinations considered, the segmentation process is 
completely unsupervised, since it is assumed that no training data is available. The number 
of clusters to be learned is fixed at k=4. Because the k-means algorithm is not guaranteed to 
result in the globally optimal clustering, 100 random cluster-centroid initializations are 
considered for each case. The clustering for which the distortion — defined as the sum of 
distances from each point to its assigned cluster centroid — is a minimum is selected as the 
final clustering (and by extension, the final segmentation). 
The results of the unsupervised seabed segmentation on the SAS image shown in Figure 6 
are shown in Figure 7. Because the methods are unsupervised, no explicit correspondence 
between clusters and seabed types exists. However, for purposes of evaluating the 
segmentation results here, one can easily assign a correspondence between ground-truth 
seabed types and clusters. 

 
5. Conclusion 

In this chapter, an overview of different automatic seabed classification approaches has been 
provided. Although in some cases a completely automated model-based method is possible 
(when the phenomenon to identify can be modelled mathematically), in most situations 
some degree of human intervention is required. In the supervised case, initial training is 
required to drive the system’s focus to the classes of interest, whereas in the unsupervised 
case the operator should ratify the soundness of the class division suggested by the system. 
It can even be argued that the model-based case also requires human intervention, since the 
model itself must be created in the first place. 
In any case, it has been shown that the three general classification approaches are extremely 
useful for the automatic processing of data collected in AUV sonar missions, which 
frequently consist of hundreds or thousands of images that would otherwise require manual 
processing. This automation allows operators to focus on higher-level tasks, such as mission 
planning or model design, which could make seabed surveillance operations simpler and 
more effective. 
 

 

 
Fig. 7. Results of unsupervised seabed segmentation algorithms. Clockwise from upper left: 
results from using (a) moment features with k-means, (b) moment features with spectral 
clustering, (c) wavelet features with spectral clustering, and (d) wavelet features with k-
means. 
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1. Introduction      
 

Differential protection was already applied towards the end of the 19th century, and was one 
of the first protection systems ever used. 
Faults are detected by comparison of the currents flowing into and out of the protected plant 
item. As a result of the fast tripping with absolute selectivity it is suited as main protection 
of all important items of plant, i.e. generators, transformers, busbars as well as cables and 
overhead lines and feeders at all voltage levels. 
The power transformer protection is of critical importance in power systems. Since 
minimization of frequency and duration of unwanted outages is very desirable there is a 
high demand imposed on power transformer protective relays. This includes the 
requirements of dependability associated with no mal-operations, security associated with 
no false tripping, and operating speed associated with short fault clearing time. 
One of the main concerns in differential protection of this particular component of power 
systems lies in the accurate and rapid discrimination of magnetizing inrush current from 
different internal faults currents. This is because the magnetizing inrush current, which 
occurs during the energizing the transformer, generally results in several times full load 
current and therefore can cause mal-operation of the relays. Such mal-operation of 
differential relays can affect both the reliability and stability of the whole power system. 
The principle of differential protection is initially described in this chapter. Subsequently 
different protection schemes are covered in the next sections. At last an algorithm based on 
pattern recognition of current signals using wavelet transform which is a power signal 
processing tool is proposed.  

 
2. Mode of operation of differential protection 
  

The differential protection is 100% selective and therefore only responds to faults within its 
protected zone. The boundary of the protected one is uniquely defined by the location of the 
current transformers. Due to simple current comparison, the principle of differential 
protection is very straight forward.  

26
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Generators, motors and transformers are often protected by differential protection, as the 
high sensitivity and fast operation is ideally suited to minimize damage. On feeders the 
differential protection is mainly used to protect cables, particularly on short distances where 
distance protection cannot be readily applied.  
The prime objective of busbar differential protection is fast, zone selective clearance of 
busbar faults to prevent large system outages and to ensure system stability. Mal-operation 
must be avoided at all cost as these could result in extensive supply interruption.  

  
3. Principles of differential protection 
  

The basic principles which have been known for decades are still applicable and 
independent of the specific device technology. 
The differential protection compares the measured values of signals with regard to 
magnitude and phase. This is possible by direct comparison of instantaneous values or by 
vector (phasor) comparison. In each case the measurement is based on Kirchhoff’s laws 
which state that the geometric (vector) sum of the currents entering or leaving a node must 
add up to 0 at any point in time. The convention used in this context states that the currents 
flowing into the protected zone are positive, while the currents leaving the protected zone 
are negative. The current differential protection is the simplest and most frequently applied 
form of differential protection. The measuring principle is shown in Fig. 1. X is the winding 
of the protected machine. The relay compares an operating current with a restraining 
current. The operating current (also called differential current), , and the restraining 
current, , are obtained as below:  
 

 
 

 
Fig. 1. Differential relay connection diagram 

 
When there is no internal fault, the current entering in X is equal in phase and magnitude to 
current leaving X. The CT’s are of such a ratio that during the normal conditions or for 
external faults (Trough faults) the secondary currents of CT’s are equal. The relay generates 
a tripping signal if the operating current, , is greater than a percentage of the restraining 
current, ,, according to: 
 

 

 
 
where K is the relay operating characteristic, that consists of a straight line having a slope 
equal to K. Intersection of this characteristic with vertical axis ( ) define the relay minimum 
pickup current, . The relay percentage restraint characteristic typically has an excellent 
behavior, but it has problems discriminating fault currents from false differential currents 
caused by magnetizing inrush and transformer over excitation. 

  
4. Main difficult in differential protection 
  

Differential protection is established as the main protection for transformer due to its simple 
principle of operation and sensitivity. However, a key problem of differential protection is 
accurate and rapid discrimination of magnetizing inrush current from an internal fault 
current.  
Initial magnetizing due to switching a transformer in is considered the most severe case of 
an inrush. When a transformer is de-energized (switched-off), the magnetizing voltage is 
taken away, the magnetizing current goes to zero while the flux follows the hysteresis loop 
of the core. This results in certain remanent flux left in the core. When, afterwards, the 
transformer is re-energized by an alternating sinusoidal voltage, the flux becomes also 
sinusoidal but biased by the remanence. The residual flux may be as high as 80-90% of the 
rated flux, and therefore, it may shift the flux-current trajectories far above the knee-point of 
the characteristic resulting in both large peak values and heavy distortions of the 
magnetizing current. 
Figure 2 shows a typical inrush current. The waveform displays a large and long lasting dc 
component, is rich in harmonics, assumes large peak values at the beginning (up to 30 times 
the rated value), decays substantially after a few tenths of a second, but its full decay occurs 
only after several seconds (to the normal excitation level of 1-2% of the rated current).  
 

 
Fig. 2. Typical inrush current 

 
It is evident that relaying protection should be initiated in response to internal fault but not 
to inrush current. To avoid the needless trip by magnetizing inrush current, many different 
restrain methods are proposed in recent years. 
Since the magnetizing branch representing the core appears as a shunt element in the 
transformer equivalent circuit, the magnetizing current upsets the balance between the 
currents at the transformer terminals, and is therefore experienced by the differential relay 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

0

100

200

300

400

500

Time (sec)

Cu
rre

nt
 (A

)

0.06 0.08 0.1 0.12 0.14

0

100

200

300

400

500



Pattern recognition methods for improvement of differential protection in power transformers 475

 

Generators, motors and transformers are often protected by differential protection, as the 
high sensitivity and fast operation is ideally suited to minimize damage. On feeders the 
differential protection is mainly used to protect cables, particularly on short distances where 
distance protection cannot be readily applied.  
The prime objective of busbar differential protection is fast, zone selective clearance of 
busbar faults to prevent large system outages and to ensure system stability. Mal-operation 
must be avoided at all cost as these could result in extensive supply interruption.  

  
3. Principles of differential protection 
  

The basic principles which have been known for decades are still applicable and 
independent of the specific device technology. 
The differential protection compares the measured values of signals with regard to 
magnitude and phase. This is possible by direct comparison of instantaneous values or by 
vector (phasor) comparison. In each case the measurement is based on Kirchhoff’s laws 
which state that the geometric (vector) sum of the currents entering or leaving a node must 
add up to 0 at any point in time. The convention used in this context states that the currents 
flowing into the protected zone are positive, while the currents leaving the protected zone 
are negative. The current differential protection is the simplest and most frequently applied 
form of differential protection. The measuring principle is shown in Fig. 1. X is the winding 
of the protected machine. The relay compares an operating current with a restraining 
current. The operating current (also called differential current), , and the restraining 
current, , are obtained as below:  
 

 
 

 
Fig. 1. Differential relay connection diagram 

 
When there is no internal fault, the current entering in X is equal in phase and magnitude to 
current leaving X. The CT’s are of such a ratio that during the normal conditions or for 
external faults (Trough faults) the secondary currents of CT’s are equal. The relay generates 
a tripping signal if the operating current, , is greater than a percentage of the restraining 
current, ,, according to: 
 

 

 
 
where K is the relay operating characteristic, that consists of a straight line having a slope 
equal to K. Intersection of this characteristic with vertical axis ( ) define the relay minimum 
pickup current, . The relay percentage restraint characteristic typically has an excellent 
behavior, but it has problems discriminating fault currents from false differential currents 
caused by magnetizing inrush and transformer over excitation. 

  
4. Main difficult in differential protection 
  

Differential protection is established as the main protection for transformer due to its simple 
principle of operation and sensitivity. However, a key problem of differential protection is 
accurate and rapid discrimination of magnetizing inrush current from an internal fault 
current.  
Initial magnetizing due to switching a transformer in is considered the most severe case of 
an inrush. When a transformer is de-energized (switched-off), the magnetizing voltage is 
taken away, the magnetizing current goes to zero while the flux follows the hysteresis loop 
of the core. This results in certain remanent flux left in the core. When, afterwards, the 
transformer is re-energized by an alternating sinusoidal voltage, the flux becomes also 
sinusoidal but biased by the remanence. The residual flux may be as high as 80-90% of the 
rated flux, and therefore, it may shift the flux-current trajectories far above the knee-point of 
the characteristic resulting in both large peak values and heavy distortions of the 
magnetizing current. 
Figure 2 shows a typical inrush current. The waveform displays a large and long lasting dc 
component, is rich in harmonics, assumes large peak values at the beginning (up to 30 times 
the rated value), decays substantially after a few tenths of a second, but its full decay occurs 
only after several seconds (to the normal excitation level of 1-2% of the rated current).  
 

 
Fig. 2. Typical inrush current 

 
It is evident that relaying protection should be initiated in response to internal fault but not 
to inrush current. To avoid the needless trip by magnetizing inrush current, many different 
restrain methods are proposed in recent years. 
Since the magnetizing branch representing the core appears as a shunt element in the 
transformer equivalent circuit, the magnetizing current upsets the balance between the 
currents at the transformer terminals, and is therefore experienced by the differential relay 
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as a “false” differential current. The relay, however, must remain stable during inrush 
conditions. In addition, from the standpoint of the transformer life-time, tripping-out during 
inrush conditions is a very undesirable situation (breaking a current of a pure inductive 
nature generates high overvoltage that may jeopardize the insulation of a transformer and 
be an indirect cause of an internal fault). 

 
5. The proposed schemes for differential protection 
  

5.1 Recognition of type of signals using Fourier Transform 
Magnetizing inrush current generally contains a large second harmonic component in 
comparison to an internal fault. As a result conventional transformer protection systems are 
designed to block during inrush transients by this large second harmonic. The ratio of the 
second harmonic of differential current in excess of a preset threshold is interpreted as a 
present of magnetizing inrush. 
Let us calculate the harmonic component of a typical inrush current waveform. We will 
assume a simplified waveform for the inrush current. Let the magnetizing characteristic be a 
vertical line in the  plane, and be a straight line with a finite slope in the saturated 
region. This makes the current waveform of Figure 3 acquire the shape shown in Figure 4. 
 

 
Fig. 3. Magnetizing current during energizing of a transformer 

 
Fig. 4. Idealized inrush current waveform 

 
The flux in the core is above the saturation knee point for a total angular span of  
radians, and the corresponding current is a portion of a sine wave. For the remainder of the 
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period, the current is zero. Although this is an approximation, it is quite close to an actual 
magnetizing current waveform. We may use Fourier series analysis to calculate the 
harmonics of this current. Consider the origin to be at the center of a current pulse, as shown 
in Figure 4. Then, the approximation for the current waveform is: 
 

  

 
Since this choice of the origin gives a symmetric waveform about , we may use the 
cosine Fourier series for the current. The nth  harmonic is given by: 
 

 
 
The peak of the current wave is , and the fundamental frequency component  
is given by: 

 

 
The relative magnitude of various harmonic components with respect to the fundamental 
frequency component, as calculated from equation (4) and (5), is tabulated in Table 1 up to 
the 13th harmonic, and for saturation angles of  and . It should be noted that 
when the saturation angle is  there are no odd harmonics present. As the angle of 
saturation increases, the harmonic content decreases: indeed, if  becomes  there will be no 
harmonics at all. However, in most cases,  is much less than , and a significant amount of 
harmonics are present in the magnetizing inrush current. Of all the harmonic components, 
the second is by far the strongest.  
 

Harmonic  
   

2 0.705 0.424 0.171 
3 0.352 0.000 0.086 
4 0.070 0.085 0.017 
5 0.070 0.000 0.017 
6 0.080 0.036 0.019 
7 0.025 0.000 0.006 
8 0.025 0.029 0.006 
9 0.035 0.000 0.008 
10 0.013 0.013 0.003 
11 0.013 0.000 0.003 
12 0.020 0.009 0.005 
13 0.008 0.000 0.002 

Table 1. Harmonics of the magnetizing inrush current  
 
Magnetizing inrush current generally contains a large second harmonic component in 
comparison to an internal fault. As a result conventional transformer protection systems are 
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period, the current is zero. Although this is an approximation, it is quite close to an actual 
magnetizing current waveform. We may use Fourier series analysis to calculate the 
harmonics of this current. Consider the origin to be at the center of a current pulse, as shown 
in Figure 4. Then, the approximation for the current waveform is: 
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Table 1. Harmonics of the magnetizing inrush current  
 
Magnetizing inrush current generally contains a large second harmonic component in 
comparison to an internal fault. As a result conventional transformer protection systems are 
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designed to block during inrush transients by this large second harmonic. The ratio of the 
second harmonic of differential current in excess of a preset threshold is interpreted as a 
present of magnetizing inrush. However, the second harmonic due to CT saturation 
component may also be generated during internal faults. Moreover, it was found that in 
certain cases, the second harmonic generated during internal faults in transformers is 
relatively large, which impairs the ability of this kind of the criterion. Consequently, the 
commonly used conventional differential protection technique based on the second 
harmonic restraint will thus have difficulty in distinguishing between internal fault currents 
and inrush currents. 

 
5.2 Wave shape recognition of signals in time domain 
Wave shape recognition techniques represent another alternative for discriminating internal 
faults from inrush current signals. In this kind inrush restraining methods pays attention to 
the periods of low and peaks values of the inrush current signal in the time domain. 
It has been observed from Fig. 2 that the inrush wave is distinguished from a fault wave 
(which is sinusoidal wave shape) by a period in each cycle during which very low 
magnetizing currents (i.e. the normal exciting currents) flow, when the core is not in 
saturation. This property of the inrush current can be used to distinguish this condition from 
an internal fault. The condition to declare inrush would be that during a power system 
frequency cycle, there should always be an interval of time when an instantaneous 
differential current is equal to the normal magnetizing current, which is close to zero (below 
0.5 %). This interval must be at least about 1/4 of the period, that is, about 5 ms in 50 Hz 
power systems. 
Generally, there are basically two inrush restraining methods of wave shape recognition: 
The first, and more common approach, pays attention to the periods of low and flat values 
in the inrush current (“dwell-time” — criterion 1), and the second algorithm pays attention 
to the sign of the peak values and the decaying rate of the inrush current (criterion 2). 
A. Criterion 1 
The hypothesis of magnetizing inrush may be ruled out if the differential current does not 
show in its every cycle a period lasting no less than 1/4 of a cycle in which the shape of the 
waveform is both flat and close to zero (see Figure 5). 
 
 
 

 

 
Fig. 5. Illustration of the direct waveform recognition of inrush (criterion 1) 
 
This form of direct waveform restraining regardless of its implementation shows 
weaknesses: 
(a) the recognition of an internal fault versus magnetizing inrush takes one full cycle 
(b) the CTs, when saturated during inrush conditions (very likely due to the dc component 
in the current), change the shape of the waveform within the dwell periods (Figure 6) and 
may cause a false tripping 
(c) during severe internal faults, when the CTs saturate, their secondary currents may also 
show periods of low and flat values exposing the relay to missing operations 
B.  Criterion 2 
The hypothesis of magnetizing inrush may be ruled out if the differential current has its 
peaks displaced by half a cycle, and any two consecutive peaks are not of the same polarity 
(see Figure 6). This method needs robust detection of the peak values. Timing between two 
consecutive peaks must be checked with some tolerance margin accounting for the 
frequency deviations. 

 
Fig. 6. Illustration of internal fault and magnetizing inrush currents (criterion 2) 
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designed to block during inrush transients by this large second harmonic. The ratio of the 
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component may also be generated during internal faults. Moreover, it was found that in 
certain cases, the second harmonic generated during internal faults in transformers is 
relatively large, which impairs the ability of this kind of the criterion. Consequently, the 
commonly used conventional differential protection technique based on the second 
harmonic restraint will thus have difficulty in distinguishing between internal fault currents 
and inrush currents. 
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differential current is equal to the normal magnetizing current, which is close to zero (below 
0.5 %). This interval must be at least about 1/4 of the period, that is, about 5 ms in 50 Hz 
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to the sign of the peak values and the decaying rate of the inrush current (criterion 2). 
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The hypothesis of magnetizing inrush may be ruled out if the differential current does not 
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Theoretically, this method needs three quarters of a cycle to distinguish between internal 
faults and inrush conditions. The first peak of the fault current appears after a quarter of a 
cycle, the next one - half a cycle later. With the second peak arriving, the criterion rejects the 
inrush hypothesis and sets the tripping permit.  
The main disadvantage of this algorithm is the need of cross polarization between the 
phases. Not always all three phases show the typical inrush uni-polar waveform. Also, 
during very smooth energization of a protected transformer (what may accidentally happen 
owing to the adequate relation between the switching angle and the remanent flux), this 
criterion will fail. 
This criterion may be also used in its indirect form as a modifier for the instantaneous 
differential overcurrent element. Defining the overcurrent principle as: 
 

 
 
and specifying one threshold, one needs to adjust this threshold very high to prevent false 
trippings (above the highest inrush current). One may, however, re-define the operating 
principle (Figure 7): 

 
 
and use two thresholds to detect the uni-polarity/bi-polarity of the signal (Figure 7). When 
using the modified overcurrent principle, the setting may be adjusted as low as one third of 
the traditional threshold. This allows much more internal faults to be quickly detected by 
the unrestrained overcurrent algorithm. 
 

 
Fig. 7. Illustration of the double-threshold overcurrent principle 

 
5.3 Mathematical morphology for recognition of signals 
Mathematical morphology (MM) is a relatively new tool for image and signal processing. It 
is based on theoretic set concept, extracting object features by choosing a suitable structuring 
shape as a probe. Morphological operations, based on set transformation, are used to 
convert an image or signal into a quantitative description of its geometrical structure. The 
applications of MM are mainly focused on image processing, nonlinear filtering, machine 
vision, and pattern recognition. 
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Some schemes are proposed to identify inrush current signals from other conditions by 
using a morphological decomposition scheme (MDS) based on the morphological wavelet. 
In these approaches differential currents decompose into a series of components by 
designed morphological operators; then the extracted features of these components will 
employ for inrush signals identification. 
MM is a nonlinear approach and has been widely used in many signal/image processing 
applications due to its simple and robust performance. Dilation and erosion are the two 
basic operators of MM, which are defined as 
 

 
 

 
Where  is the signal under processing,  is the , and  and  represent the field of 
definition of  and  , respectively. 
The morphological wavelet is a nonlinear multiresolution signal decomposition scheme. A 
formal definition of the morphological wavelet is presented as follows. Assume that sets  
and  exist.  is referred to as the signal space at level , and  is the detail space at level . 
The morphological wavelet has two analysis operators which together decompose a signal 
in the direction of increasing  . The signal-analysis operator  maps a signal from  to  
(i.e.,  :  ), while the detail analysis operator maps it from  to  (i.e.,  :  

). On the other hand, a synthesis operator proceeds in the direction of decreasing 
, denoted as   :   

In order to yield a complete signal representation, the mappings ( ) and  should be 
inverses of each other, i.e.,  
 

 

 

 
Here,  is called the approximation signal and  is the detail signal. Therefore, decomposing 
an input signal  with the following recursive analysis scheme is: 
 

 
 
Where , , and  can be exactly reconstructed from  and 

 by means of the following  recursive synthesis scheme: 
 

 
 
Let us analyse the scheme in detail which was proposed (Z. Lu et al, 2009) based on 
morphological decomposition scheme. This work proposes MDS based on the concepts of 
morphological wavelet. The operators in the scheme are specifically designed by using 
fundamental morphological operators-dilation and erosion-and are able to decompose 
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Theoretically, this method needs three quarters of a cycle to distinguish between internal 
faults and inrush conditions. The first peak of the fault current appears after a quarter of a 
cycle, the next one - half a cycle later. With the second peak arriving, the criterion rejects the 
inrush hypothesis and sets the tripping permit.  
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during very smooth energization of a protected transformer (what may accidentally happen 
owing to the adequate relation between the switching angle and the remanent flux), this 
criterion will fail. 
This criterion may be also used in its indirect form as a modifier for the instantaneous 
differential overcurrent element. Defining the overcurrent principle as: 
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Some schemes are proposed to identify inrush current signals from other conditions by 
using a morphological decomposition scheme (MDS) based on the morphological wavelet. 
In these approaches differential currents decompose into a series of components by 
designed morphological operators; then the extracted features of these components will 
employ for inrush signals identification. 
MM is a nonlinear approach and has been widely used in many signal/image processing 
applications due to its simple and robust performance. Dilation and erosion are the two 
basic operators of MM, which are defined as 
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The morphological wavelet is a nonlinear multiresolution signal decomposition scheme. A 
formal definition of the morphological wavelet is presented as follows. Assume that sets  
and  exist.  is referred to as the signal space at level , and  is the detail space at level . 
The morphological wavelet has two analysis operators which together decompose a signal 
in the direction of increasing  . The signal-analysis operator  maps a signal from  to  
(i.e.,  :  ), while the detail analysis operator maps it from  to  (i.e.,  :  
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, denoted as   :   

In order to yield a complete signal representation, the mappings ( ) and  should be 
inverses of each other, i.e.,  
 

 

 

 
Here,  is called the approximation signal and  is the detail signal. Therefore, decomposing 
an input signal  with the following recursive analysis scheme is: 
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 by means of the following  recursive synthesis scheme: 
 

 
 
Let us analyse the scheme in detail which was proposed (Z. Lu et al, 2009) based on 
morphological decomposition scheme. This work proposes MDS based on the concepts of 
morphological wavelet. The operators in the scheme are specifically designed by using 
fundamental morphological operators-dilation and erosion-and are able to decompose 
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differential currents signals into a series of components for the purpose of inrush 
identification.  
In MDS, the analysis operators  and  and the synthesis operator  are defined as 
 

 
 

 
 
Where  is the transformer differential current.  and . With the analysis 
operators, the signal  is decomposed into a set of components ; and by the 
synthesis operator, it can be reconstructed from .  , where 

 and  denote the morphological erosion and dilation, respectively, and  is the 
structuring element (SE) at the decomposition level . With such a scheme, the signal  is 
decomposed into a set of segments which reveal the shape information of the signal. Each 
half cycle of the current signal is decomposed into several fractions, the width of which is 
determined by the length of the corresponding SE. The height of these fractions can 
therefore be viewed as the increment of the current signal. 
Prior to applying the decomposition scheme for inrush identification, the current  is 
translated into two signals as 
 

 
 

Where  and  are predetermined constants, so that  and  are calculated by the 
morphological operators.  

 is an input signal applied to deal with half cycles which contain the peaks of , while  is 
the other input signal to process half cycles which contain the valleys of . SEs  are simple 
zero-valued flat lines with length of . Assume that  represents the sampling frequency of 
the system, then , in which  is the number of sampling points per 
cycle.  
The process of the decomposition scheme is illustrated in Fig. 8. It can be seen from this 
figure that current  is the additional of  and  A, and its mirror  is the additional of –  
and  A, which make  and . The decomposition scheme beings from level 1 

 and ends at level . A group of components  can be extracted from the 
currents  and  by using (12), and the height of the current increment for each component 
is measured and denoted as  . Assuming that the currents in Fig. 8 are sampled with 12 
points per cycle, the decomposition scheme will iteratively run three times and six 
components of , in total, are extracted from  and , respectively. ,  and  are the 
current increments of , which are extracted from the current . Another group of current 
increments ,  and  are obtained from , respectively.  
For identification magnetizing inrush current from other conditions by above approach a 
feature criterion can define to quantify the features of the current waveform, based on the 
measured current increments  in comparison with the values calculated from a standard 
sinusoidal wave. 
 

 

 
Fig. 8. Morphological decomposition of a current waveform 

  
5.4 Neural network method for pattern recognition  
Artificial Intelligence (AI) based techniques are well developed in the areas of pattern 
classification and recognition. 
Neural networks (NNs) are composed of simple elements operating in parallel. These 
elements are inspired by biological nervous systems. As in nature, the connections between 
elements largely determine the network function. You can train a neural network to perform 
a particular function by adjusting the values of the connections (weights) between elements. 
Typically, neural networks are adjusted, or trained, so that a particular input leads to a 
specific target output. The Fig. 9 illustrates such a situation. There, the network is adjusted, 
based on a comparison of the output and the target, until the network output matches the 
target. Typically, many such input/target pairs are needed to train a network. 
 
 
 
 
 
 
 
 
Fig. 9. Learning block diagram 

 
Neural networks have been trained to perform complex functions in various fields, 
including pattern recognition, identification, classification, speech, vision, and control 
systems. 
The NN applications were extended to variety of power system protective relaying and fault 
analysis problems.  
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differential currents signals into a series of components for the purpose of inrush 
identification.  
In MDS, the analysis operators  and  and the synthesis operator  are defined as 
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Fig. 8. Morphological decomposition of a current waveform 
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differential protection. This is expected due to the importance, complexity and wide 
application of the mentioned protection principles. However, it is increasing to note that NN 
applications were mostly related to the fault detection and classification, which confirms the 
unique NN capability to act as a pattern classifier.  
As per other non-relaying applications, it appears that fault analysis and detection of 
equipment incipient failure had created a lot of attention for NN applications. The ability of 
the NN architecture to process data in parallel and in a hierarchical fashion has been 
exploited in the fault analysis applications. The NN ability to learn from historical data was 
quite useful in the equipment diagnostic area. More developments are expected in both the 
fault analysis and equipment diagnostic areas.  
Of the three most common types of ANNs, namely multi-layer, perceptron (MLP), Kohonen 
network (KN) and Hopfield network (HN), the MLP has hitherto been the mainstream of 
applications in power systems; this is principally because the supervised learning associated 
with the MLP is superior in terms of accuracy compared with either the KN or HN. 
There are now widespread applications of ANNs in power systems. However, this part 
deals with only one problem, fault classification in double-circuit transmission lines using 
combined unsupervised/supervised in some detail (Aggarwal & Yonghua, 1998). 
Parallel transmission lines which can significantly increase transmission capacity on existing 
systems are finding more widespread usage. However, there is difficulty in classifying the 
fault types on such lines using conventional techniques, principally because faulted phase(s) 
on one circuit have an effect on the phases of the healthy circuit due to mutual coupling 
between the two circuits. The problem is compounded by the fact that this coupling is 
highly non-linear in nature and is dependent on a complex interplay amongst a number of 
variables. As a consequence, the coupled phase(s) on the healthy circuit may sometimes be 
wrongly diagnosed as being faulted phase(s) under certain fault conditions. Thus 
conventional classifiers based on logical comparison techniques or linear algorithms are not 
well suited for such circuits. In this respect, neural computing has the very important 
attribute of being able to solve non-linear system identification problems through using 
neurons, links and learning algorithms, and hence ANNs are ideally suited to deal with 
complex non-linear fault classification problem. 
ANNs have to be trained to learn and, in this respect, the training algorithms can be divided 
into supervised, unsupervised and combined unsupervised/supervised as shown in Fig. 10. 
Classifiers trained with supervision require data labels that specify the correct class during 
training. Clustering algorithms use unsupervised training and group unlabelled training 
data into internal clusters. Classifiers that use combined unsupervised/supervised training 
firstly use unsupervised training with unlabelled data to form internal clusters; labels are 
then assigned to clusters during the supervision stage. Different ANNs with, different 
training techniques have their own advantages and disadvantages. A typical supervised 
error back-propagation (EBP) network is a non-linear regression technique which attempts 
to minimise the global error. An EBP network can provide very compact distributed 
representations of complex data sets, and is smaller in size compared with a combined 
unsupervised/supervised ANN with the same inputs and outputs. However, training of an 
EBP network is very slow (time consuming), needs much larger training sets and it very 
easily gets stuck on local minima. Furthermore, it can be difficult to retrain the ANN with 
new training data. 

 

 

 
 

 
 
 
 
 
 
 
 
 
Fig. 10. ANN training techniques 

 
Unsupervised learning means learning examples without teaching, i.e. there are no desired 
outputs. A typical unsupervised learning network is the KN. The network attempts to learn 
a topological map from an N-dimensional input space into a two dimensional feature space. 
Thus the network has many advantages over the EBP network, such as fast learning, a much 
smaller amount of training data etc. But, in view of the fact the network is without an output 
layer, it is not recommended to be used on its own for either pattern classification or other 
decision-making processes. Rather, it is used as the front end to an output layer with 
supervised learning and becomes a combined unsupervised/supervised (CUS) learning 
network, the subject of the technique described here. 
This part proposes a fault type classification technique for double-circuit transmission lines 
using a CUS network.  
The CUS-based classifier is a technique that separates object recognition into two parts: (i) 
feature extraction with unsupervised learning in the first stage, and (ii) classification with 
supervised learning sitting on the top, subsequently. An important basic principle is that the 
features must be independent of class membership, since the latter is not yet known at the 
feature extraction stage by definition. This implies that, if any learning methods are used for 
developing the feature extractors, they should be unsupervised in a sense, because the target 
class for each object is unknown. Fig. 11 typifies a CUS-based network. 
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Fig. 11. CUS-based architecture network 
 
The input vector for the CUS network comprises nine variables associated with the three 
voltage and six current signals in a double-circuit line. The feature extraction is based on 
time-domain windows, each window length being of three samples. The outputs are 
composed of seven variables Al, Bl, C1, PL2, B2, C2 and G; of these, ‘1’ and ‘2’ signify 
circuits 1 and 2, respectively, and variable G indicates whether ground is involved in a fault. 
As an example, if we get an output 1,0,0,0,0,0,1 this would indicate an ‘a’-phase-earth fault 
on circuit 1. 
In order to ascertain the attributes of the CUS network over a MLP network utilising a 
standard EBP training algorithm, a comparison in performance was made between the two 
ANNs. In this respect, the latter ANN also had nine variables but, unlike the CUS network, 
each window length used had four samples; a smaller window length made the 
convergence of the network to the requisite value extremely difficult. The hidden layer had 
18 neurons and the output vector again comprised seven variables. 
An extensive series of case studies showed that the MLP-based network converged after 
about 100 000 iterations (in approximately 45 minutes on a 133 MHz Pentium PC) and 
reached root-mean-square (RMS) error of 0.1. On the other hand, the CUS-based network 
converged after only 4000 iterations, i e in approximately 2 minutes, and reached a much 
lower RMS error of 0 03 Furthermore (although not shown here), of the 100 test cases 
considered, the misclassification rate was 6% and 1% for the MLP and CUS networks, 
respectively. 

 
6. Wavelets and signal processing 
  

6.1 Wavelet theory 
Wavelet theory provides a unified framework for a number of techniques which had been 
developed independently for various signal processing applications. For example, 
multiresolution signal processing, used in computer vision; sub band coding, developed for 
speech and image compression; and wavelet series expansion, developed in applied 
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mathematics, have been recently recognized as different views of a signal theory. In fact, 
wavelet theory covers quite a large area. It treats both the continuous and the discrete-time 
cases. It provides very general techniques that can be applied to many tasks in signal 
processing, and therefore has numerous potential applications. In particular, the Wavelet 
Transform (WT) is of interest for the analysis of non-stationary signals, because it provides 
an alternative to the classical Short-Time Fourier Transform (STFT). In contrast to the STFT, 
which uses a single analysis window, the WT uses short windows at low frequencies. This is 
in the spirit of constant relative bandwidth frequency analysis. The WT is also related to 
time-frequency analysis. 

 
6.2 Signal Construction Using Wavelets 
Wavelet theory establishes that a general transient signal can be constructed by the 
superposition of a set of special signals (different structures occurring at different time scales 
and at different times). These special signals may be selected as wavelets. For a set of 
wavelets to be admissible as a basic building block, they must satisfy two basic conditions: 
they must be oscillatory, and they must decay to zero quickly. If these conditions are 
combined with the condition that the wavelets must also integrate to zero, then these 
conditions are the non-rigorous admissibility criteria that must be satisfied to be a wavelet. 
The selection of the best wavelets is a function of the characteristics of the signal to be 
processed. For example, a musical tone can be described by four basic parameters: intensity, 
frequency, time duration, and time position. Thus, the key to the process is to select a 
wavelet to realize the signal in terms of the best basis and most efficient superposition. The 
best and most efficient wavelet set is also a function of the objective of the reconstruction. 
Typical applications are compactation for storage purposes, fast reconstruction for signal 
identification, and efficient reconstruction for signals analysis. The selection of the best 
wavelet basis is a function of the characteristics of the original signal to be reconstructed or 
analyzed. It also depends on the compact support and/or fast reconstruction required by 
the process. 
For image processing, for example, and due to improved resolution and efficiencies, the best 
wavelet basis is usually found to be in a family of multiresolution functions that are 
orthogonal or biorthogonal. However, these bases exploit (for efficiency reasons) a 
specialized spacing in the wavelet parameters that specify position (shift) and dilation 
(width) which requires the scale and translation parameters to be spaced by integer powers 
of 2. The spacing that is usually used is called a dyadic lattice. The nature of power system 
signals seems to point towards trigonometric based wavelets. For power system 
electromagnetic transient signals, the wavelet basis should have two desirable 
characteristics: 
1. Reduce the number of wavelet components that describe the signals 
2. Reveal the natural (physical) transient oscillatory components of the signal. 

 
6.3 Differential protection based on wavelet transform 
Traditional digital protective relays present several drawbacks; for instance, they are usually 
based on algorithms that estimate the fundamental component of the current and voltage 
signals neglecting higher frequency transient components. Moreover, phasor estimation 
requires a sliding-window of a cycle that may cause a significant delay. Furthermore, 
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accuracy is not assured. The Fourier transform is a very useful tool for analyzing the 
frequency content of stationary processes. When dealing with non-stationary processes, 
however, other methods for determining the frequency content must be applied. 
For this reason wavelet decomposition is ideal for studying transient signals and obtaining a 
much better current characterization and a more reliable discrimination. Wavelets allow the 
decomposition of a signal into different levels of resolution (frequency octaves). The basis 
function (Mother Wavelet) is dilated at low frequencies and compressed at high frequencies, 
so that large windows are used to obtain the low frequency components of the signal, while 
small windows reflect discontinuities. 
Wavelet transform has a special feature of variable time-frequency localization which is very 
different from windowed Fourier transform. 
Differential protection algorithms based on FFT have disadvantages including the 
neglecting of high frequency harmonics. Furthermore, different windowing techniques 
should be applied to calculate the current and voltage phasors and this causes significant 
time delay for the protection relay. In this case, accuracy is not assured completely. Due to 
increased standards of the delivered energy quality such as IEEE 519, high performance 
algorithms should be taken into account. 
The Grossmann & Morlet (1984) definition of the continuous wavelet transform (CWT) for a 
1-D signal  is: 

 

 

Where  ;  and , are the scale and the position parameters, 
respectively, with  being the set of positive real numbers;  denotes the Hilbert space 
of square integrable functions, and the bar denotes the conjugated complex. The constant 

 can be taken to be  in order to insure normalization in energy of the set of 

wavelets  obtained by a translation and dilation of the "mother wavelet" . The first 
formula permits the interpretation of the wavelet transform as a convolution product; the 
second as a correlation function. If the wavelet is symmetric and real   (as in the case of 
the Poission wavelet) both notions coincide (Moreau et al. 1997). 
The main advantage of the CWT is that it reveals the signal content in far greater detail than 
either Fourier analysis or the discrete wavelet transform (DWT). The continuous nature of 
the wavelet function is kept up to the point of sampling the scale-translation grid used to 
represent the wavelet transform is independent of the sampling of the signal under analysis. 
In this case, the discrete wavelet transform is: 
 

 

 
and the inverse discrete transform (IDWT) is 
 

 

 

In the  sense. 
The advantage of analysing a signal with wavelets is that it enables one to study the local 
features of the signal with a detail matched to their characteristic scale. In the temporal 
domain such a property allows for an effective representation of transient signals. We can 
say that the DWT enables one to make a multiresolution analysis of a signal. It is possible to 
have both smooth wavelets with compact support and symmetry of the associated scaling 
functions and this avoids bias for the locations of maxima and minima of the signal. 
The Wavelet Transform is well suited to the problem in this study. It is similar to the Fourier 
transform, but uses a basis function that decays rapidly from a central feature rather than 
the infinite sine function. For this reason wavelet decomposition is ideal for studying 
transient signals and obtaining a much better current characterization and a more reliable 
discrimination. 
The application areas of wavelets cover time and frequency analysis, electromagnetic 
analysis, filters, integral equations, transient analysis, picture processing, and data 
compressing techniques. 
In Figure 12, time and frequency localization are shown for the short time fast Fourier 
Transform. This approach was presented by Gabor in 1945. 
In Figure 13, time and frequency localization are shown for the continuous wavelet 
transform. This approach was presented by Morlet in 1980. 
 

 
Fig. 12. Gabor localizes the short time fast Fourier Transform (STFFT) in 1945 
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the infinite sine function. For this reason wavelet decomposition is ideal for studying 
transient signals and obtaining a much better current characterization and a more reliable 
discrimination. 
The application areas of wavelets cover time and frequency analysis, electromagnetic 
analysis, filters, integral equations, transient analysis, picture processing, and data 
compressing techniques. 
In Figure 12, time and frequency localization are shown for the short time fast Fourier 
Transform. This approach was presented by Gabor in 1945. 
In Figure 13, time and frequency localization are shown for the continuous wavelet 
transform. This approach was presented by Morlet in 1980. 
 

 
Fig. 12. Gabor localizes the short time fast Fourier Transform (STFFT) in 1945 
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Fig. 13. Morlet proposes the continuous wavelet transform in 1980 

  
6.4. Identification of signals using wavelet transform 
A wavelet-based signal processing technique  is an effective tool for power system transient 
analysis and feature extraction. An application of wavelet analysis to identify various types 
of currents flowing through a power transformer. 
Recently, several new protective schemes have been proposed to deal with problem in 
power transformer protection based on wavelet transforms (WT). Some of wavelet based 
methods use voltage and current signals for identification magnetizing inrush current from 
internal fault currents. The drawback of these methods is that those require the 
measurement of voltage in addition to current that increases the cost of hardware 
implementation. Another methods use combination of WT and neural network. Generally, 
in these methods a WT use as a pre-processor and the output of the wavelet is the input of 
the artificial neural network. The required algorithm training is some drawbacks of these 
algorithms.  
This work proposes a new algorithm based on the Wavelet Transform (WT) to identify 
magnetizing inrush current from internal fault current in three phase power transformers. 
To discriminate between various cases, the developed method uses different features of 
fault and inrush currents. At first the wavelet transform technique is applied to decompose 
transformer differential currents into approximated and detailed wavelet components (i.e. 

). Each of these levels are time domain signals cover specific frequency band. 
Then, a diagnosis criterion by using the specific wavelet coefficients is defined. This criterion 
discriminate internal faults from inrush currents accurately and in short time (less than 

 

) after the disturbance. The proposed algorithm is evaluated using various simulated 
different inrush and internal fault current signals on a power transformer. Magnetizing 
inrush currents and fault currents has been developed using the ATP-EMPT software. Then 
using wavelet and defined criteria, the transient fault current and magnetizing inrush 
current are differentiated. The results proved that the proposed technique is able to offer the 
desired responses and could be used as a very fast and accurate method. 

 
6.4.1 proposed algorithm 
The new proposed algorithm is based on waveform analysis of the fault and inrush 
currents. Fig. 14 shows the features of these waveforms. As is shown, the inrush 
current has a non-sinusoidal shape and there is a dead period per cycle in 
magnetizing inrush during which the current will be near zero because of the 
saturation characteristic of the transformer. Magnetizing inrush also exhibit a 
characteristic peaked wave which is caused by asymmetric saturation of the 
transformer core. The inrush current at the switching time increases very slowly 
and is near zero; while the progress of slope variation is increasing and after a few 
samples it amplifies in rapidly. However, when a fault occurs, slope of the 
differential current at the fault time is high, and slope variation decrease as time 
passes. These different behaviors could be used for discrimination of various cases. 
 

 
Fig. 14. Features of fault and inrush waveforms 
 
The proposed algorithm is based on this fact that the location of rapid slope variation, for 
inrush current occurs after internal fault by a time interval. A large slope in the time domain 
means that there are higher frequencies in the frequency domain. Therefore, following the 
internal fault, the amplitude of the high frequencies at the initial instants has larger values 
than the other times. However, following the inrush current the amplitude of the high 
frequencies components at the initial instants is lower than the other times. The differential 
current and resultant frequency levels (A7 and D1-D7) from WT due to inrush current and 
AB-G internal fault at t=0.1 s are shown in Figs. 15 and 12 respectively.  
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Through various simulations, it is found that the mentioned features appear in D4 wavelet 
(Table 2). The time duration between the time of disturbance and the maximum peak of the 
differential current in D4 is considered as the diagnosis criterion, and called . 
 

Wavelet Coefficients Frequency band (Hz) 
A7 0-39.06 
D7 39.06-78.125 
D6 78.125-156.25 
D5 156.25-312.5 
D4 312.5-625 
D3 625-1250 
D2 1250-2500 
D1 2500-5000 

Table 2. Wavelet frequency levels for sample rate 10 khz 
 

  
Fig. 15. Differential current and related 
frequency levels, inrush 

Fig. 16. Differential current and related 
frequency levels, AB-G fault 
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Fig. 16.  D4 and  for (a) inrush (b) internal fault 
 
Fig. 16 shows the interval time  and the absolute values of the differential current 
waveforms for the fault current and inrush current at frequency level D4. In the case of 
inrush current,  is higher than a setting , and in the case of internal fault,  
is lower than a setting . Comparison of  with  is considered for 
three phases and if at least in one phase , a fault is occurred and the trip 
command is issued and else, there is no any trip command. As shown in Fig. 16, the above 
criterion can be used to discriminate the internal fault from the inrush current in about a 
quarter a cycle. It provides a very quick and simple algorithm. 
The performance of the proposed algorithm was evaluated for different types of fault and 
inrush currents. Different cases of fault currents are simulated where some factors affecting 
the characteristics of the current, such as type of fault and load condition are considered. 
Different cases of inrush current are also simulated by varying some parameters that 
influence the characteristics of this current (e.g. residual core flux and voltage angle). 
Moreover, different cases for simultaneous inrush and fault conditions are simulated. 
 
A) Inrush Current 
For the case of magnetizing inrush current, the no-load transformer at a supply line voltage 
of 400 kV is considered. Fig. 17 shows the three-phase differential currents and the 
frequency range D4 for ,  and . Switching time is  and residual 
core flux and phase angle of the supply is chosen and respectively. In 
this figure the frequency range D4 and relevant differential current (doted curve) in each 
phase are shown after initiation of disturbance. As it is seen from the Fig. 18  

and  are obtained. 
Investigation of various simulations reveals that values of  for various inrush currents are 
usually greater than  (i.e., at least there is a period that for it  is greater than this 
range). Also for internal fault currents there is a period that for it  is less than 

. Therefore we can choose equal to . In this paper  is chosen as 
. As seen from Fig. 18 ,  and  which shows 
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Through various simulations, it is found that the mentioned features appear in D4 wavelet 
(Table 2). The time duration between the time of disturbance and the maximum peak of the 
differential current in D4 is considered as the diagnosis criterion, and called . 
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waveforms for the fault current and inrush current at frequency level D4. In the case of 
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is lower than a setting . Comparison of  with  is considered for 
three phases and if at least in one phase , a fault is occurred and the trip 
command is issued and else, there is no any trip command. As shown in Fig. 16, the above 
criterion can be used to discriminate the internal fault from the inrush current in about a 
quarter a cycle. It provides a very quick and simple algorithm. 
The performance of the proposed algorithm was evaluated for different types of fault and 
inrush currents. Different cases of fault currents are simulated where some factors affecting 
the characteristics of the current, such as type of fault and load condition are considered. 
Different cases of inrush current are also simulated by varying some parameters that 
influence the characteristics of this current (e.g. residual core flux and voltage angle). 
Moreover, different cases for simultaneous inrush and fault conditions are simulated. 
 
A) Inrush Current 
For the case of magnetizing inrush current, the no-load transformer at a supply line voltage 
of 400 kV is considered. Fig. 17 shows the three-phase differential currents and the 
frequency range D4 for ,  and . Switching time is  and residual 
core flux and phase angle of the supply is chosen and respectively. In 
this figure the frequency range D4 and relevant differential current (doted curve) in each 
phase are shown after initiation of disturbance. As it is seen from the Fig. 18  

and  are obtained. 
Investigation of various simulations reveals that values of  for various inrush currents are 
usually greater than  (i.e., at least there is a period that for it  is greater than this 
range). Also for internal fault currents there is a period that for it  is less than 

. Therefore we can choose equal to . In this paper  is chosen as 
. As seen from Fig. 18 ,  and  which shows 

0.005 0.01 0.015 0.02 0.025 0.03
0  

0.05

0.1

0.15

0.2

|D
4|

0.005 0.01 0.015 0.02 0.025 0.03
0   

0.075

0.15

0.225

0.3

Time(s)

|D
4|

tp

tp

(a)

(b)
Disturbance Time



Pattern Recognition494

 

that there is no fault and the maltrip is not issued. Obtained results for different conditions 
of inrush currents are shown in Table 3. This table shows the value of for different phases 
due to different inrush current. The first column shows phase  voltage angle at the instant 
of switching. In the second column differential current of various phase are shown. In both 
no-load and full-load cases shown in next columns, influence of remnant fluxes in the power 
transformer core at instant of switching as percent of the rated flux have been studied. 
As shown in this table for all of the studied cases, the obtained value of  is 
greater than . As a result all of these cases are correctly classified as inrush 
cases. 

 
Fig. 18. Frequency range |D4| for ,  and for unloaded magnetizing inrush 
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Table 3. Values of    for inrush currents 
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B) Fault Current 
To obtain the simulation data for internal fault, different faults such as single line-to-ground 
fault, line-to-line fault, line-to-line-to-ground fault and three phase fault simulated on the 
inside of the transformer zone with a balanced Y-connected load of phase connected to the 
secondary side. The resistance at the fault location is chosen as zero and transformer is 
assumed to have rated load (in the case of on-load simulations). 
Fig. 19 shows three-phase differential currents and the frequency range D4 due to , 

 and . In this case, the line-to-line-to-ground fault (fault AB-G) on the secondary 
side of the transformer is occurred, the transformer is full-load and the fault time is . 
As it is seen from the Fig. 19 the time duration between of the initiate instant of disturbance 
(fault time= 20 ms) to the maximum peak of the differential current in D4, for each phases 
are computed as:  and . These values in each 
phase will be compared with . As seen Fig. 19  for phase  and phase  are lesser 
than  ( ,  and ) which shows the 
disturbance is a fault. Respect to obtained results it is founded that the proposed method 
discriminate fault from inrush current quickly, less than a quarter a cycle after the 
disturbance. 
 

 
 

Fig. 19. Frequency range |D4| for ,  and 
 for AB-G internal fault 

 

Fig. 20. Differential current and related frequency 
levels for simultaneous internal fault AB-G and inrush 

 
The results of application of the proposed algorithm for internal fault conditions have been 
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that there is no fault and the maltrip is not issued. Obtained results for different conditions 
of inrush currents are shown in Table 3. This table shows the value of for different phases 
due to different inrush current. The first column shows phase  voltage angle at the instant 
of switching. In the second column differential current of various phase are shown. In both 
no-load and full-load cases shown in next columns, influence of remnant fluxes in the power 
transformer core at instant of switching as percent of the rated flux have been studied. 
As shown in this table for all of the studied cases, the obtained value of  is 
greater than . As a result all of these cases are correctly classified as inrush 
cases. 

 
Fig. 18. Frequency range |D4| for ,  and for unloaded magnetizing inrush 
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B) Fault Current 
To obtain the simulation data for internal fault, different faults such as single line-to-ground 
fault, line-to-line fault, line-to-line-to-ground fault and three phase fault simulated on the 
inside of the transformer zone with a balanced Y-connected load of phase connected to the 
secondary side. The resistance at the fault location is chosen as zero and transformer is 
assumed to have rated load (in the case of on-load simulations). 
Fig. 19 shows three-phase differential currents and the frequency range D4 due to , 
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As it is seen from the Fig. 19 the time duration between of the initiate instant of disturbance 
(fault time= 20 ms) to the maximum peak of the differential current in D4, for each phases 
are computed as:  and . These values in each 
phase will be compared with . As seen Fig. 19  for phase  and phase  are lesser 
than  ( ,  and ) which shows the 
disturbance is a fault. Respect to obtained results it is founded that the proposed method 
discriminate fault from inrush current quickly, less than a quarter a cycle after the 
disturbance. 
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C) Simultaneous Internal Fault and Inrush Current 
After studying fault and inrush currents cases separately, some more complicated cases, i.e. 
simultaneous internal fault and inrush current are considered. In Table 5, four different 
cases have been studied and in all cases the fault has been properly diagnosed fast and 
reliably. Fig. 20 shows the differential current (phase B) for simultaneous inrush and fault 
(AB-G) on the primary side at  as well as WT coefficients in D1-D7 and A7. Fig. 21 
shows the three phase differential currents and D4 for ,  and . As it is seen 
from the Fig. 21 the  amount for differential current in D4 for three phases, is 

 and . As seen Fig. 21  for phase  and phase  
are less than  ( ,  and ). Thus, the 
occurrence of the fault is detected accurately shorter than a quarter of a cycle ( 2 
ms). 
 

 

 
Fig. 21. Differential currents and |D4| for three phases for simultaneous internal fault AB-G and inrush current 
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 phase No load Full load 
a-g a-b a-b-g a-b-c a-g a-b a-b-g a-b-c 

0 
a 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
b 0.7 0.1 0.1 1.5 0.7 0.12 0.1 1.5 
c 0.1 0.1 0.1 0.1 0.1 0.1 0.12 0.11 

80 
a 0.1 0.13 0.1 0.1 0.12 0.1 0.1 0.1 
b 4.8 0.11 0.1 0.1 5 0.13 0.1 0.11 
c 0.1 0.1 1.5 0.1 0.11 0.1 1.5 0.1 

120 
a 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
b 1.5 0.1 0.1 0.1 3.1 0.1 0.1 0.1 
c 0.1 0.1 0.1 1.5 0.1 0.1 0.1 1.5 

 
Table 4. Values of  for internal faults 
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ASE 
NO LOAD FULL LOAD 
A-G A-B A-B-G A-B-C A-G A-B A-B-G A-B-C 

80 

 
 
 

A 0.2 0.1 0.1 2.5 0.1 0.1 1.5 1.5 
B 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 
C 5.1 0.1 2.5 0.1 4.6 0.1 0.1 0.1 

 
 

-
58  

A 0.2 0.1 2.5 0.2 0.1 0.2 0.1 0.1 
B 0.2 0.1 0.1 0.2 3.5 0.2 1.5 0.1 

C 4.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Table 5. Values of  for simultaneous inrush currents and internal faults 
 
7. Conclusion  
 

This manuscript invetigates the coomon approachs for pattern recognition of current signals 
for identification of differential currets which flow into the differential relays. Final it 
presents a successful technique to distinguishing between internal faults and inrush currents 
in power transformers using wavelet transform. The diagnosis process in this method is 
based on the different characteristics of differential currents waveforms. A diagnosis 
criterion by quantifying the extracted features is defined in terms of time difference of 
amplitude of wavelet coefficients over a specific frequency band. By using this criterion 
function for three phases, internal faults can be accurately discriminated from inrush 
current. Several cases are used for testing the proposed algorithm. The simulation results 
show fast, accurate and reliable capabilities of the algorithm to identify different types of 
currents flowing in a power transformer under various inrush currents and internal faults 
conditions. The proposed scheme is a powerful yet simple way of assigning transformer 
differential current to inrush and fault groups. 
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1. Introduction 
 

Environmental topics have gained the attention of increasingly large portions of global 
population. In different languages and through diverse means, civil associations launch 
campaigns for people to realize the importance of protecting the environment (Toepfer et al., 
2004; Hisas et al., 2005), even attracting the active participation of governments (United 
Nations, 1992; United Nations, 1997; Secretaría de Comercio y Fomento Industrial, 1986; 
Web del Departamento de Medio Ambiente y Vivienda de la Generalitat de Cataluña, 2007). 
Computer Sciences have not been immune to the awareness dawn. In this sense, several 
techniques of artificial intelligence have been applied to the analysis and forecasting of 
environmental data, such as artificial neural networks (Sucar et al., 1997; Dutot et al., 2007; 
Salazar-Ruiz et al., 2008) and Support Vector Machines (Wang et al., 2008). One particular 
technique which has been recently used in the prediction of environmental data —in 
particular, air quality data— is the Gamma classifier (López, 2007). This relatively new 
algorithm has shown some promising results. 
In this work the Gamma classifier is applied to forecast air quality data present in public 
databases measured by the Mexico City Atmospheric Monitoring System (Sistema de 
Monitoreo Atmosférico, SIMAT in Spanish) (Sistema de Monitoreo Atmosférico de la Ciudad 
de México, 2007). 
The rest of the chapter is organized as follows: the air quality data and SIMAT are described 
in section 2, while section 3 is dedicated to the Gamma classifier. Section 4 contains the main 
proposal of this work, and in section 5 the experimental results are discussed. Conclusions 
and future work are shown in section 6. 

 
2. SIMAT 
 

The Mexico City Atmospheric Monitoring System (Sistema de Monitoreo Atmosférico de la 
Ciudad de México, SIMAT in Spanish) is tightly coupled with the evolution of the Mexican 
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capital, and with the problems inherent to its development. The information herein 
presented is taken from (Sistema de Monitoreo Atmosférico de la Ciudad de México, 2007). 
SIMAT is committed to operate and maintain a trustworthy system for the monitoring of air 
quality in Mexico City, as well as analyzing and publishing this information in order to fulfil 
the current requirements and legislation. The objective of SIMAT is to watch and evaluate 
the air quality in Mexico City, as a pre-emptive measure for health protection of its 
inhabitants, in order to promptly inform the populace as well as enable decision making in 
prevention and air quality improvement programs. SIMAT is made up by four specialized 
subsystems, one Atmospheric Monitoring Mobile Unit, and a Calibration Standards 
Transfer Laboratory. The four subsystems are: 

• RAMA (Automatic Atmospheric Monitoring Network, Red Automática de Monitoreo 
Atmosférico in Spanish) takes continuous and permanent measurements of several 
contaminants: ozone (O3), sulphur dioxide (SO2), nitrous oxides (NOx), carbon 
monoxide (CO), particulate matter less than 10 microns in diameter (PM10), and 
particulate matter less than 2.5 microns in diameter (PM2.5); each measurement is 
taken automatically every hour. 

• REDMA (Manual Atmospheric Monitoring Network, Red Manual de Monitoreo 
Atmosférico in Spanish) monitors particulate matter suspended in the air — 
particulate matter less than 10 microns in diameter (PM10), particulate matter less 
than 2.5 microns in diameter (PM2.5), and total suspended particulate matter 
(PST)—, as well as their concentration and composition; each measurement is taken 
manually every six days. 

• REDMET (Meteorological and Solar Radiation Network, Red de Meteorología y 
Radiación Solar in Spanish) monitors meteorological parameters —such as wind 
direction and speed— and solar radiation, in order to elaborate meteorological 
forecasting and dispersion models; it also records and monitors the UV index. 

• REDDA (Atmospheric Deposit Network, Red de Depósito Atmosférico in Spanish) 
measures both dry and wet deposit, whose analysis allows the study of rain 
properties and the flow of toxic substances from the atmosphere to the surface. 
 

IMECA Condition Effects on Health 
0-50: green Good Suitable for conducting outdoor activities 
51-100: yellow Regular Possible discomfort in children, the elderly and people with 

illnesses 
101-150: 
orange 

Bad Cause of adverse health effects on the population, 
particularly on children and older adults with cardiovascular 
and / or respiratory illnesses such as asthma 

151-200: red Very Bad Cause of greater adverse health effects on the population, 
particularly on children and older adults with cardiovascular 
and / or respiratory illnesses such as asthma 

>200: purple Extremely 
Bad 

Cause of adverse health effects in the general population. 
Serious complications may present in children and older 
adults with cardiovascular and / or respiratory illnesses such 
as asthma 

Table 1. IMECA and its implications for health 

 

The Air Quality Metropolitan Index (Índice Metropolitano de la Calidad del Aire, IMECA in 
Spanish) is a reference value for people to be aware of the pollution levels prevalent in any 
zone, in a precise and timely manner, in order to take appropriate protection measures. 
When the IMECA of any pollutant is greater than 100 points, its concentration is dangerous 
for health and, as the value of IMECA grows, the symptoms worsen, as can be seen in table 
1. 
Generating the IMECA is one of the primordial tasks of SIMAT. Since July 1st, 1998, the 
IMECA has been transmitted 24 hours every day to different electronic and printed 
communication media. Currently, the hourly value of IMECA can be consulted online in 
(Sistema de Monitoreo Atmosférico de la Ciudad de México, 2007) and also by telephone at 
the IMECATEL service, which started operations on March 22, 2001. On both of these 
services, information is available 24 hours a day. 
In November 2006, the Gaceta Oficial del Distrito Federal published the Federal District 
Environmental Norm (Norma Ambiental para el Distrito Federal) NADF-009-AIRE-2006 
(Gobierno del Distrito Federal, 2006), which states the specifications for elaborating the 
IMECA for the criteria pollutants, such as: O3, NO2, SO2, CO, PM10 and PM2.5.  
For each of the criteria pollutants, the norm states equations for calculating the 
corresponding IMECA, from the concentration data. Tables 2, 3, and 4 show these equations 
for CO, O3, and SO2, respectively. With these equations, the IMECA value and IMECA level 
(condition) can be easily computed from the concentration of each of the pollutants, in parts 
per million (ppm). 
 

IMECA 
Interval 

Concentration 
Intervals (ppm) 

Equations 

0-50: green 0-5.50 [ ]IMECA[CO] con CO 50 5.50= ×  

51-100: yellow 5.51-11.00 [ ]IMECA[CO] 1.82 con CO 49 5.49= + ×  

101--150: 
orange 

11.01-16.50 [ ]IMECA[CO] 2.73 con CO 49 5.49= + ×  

151--200: red 16.51-22.00 [ ]IMECA[CO] 3.64 con CO 49 5.49= + ×  

>200: purple >22.00 [ ]IMECA[CO] con CO 201 22.01= ×  

Table 2. IMECA calculation equations for carbon monoxide (CO) 
 

IMECA Interval Concentration 
Intervals (ppm) 

Equations 

0-50: green 0-0.055 

[ ]3
3

con O 100
IMECA[O ]

0.11
×

=  
51-100: yellow 0.056-0.110 
101--150: orange 0.111-0.165 
151--200: red 0.166-0.220 
>200: purple >0.220 

Table 3. IMECA calculation equation for ozone (O3) 
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IMECA Interval Concentration Intervals 
(ppm) 

Equations 

0-50: green 0-0.065 

[ ]2
2

con SO 100
IMECA[SO ]

0.13
×

=  
51-100: yellow 0.066-0.130 
101--150: orange 0.131-0.195 
151--200: red 0.196-0.260 
>200: purple >0.260 

Table 4. IMECA calculation equation for sulphur dioxide (SO2) 

 
3. The Gamma classifier 
 

This pattern classifier, of recent proposal, has shown some very promising results. The 
following discussion is strongly based on (López, 2007). 
The basis of the Gamma classifier is the gamma operator, hence its name. In turn, the 
gamma operator is based on the α, β, and uβ operators and their properties, in particular 
when dealing with binary patterns coded with the modified Johnson-Möbius code. Also, it 
is important to define the sets A and B, since they are used throughout this work. Thus, let 
there be the sets A = {0, 1} and B = {0, 1, 2}. 

 
3.1 Preliminaries 
The alpha and beta operators are defined in tabular form, taking into account the definitions 
of the sets A and B, as shown in table 5.  
 

BAA →×:α   AAB →×:β  
x y α(x, y)  x y β(x, y) 
0 0 1  0 0 0 
0 1 0  0 1 0 
1 0 2  1 0 0 
1 1 1  1 1 1 
    2 0 1 
    2 1 1 

Table 5. Definition of the Alpha and Beta operators 
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With these tools we are now ready to present the algorithm for the Gamma classifier. 

 
3.2 The Gamma classifier algorithm 

Let +∈Z,,, pnmk ; { }p,,2,1 =µµx  be the fundamental pattern set with cardinality 

p, where nR∈∀ µµ x , and let nR∈y  be an n dimensional real-valued pattern to be 
classified. It is assumed that the fundamental set is partitioned into m different classes, each 

class having a cardinality miki ,,2,1, = , thus pki

m

i

=∑
=1

. In order to classify y , these 

steps are followed: 
 

1. Code the fundamental set with the modified Johnson-Möbius code, obtaining a 
value me   for each component. The me  value is calculated as defined in equation 3. 

i
j

p

i
m xe ∨

=

=
1

 
(3) 

2. Compute the stop parameter, as expressed in equation 4. 
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3. Code y  with the modified Johnson-Möbius code, using the same parameters used 

with the fundamental set. If any jy  is greater than the corresponding ( )me j , the 

gγ  operator will use such jy  instead of m. 

4. Transform the index of all fundamental patterns into two indices, one for the class 

they belong to, and another for their position in the class (i.e. µx  which belongs to 

class i becomes iωx ). 
5. Initialize θ  to 0. 
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IMECA Interval Concentration Intervals 
(ppm) 

Equations 

0-50: green 0-0.065 

[ ]2
2

con SO 100
IMECA[SO ]

0.13
×

=  
51-100: yellow 0.066-0.130 
101--150: orange 0.131-0.195 
151--200: red 0.196-0.260 
>200: purple >0.260 

Table 4. IMECA calculation equation for sulphur dioxide (SO2) 
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6. Do ( )θγ ω ,, j
i
jg yx  for each component of the fundamental patterns in each class, 

following equation 2. 
7. Compute a weighted sum ic  for each class, according to equation 5. 
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8. If there is more than one maximum among the different ic , increment θ  by 1 and 

repeat steps 6 and 7 until there is a unique maximum, or the stop condition ρθ ≥  
is fulfilled. 

9. If there is a unique maximum, assign y  to the class corresponding to that 
maximum: 

 y jC C=  such that 
1

m

i j
i

c c
=

=∨  
(6) 

10. Otherwise, assign y  to the class of the first maximum. 
 
The Gamma classifier is inspired on the Alpha-Beta associative memories, taking the alpha 
and beta operators as basis for the gamma operator. As such, the Gamma classifier is a 
member of the Associative Approach to Pattern Recognition, in which the algorithms and 
models use concepts and techniques derived from associative memories in order to 
recognize and classify patterns. 
As can be seen, this classifier is relatively simple, requiring simple operations. Its complexity 
is polynomial, as was shown in (López, 2007). Also, notice that while being iterative, the 
classifier will reach a solution in finite time: at best in one iteration, at worst in the same 
amount of iterations as the stop parameter indicates (see equation 4). 
Although the gamma classifier is not old, it has already been applied to several different 
problems: classification of the Iris Plant database, localization of mobile stations, software 
development effort estimation of small programs, and of course environmental data 
prediction. In these problems, some quite different from each other —and even unfulfilling 
of the basic premises of the classifier—, the Gamma classifier has shown competitive 
experimental result. 

 
4. Proposed application 
 

In the current work, the authors apply the Gamma classifier to environmental data obtained 
from databases derived from SIMAT, in order to forecast air quality data. In particular, the 
RAMA database was used. The experiments were conducted on three pollutants: carbon 
monoxide (CO), ozone (O3), and sulphur dioxide (SO2). The fundamental set was built with 
all the samples taken at a particular monitoring station during 2006, while the testing set 
was built with the samples taken during two non-consecutive months of 2007: February and 
May. Given that not all stations sample all pollutants, different stations were selected for 
each pollutant: IMP (Instituto Mexicano del Petróleo) for CO, CES (Cerro de la Estrella) for O3, 
and TLI (Tultitlán) for SO2. This can be seen also in table 6. 
 

 

  Fundamental set Testing set 
Experiment Pollutant Period Station Size Period Station Size 

1 CO 2006 IMP 8710 2007-Feb IMP 651 
2 CO 2006 IMP 8710 2007-May IMP 723 
3 O3 2006 CES 8749 2007-Feb CES 651 
4 O3 2006 CES 8749 2007-May CES 723 
5 SO2 2006 TLI 8749 2007-Feb TLI 641 
6 SO2 2006 TLI 8749 2007-May TLI 711 

Table 6. Composition and sizes of fundamental and testing sets for each experiment 
 
Each pattern is made up by n successive samples, concatenated each after the other. As the 
class for such pattern, the n+1–th sample is used. Thus, patterns are built from the samples 
as mentioned above, and then these patterns are grouped together in fundamental and 
testing set for each experiment. The composition and size of each of these set, for each 
experiment, can be seen in table 6. 

 
5. Experimental Results 
 

As mentioned in the previous section, both the fundamental set and the testing set were 
formed with data taken from the RAMA database for each pollutant, containing hourly 
samples of concentration measured in parts per million (ppm). 
With these data, input patterns of 10 samples were formed; that is, n=10. While the value of 
n can be arbitrarily chosen, 10 gave good results in preliminary tests. The output patterns 
(i.e. the class) were taken from the sample following the last sample in the pattern. 
Once trained with the fundamental set, the Gamma classifier is presented with the testing 
set, obtaining the pollutant concentration forecast for the next hour (see figures 1 through 6). 
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Fig. 1. Predicted values vs real values for carbon monoxide (CO), February 2007 
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Fig. 1. Predicted values vs real values for carbon monoxide (CO), February 2007 
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Fig. 2. Predicted values vs real values for carbon monoxide (CO), May 2007 
 
Here are some examples of the results obtained: for experiment 1 (CO Feb 2007) on February 
3rd at 18:00, the measured (real) CO concentration was 0.42 ppm, while the Gamma classifier 
predicted 0.42 ppm, which gives an error of 0.00 ppm. While this is clearly the best result, 
some error can be found too. For experiment 4 (O3 May 2007) on May 12 at 17:00 the system 
predicted 0.034 ppm of O3 concentration, while the observed value was 0.048 ppm, for an 
error of -0.014 ppm. Yet larger errors can be seen; for instance, on experiment 5 (SO2 Feb 
2007) February 19 at 1:00, the forecast was 0.059 ppm while the real concentration of SO2 was 
0.251, which amounts to an error of -0.192 ppm. These examples can be seen in table 7. 
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Fig. 3. Predicted values vs real values for ozone (O3), February 2007 
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Fig. 4. Predicted values vs real values for ozone (O3), May 2007 
 

Pollutant Date Hour Forecast Observation Error 
CO February 3 18:00 0.42 ppm 0.42 ppm 0.00 ppm 
O3 May 12 17:00 0.034 ppm 0.048 ppm -0.014 ppm 

SO2 February 19 1:00 0.059 ppm 0.251 ppm -0.192 ppm 
Table 7. Examples of results 
 
An interesting characteristic of these pollutants, which can be observed in the figures (1 
through 6), is that CO and O3 have a periodic behaviour according to the hour of the day,  
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Fig. 5. Predicted values vs real values for sulphur dioxide (SO2), February 2007 
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Fig. 2. Predicted values vs real values for carbon monoxide (CO), May 2007 
 
Here are some examples of the results obtained: for experiment 1 (CO Feb 2007) on February 
3rd at 18:00, the measured (real) CO concentration was 0.42 ppm, while the Gamma classifier 
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0.251, which amounts to an error of -0.192 ppm. These examples can be seen in table 7. 
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Fig. 3. Predicted values vs real values for ozone (O3), February 2007 
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Fig. 4. Predicted values vs real values for ozone (O3), May 2007 
 

Pollutant Date Hour Forecast Observation Error 
CO February 3 18:00 0.42 ppm 0.42 ppm 0.00 ppm 
O3 May 12 17:00 0.034 ppm 0.048 ppm -0.014 ppm 

SO2 February 19 1:00 0.059 ppm 0.251 ppm -0.192 ppm 
Table 7. Examples of results 
 
An interesting characteristic of these pollutants, which can be observed in the figures (1 
through 6), is that CO and O3 have a periodic behaviour according to the hour of the day,  
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Fig. 5. Predicted values vs real values for sulphur dioxide (SO2), February 2007 
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Fig. 6. Predicted values vs real values for sulphur dioxide (SO2), May 2007 
 
while SO2 does not present such an easily discernible periodic behaviour. In the case of CO, 
the peaks usually happen in the second quarter of the day (6:00 to 12:00 hours), while in the 
case of O3, the peaks occur more commonly around the third quarter of the day (12:00 to 
18:00 hours). It is also noteworthy that the greater errors usually appear close to a peak, 
either positive or negative; this last observation is true for all three pollutants. 
An example of the latter observation is that on February 15 and 18, there was a sharp change 
in the behaviour of SO2: while during the rest of the month the concentration of this 
pollutant was low (it remained in the 0-0.65 ppm range, indicating a good IMECA 
condition), in those days the concentration reached 0.119 ppm (Feb. 15) and 0.251 (Feb. 18) 
for an IMECA condition of very bad. Again, on May 19, the SO2 concentration reached 
exceptional levels: 0.174 ppm when the mean for that month was 0.007 ppm. It is clear that 
these were exceptional situations, which lie out of the ordanary situations. If the Gamma 
classifier (or any other algorithm for that matter) is not trained with such exceptional 
ciscumstances, it is to be expected that the corresponding forecast will not be accurate. 
Two quantitative measures of the performances shown by the Gamma classifier on this 
application were used. On one side, Rooted Mean Square Error (RMSE), which is a widely 
used measure of performance and is calculated as shown in equation 7. On the other side, 
the bias, which can be calculated by following equation 8, is used to describe how much the 
system is underestimating or over estimating the results. For both equations, iP  is the i–th 

predicted value and iO  is the i–th observed (real) value. 
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The RMSE and bias exhibited by the results of each experiment are shown in table 8. Notice 
that the bias is small in all cases, especially if the size of the testing sets (641 patterns in the 
smallest, 723 in the largest) is taken into account. 
 

Experiment Pollutant Station  Testing Period RMSE Bias 

1 CO IMP 2007-Feb 0.726013 7.96 
2 CO IMP 2007-May 0.611769 45.58 
3 O3 CES 2007-Feb 0.012302 0.607 
4 O3 CES 2007-May 0.014443 0.306 
5 SO2 TLI 2007-Feb 0.012096 0.573 
6 SO2 TLI 2007-May 0.010487 0.439 

Table 8. RMSE and bias for each experiment 
 
The RMSE exhibited by the three pollutants is also small. Again, that of CO is comparatively 
larger, although when the order of the data processed is taken into account (the mean of CO 
concentration during 2006 was 1.237 ppm), having a RMSE of 0.726 ppm for February and 
one of 0.612 ppm for May is relatively small. Ozone exhibited smaller values for RMSE: 
0.0123 ppm for February and 0.0144 ppm for May. If these values are compared to the 
average O3 concentration for 2006, 0.0262 ppm, it is clear that the error shown is not too 
high. The smallest RMSE of the three pollutants was presented by SO2: 0.0121 ppm on 
February and 0.0105 ppm on May. The annual mean for this pollutant in 2006 was 0.0099 
ppm, which is smaller than the RMSE for both experiments. 
These comparisons between the RMSE and the previous annual mean for each pollutant is 
not a particularly good measure of how good the prediction was. They only indicate that the 
errors are close to said mean, preferably smaller. A better measure would be to compare 
these results with those offered by using other methods. 
However, there is a problem with such comparison too. Most authors use data taken from 
databases close to them. Therefore, most results are obtained by processing data different for 
each method; it even happens that different databases use different units to measure the 
same pollutants [!]. Thus, a direct comparison is not appropriate, even though the same 
measure of error is used. It is due to this lack of a standard, benchmarking database that 
comparisons should be done carefully. 
One example is the comparison between the results presented in (Sucar et al., 1997) and 
those shown in the current work. The experiments on both publications were done with the 
same database (SIMAT – RAMA), with the same pollutant (in the case of experiments 3 and 
4: O3), with the same unit of sample measure (ppm), and with the same measure of error 
(absolute average error). However, the data used for experimentation was taken from 
different stations and different years. Although the results are comparable, they are not 
directly comparable. And this is the best match of data; greater caution should be taken 
when comparing the results obtained by experiments done on data taken from different 
databases. 
Table 9 presents a comparison between the results obtained in this work and those 
presented in other publications, with the restriction of using the same database: SIMAT; in 
particular, the RAMA database. Notice that the results presented in (Sucar et al., 1997) are 
greatly surpassed. 
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Fig. 6. Predicted values vs real values for sulphur dioxide (SO2), May 2007 
 
while SO2 does not present such an easily discernible periodic behaviour. In the case of CO, 
the peaks usually happen in the second quarter of the day (6:00 to 12:00 hours), while in the 
case of O3, the peaks occur more commonly around the third quarter of the day (12:00 to 
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The RMSE and bias exhibited by the results of each experiment are shown in table 8. Notice 
that the bias is small in all cases, especially if the size of the testing sets (641 patterns in the 
smallest, 723 in the largest) is taken into account. 
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directly comparable. And this is the best match of data; greater caution should be taken 
when comparing the results obtained by experiments done on data taken from different 
databases. 
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Experiment Algorithm Used Pollutants 
Considered 

Size of Training 
/ Testing Sets 

Performance  
(Abs. Avg. Error) 

 Bayesian network 
(Sucar et al., 1997) O3 (ppm) 400 / 200 0.221000 

 Neural network 
(Sucar et al., 1997) O3 (ppm) 400 / 200 0.160000 

 C4.5 (Sucar et al., 
1997) O3 (ppm) 400 / 200 0.176400 

 
Gamma classifier 

(Yáñez-Márquez et al., 
2008) 

SO2 (ppm) 8749 / 709 0.000408 

1 Gamma classifier 
(current work) CO (ppm) 8710 / 651 0.012042 

2 Gamma classifier 
(current work) CO (ppm) 8710 / 723 0.062183 

3 Gamma classifier 
(current work) O3 (ppm) 8749 / 651 0.000918 

4 Gamma classifier 
(current work) O3 (ppm) 8749 / 723 0.000417 

5 Gamma classifier 
(current work) SO2 (ppm) 8749 / 641 0.000676 

6 Gamma classifier 
(current work) SO2 (ppm) 8749 / 711 0.000795 

Table 9. Comparison of related results (SIMAT database) in absolute average error given for 
pollutant concentration 
 

Experiment Algorithm Used Pollutants 
Considered 

Size of Training / 
Testing Sets 

Performance 
(RMSE) 

 Neural network 
(Dutot et al., 2007) O3 (μg/m3) 613 / 105 15 

 Neural network 
(Salazar-Ruiz et al., 

2008) 
O3 (ppb) 

NA / 1343 9.43 

 NA /2367 13.79 

 Online SVM 
(Wang et al., 2008) SO2 (μg/m3) 240 / 168 12.96, 10.90 

 CALINE3 (Gokhale 
& Raokhande, 2008) 

PM10, PM2.5 
(μg/m3) ~120 88, 55 

 
Gamma classifier 

(Yáñez-Márquez  
et al., 2008) 

SO2 (ppm) 8749 / 709 0.009218 

2 Gamma classifier 
(current work) CO (ppm) 8710 / 723 0.611769 

3 Gamma classifier 
(current work) O3 (ppm) 8749 / 651 0.012302 

6 Gamma classifier 
(current work) SO2 (ppm) 8749 / 711 0.010487 

Table 10. Comparison of related results (diverse databases) in RMSE, given for pollutant 
concentration; NA indicates a not available value, ppb means parts per billion 

 

Even taking into account the above mentioned discussion, the error exhibited by the Gamma 
classifier is several orders of magnitude smaller: the average error of experiment 3 (0.000918 
ppm) is more than 150 times smaller than that of the neural network (0.160000 ppm); and 
experiment 3 did not give the best results [!]. Also, the results of experiments 3 and 4 
(0.000417 ppm) are coherent with those of (Yáñez-Márquez et al., 2008) (0.000408 ppm), in 
the sense that they are quite similar. 
On the other hand, table 10 shows the results of several experiments, done with data taken 
from different databases (one experiment was chosen for each pollutant among those 
presented in the current work). Taking these differences into consideration, as well as the 
fact that the results reported are based on different units (some in parts per million, other in 
parts per billion, and yet others in μg/m3), it can be said that the Gamma classifier exhibits 
competitive performance. 

 
6. Conclusions and Future Work 
 

In this work, the utility of applying the Gamma classifier to forecasting air quality data has 
been experimentally shown. More specifically, the hourly concentration of three pollutants: 
carbon monoxide, ozone, and sulphur dioxide, as taken from the RAMA database, was 
analyzed. Six experiments were done, two on each pollutant: year 2006 was learned, and the 
hourly concentration values for the months of February 2007 and May 2007 were predicted. 
The experimental results show a small error when compared to the data being predicted. 
However, it is noteworthy that most significant errors occur when the graph of the data 
changes direction (i.e. starts decreasing after increasing, or vice versa), implying a quite 
likely venue of improvement. 
It is also clear that there were exceptional situations present in the data from which the 
testing sets for experiments 5 and 6 were built. In particular, the days February 15 and 18, 
and again in May 19, presented SO2 concentration values which were out of the ordinary. 
Although these exceptional situations caused the Gamma classifier to incur on large errors 
for those days, the RMSE for both experiments was still competitive. 
One possibility to improve the forecast results when such situations arise is to train the 
system with data taken during events similar to these, when the conditions were 
anomalous. 
A different approach to improve the results, and not just for these experiments, would be to 
take into account several variables at the same time. For instance, learn from the data taken 
at several monitoring stations, or learning from several (related) pollutants at the same time. 
It is also worthy of mention that direct comparisons with results reported in other works are 
difficult, since the same data is seldom used for experimentation on different works. It 
would greatly improve these comparisons to have a standard database to serve as a 
benchmark. 
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Abstract: 
Spamming is the abuse of electronic messaging systems to send unsolicited bulk messages. 
It is becoming a serious problem for organizations and individual email users due to the 
growing popularity and low cost of electronic mails. Unlike other web threats such as 
hacking and Internet worms which directly damage our information assets, spam could 
harm the computer networks in an indirect way ranging from network problems like 
increased server load, decreased network performance and viruses to personnel issues  like 
lost employee time, phishing scams, and offensive content. Though a large amount of 
research has been conducted in this area to prevent spamming from undermining the 
usability of email, currently existing filtering methods’ performance still suffers from 
extensive computation (with large volume of emails received) and unreliable predictive 
capability (due to highly dynamic nature of emails). In this chapter, we discuss the 
challenging problems of Spam Recognition and then propose an anti-spam filtering 
framework; in which appropriate dimension reduction schemes and powerful classification 
models are employed. In particular, Principal Component Analysis transforms data to a 
lower dimensional space which is subsequently used to train an Artificial Neural Network 
based classifier. A cost-sensitive empirical analysis with a publicly available email corpus, 
namely Ling-Spam, suggests that our spam recognition framework outperforms other state-
of-the-art learning methods in terms of spam detection capability. In the case of extremely 
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high misclassification cost, while other methods’ performance deteriorates significantly as 
the cost factor increases, our model still remains stable accuracy with low computation cost.  

 
1. Introduction 
 

Email is widely accepted by the business community as a low cost communication tool to 
exchange information between business entities which are physically distant from one 
another. It minimizes the cost of organizing an in-person meeting. It is reported by a recent 
survey SurePayroll (Surepayroll, 2007), over 80% of small business owners believe email is a 
key to the success of their business and most people today spend between 20% to 50% of 
their working time using email, including reading, sorting and writing emails. Due to the 
very low cost of sending email, one could send thousands of malicious email messages each 
day over an inexpensive Internet connection. These junk emails, referred to as spam, can 
severely reduce staff productivity, consume significant network bandwidth and lead to 
service outages. In many cases, such messages also cause exposure to viruses, spyware and 
inappropriate contents that can create legal/compliance issues, loss of personal information 
and corporate assets. Therefore, it is important to accurately estimate costs associated with 
spam and evaluate the effectiveness of countermeasures such as spam-filtering tools. 
Though such spam prevention capability is implemented in existing email clients, there are 
some barriers that discourage users from utilizing this feature including error-prone and 
labor-intensive maintenance of filtering rules. Many researchers have developed different 
automatic spam detection systems but most of them suffer from low accuracy and high false 
alarm rate due to huge volume of emails, the wide spectrum of spamming topics and 
rapidly changing contents of these messages, especially in the case of high misclassification 
cost (Bayler, 2008). To deal with such challenges, this chapter proposes an anti-spam 
filtering framework using a highly performing Artificial Neural Network (ANN) based 
classifier. ANN is widely considered as a flexible “model-free" or “data-driven” learning 
method that can fit training data very well and thus reduce learning bias (how well the 
model fits the available sample data). However, they are also susceptible to the overfitting 
problem, which can increase generalization variance, i.e. making the predictive model 
unstable for unseen instances. This limitation can be overcome by combining ANN with a 
simple Linear Regression algorithm which makes the resulting classification model a stable 
semi-parametric classifier. Such model combination aims at stabilizing non-linear learning 
techniques while retaining their data fitting capability. Empirical analysis with the Ling-
Spam benchmark confirms our superior spam detection accuracy and low computation cost 
in comparison with other existing approaches.  
This chapter is organized as follow. Firstly, an overview of the spam problem is presented 
with associated negative impacts and protection techniques. This is followed by the 
application of Machine Learning (ML) to spam recognition, related works and details of the 
Ling-Spam corpus. Next, a brief review of several commonly used classification models and 
our proposed framework is given. The subsequent section compares the performance of our 
method with other learning techniques using the benchmark corpus under different cost 
scenarios. Finally, we provide some conclusion remarks for this chapter and future research 
directions.  

 

 

2. Spam Recognition and Machine Learning techniques 

2.1. Spam Recognition as a Challenging Task 
 

2.1.1. Overview of Spamming 
Spamming is one of the biggest challenges facing Internet consumers, corporations, and 
service providers today. Email spamming,  also known as Unsolicited Bulk Email (UBE) or 
Unsolicited Commercial Email (UCE), is the practice of sending unwanted email messages, 
frequently with commercial content, in large quantities to an indiscriminate set of recipients 
(Schryen, 2007). Due to the increasing popularity and low cost of email, there are more and 
more spam circulating over the Internet. Spam emails were found to account for 
approximately 10% of the incoming message to corporate networks (L. F. Cranor & 
LaMacchia, 1998) and currently costs businesses US $ 13 billion annually (Swartz, 2003). Not 
only wasting time and consuming bandwidth, undesired emails are extremely annoying to 
most users due to their unsuitable contents, ranging from advertising vacations to 
pornographic materials. 
Spam is usually classified into two categories which have different effects on Internet users. 
Cancellable Usenet spam is a single message sent to many Usenet newsgroups (Wolfe, Scott, & 
Erwin, 2004). This spamming attack can overwhelm the users with a barrage of advertising 
or other irrelevant posts. It also subverts the ability of system administrators and group 
owners to manage the topics they accept on their systems. The second type of spam is Email 
spam which targets individual users with direct mail messages (Bayler, 2008). Not only 
causing loss of productivity for email users, it also costs money for Internet Service 
Providers (ISP) and online services to transmit spam, and these costs are transferred directly 
to other subscribers. Though there are different types of spam, they all share some common 
properties. First, the sender’s identity and address are concealed. Second, spam emails are 
sent to a large number of recipients and in high quantities. In fact, spam is economically 
viable to its senders not only because it is low cost to send an email, but also because 
spammers have no operating costs beyond the management of their mailing lists. This 
attracts numerous spammers and the volume of unsolicited mail has become very high. 
Finally, spam messages are unsolicited, that is, the individuals receiving spam would 
otherwise not have opted to receive it. 
To successfully send a spam message, spammers usually undertake two steps: (1) collecting 
target email addresses and (2) bypassing anti-spam measures (Schryen, 2007). The later task 
involves cleverly disguising an unsolicited message as a non-spam message with normal 
appearing subject lines and other ways of getting around anti-spam software. The first task 
seems easier but in fact could be very challenging. To collect valid email addresses of 
potential target victims, the following techniques can be deployed (Bayler, 2008):   
• Buying lists of addresses from some companies or other spammers. 
• Harvesting email addresses from web sites or UseNet News posts with automated 

programs. 
• Stealing users address books on compromised computers. 
• Collecting addresses via Internet Relay Chat (IRC) programs. 
• Guessing email addresses, then sending email to see if it goes through (Directory 

Harvest attacks). 
• Using false reasons to trick a user into giving up their email address (Social Engineering 

attacks). 
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Though spam emails are troublesome, most of them can be easily recognized by human 
users due to their obvious signatures. For example, spam emails normally relate to specific 
topics such as prescription drugs, get-rich-quick schemes, financial services, qualifications, 
online gambling, discounted or pirated software. However, with a huge volume of spam 
messages received every day, it would not be practical for human users to detect spam by 
reading all of them manually. Furthermore, spam sometimes comes disguised, with a 
subject line that reads like a personal message or a non-delivery message. This makes highly 
accurate spam detection software desirable for encountering spam.  

 
2.1.2 Impacts of Spamming and Preventive Techniques 
Even though spam does not threaten our data in the same way that viruses do, it does cause 
businesses billions of lost dollars worldwide. Several negative impacts of spam are listed as 
follow (Schryen, 2007): 
• Spam is regarded as privacy invasion because spammers illegally collect victim’s email 

address (considered as personal information) 
• Unsolicited emails irritate Internet users. 
• Non-spam emails are missed and/or delayed. Sometimes, users may easily overlook or 

delete critical emails, confusing them with spam.  
• Spam wastes staff time and thereby significantly reduce enterprises’ productivity.  
• Spam uses a considerably large bandwidth and uses up database capacity. This causes 

serious loss of Internet performance and bandwidth. 
• Some spam contains offensive content.  
• Spam messages can come attached with harmful code, including viruses and worms 

which can install backdoors in receivers’ systems.  
• Spammers can hijack other people’s computers to send unwanted emails. These 

compromised machines are referred to as “zombie networks", networks of virus- or 
worm-infected personal computers in homes and offices around the globe. This ensures 
spammers’ anonymity and massively increases the number of spam messages can be 
sent.   

Various counter-measures to spam have been proposed to mitigate the impacts of 
unsolicited emails, ranging from regulatory to technical approaches. Though anti-spam legal 
measures are gradually being adopted, their effectiveness is still very limited. A more direct 
counter-measure is software-based anti-spam filters which attempt to detect spam from 
legitimate mails automatically. Most of the existing email software packages are equipped 
with some form of programmable spam filtering capability, typically in the form of 
blacklists of known spammers (i.e. block emails that come from a black list; check whether 
emails come from a genuine domain name or web address) and handcrafted rules (i.e. block 
messages containing specific keywords and unnecessary embedded HTML code). Because 
spammers normally use forged addresses, the blacklist approach is very ineffective. 
Handcrafted rules are also limited due to their reliance on personal preferences, i.e. they 
need to be tuned to characteristics of messages received by a particular user or groups of 
users. This is a time consuming task requiring resources and expertise and has to be 
repeated periodically to account for changing nature of spam messages (L. F. Cranor, 
LaMacchia, B.A. , 1998). 
Spam detection is closely related to Text Categorization (TC) due to their text-based contents 
and similar tasks. However, unlike most TC problems, spamming is the act of blindly mass-

 

mailing an unsolicited message that makes it spam, not its actual content (Schryen, 2007): 
any otherwise legitimate message becomes spam if blindly mass-mailed. From this point of 
view, spamming becomes a very challenging problem to the sustainability of the Internet, 
given the content of emails the only foundation for spam recoginition. Nevertheless, it 
seems that the language of current spam messages constitutes a distinctive genre, and that 
the topics of most current spam messages are rarely mentioned in legitimate messages, 
making it possible to train successfully a text classifier for spam recognition. 

 
2.2. Machine Learning for Spam Recognition 
Recent advances of Machine Learning (ML) techniques in Text Classification (TC) have 
attracted immense attention from researchers to explore the applicability of learning 
algorithms in anti-spam filtering (Bayler, 2008). In particular, a collection of messages is 
input to a learning algorithm which infers underlying functional dependencies of relevant 
features. The result of this process is a model that can, without human intervention, classify 
a new incoming email as spam or legitimate according to the knowledge collected from the 
training stage. Apart from automation which frees organizations from the need of manually 
classifying a huge amount of messages, this model can be retained to capture new 
characteristics of spam emails. To be most useful in real world applications, the anti-spam 
filters need to have a good generalization capability, that is, they can detect malicious 
messages which never occur during the learning process. There has been a great deal of 
research conducted in this area, ranging from simple methods such as propositional learner 
Ripper with “keyword-spotting rules” (Cohen, 1996) to more complicated approaches such 
as Bayesian networks using bags of words representation and binary coding (Sahami, 1998). 
In (Androutsopoulos, Koutsias, Chandrinos, Paliouras, & Spyropoulos, 2000), a system 
implementing Naïve Bayes and a k-NN technique is reported to be able to outperform the 
keyword-based filter of Outlook 2000 on the Ling-Spam corpus. Ensemble methods also 
prove their usefulness in filtering spam. For example, staked Naïve Bayes and k-NN can 
achieve good accuracy (Drucker, Wu, & Vapnik, 1999), and Boosted trees were shown to 
have better performance than individual trees, Naïve Bayes and k-NN alone (Carreras & 
Marquez, 2001).  A support vector machine (SVM)(Drucker et al., 1999) is also reported to 
achieve a higher detection rate as well as lower false alarm rate for spam recognition 
compared with other discriminative classification methods. It is suggested that email 
headers play a vital role in spam recognition, and to get better results, classifiers should be 
trained on features of both email headers and email bodies (Androutsopoulos et al., 2000). 

 
2.3 Ling-Spam Benchmark 
The Ling-Spam corpus (Androutsopoulos et al., 2000) is used as a benchmark to evaluate 
our proposed algorithm with other existing techniques, the  anti-spam filtering task. Using 
this publicly available dataset, we can conduct tractable experiments and also avoid 
complications of privacy issues. While spam messages do not pose this problem as they are 
blindly distributed to a large number of recipients, legitimate email messages may contain 
personal information and cannot usually be released without violating the privacy of their 
recipients and senders.  
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The corpus contains legitimate messages collected from a moderated mailing list on 
profession and science of linguistics and the spam messages collected from personal 
mailboxes: 
• 2412 legitimate messages with text added by the list’s server removed.  
• 481 spam messages (duplicate spam messages received on the same day excluded) 

The headers, HTML tags, and attachments of these messages are removed, leaving only the 
subject line and body text. The distribution of the dataset (16.6% is spam) makes it easy to 
identify legitimate emails because of the topic-specific nature of the legitimate mails. This 
dataset is partitioned into 10 stratified subsets which maintain the same ratio of legitimate 
and spam messages as in the entire dataset. Though some research (Androutsopoulos et al., 
2000; Carreras & Marquez, 2001; Hsu, Chang, & Lin, 2003; Sakkis et al., 2003) has been 
conducted on this data showing their comparative efficiency, most of them suffer from high 
a false alarm rate which results in a degraded performance when the misclassification cost is 
high. Overcoming this problem is our major objective in this chapter.  

 
3. Spam Recognition Methods 
 

This section discusses commonly used learning algorithms for spam recognition problems.  

 
3.1. Naïve Bayes 
Naive Bayes is a well-known probabilistic classification algorithm which has been used 
widely for spam recognition (Androutsopoulos et al., 2000). According to Bayes' theorem, 
we can compute the probability  that a message with vector 

belongs to a class : 

 

The calculation of  is problematic because most all novel messages are 
different from training messages. Therefore, instead of calculating probability for messages 
(a combination of words); we can consider their words separately. By making the 
assumption that  are conditionally independent given the class c, we have: 

 

 
3.2. Memory Based Learning 
In (Androutsopoulos et al., 2000), an anti-spam filtering technique using Memory-Based 
Learning (MBL) that simply stores the training messages. The test messages are then 
classified by estimating their similarity to the stored examples based on their overlap metric 
which counts the attributes where the two messages have different values. Given two 
instances  and , their overlap distance is: 

 

Where  if x = y or 1 otherwise. 

 

The confidence level that a message  belongs to a class c is calculated based on the classes 
of other neighbor instances : 

 
MBL’s performance can be significantly improved by introducing some weighting schemes. 

 
3.3. Distance Weighting  
Depending on how far a test instance is away from its neighborhood, its’ confidence level is 
estimated: 

 

 
3.3.1 Attribute Weighting 
Unlike the basic k-neighborhood classifiers where all attributes are treated equally, MBL 
assigns different weights to the attributes; depending on how well they discriminate 
between the categories, and adjust the distance metric accordingly. In particular, an attribute 

 has a weight of  which is the reduction of entropy H(C) (uncertainty on any category C 
of a randomly selected instance) and the expected value of entropy  (uncertainly 
on any category C given the value of attribute X). This means an attribute would have a 
higher weight if knowing its value reduces uncertainty on category C. 

 

Where 
  

  
The distance between two instances is recalculated as below: 

 

 
3.4. Boosted Decision Tree 
Boosted Tree (BT) is a popular method implemented in many anti-spam filters with great 
successes (Carreras & Marquez, 2001). It uses the ADA-Boost algorithm (Schapire & Singer, 
2000) to generate a number of Decision Tress classifiers which are trained by different 
sample sets drawn from the original training set. Each of these classifiers produces a 
hypothesis from which a learning error can be calculated. When this error exceeds a certain 
level, the process is terminated. A final composite hypothesis is then created by combining 
individual hypotheses. 

 
3.5. Support Vector Machine 
Support Vector Machines (SVM) (Drucker et al., 1999) have become one of the popular 
techniques for text categorization tasks due to their good generalization nature and the 
ability to overcome the curse of dimensionality. SVM classifies data by a set of 
representative support vectors. Assume that we want to find a discriminant function f(x) 
such that . A possible linear discriminant function can be presented as 
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ability to overcome the curse of dimensionality. SVM classifies data by a set of 
representative support vectors. Assume that we want to find a discriminant function f(x) 
such that . A possible linear discriminant function can be presented as 
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 where  is a separating hyperplane in the data space. 
Consequently, choosing a discriminant function is to find a hyperplane having the 
maximum separating margin with respect to the two classes. A SVM model is constructed 
by solving this optimization problem.  

 
3.6. Artificial Neural Network 
Artificial neural network (ANN) has gained strong interests from diverse communities due 
to its ability to identify the patterns that are not readily observable. Multi-Layer Perceptron 
(MLP) is the most popular neural network architecture in use today. This network uses a 
layered feed-forward topology in which the units each perform a biased weighted sum of 
their inputs and pass this activation level through a transfer function to produce their 
output (Rumelhart & McClelland, 1986). Though many applications have implemented MLP 
for superior learning capacity, its performance is unreliable when new data is encountered. 
A recently emerging branch of ANN, the RBF networks, is also reported to gain great 
successes in diverse applications. In this chapter, MLP is implemented as typical ANN 
models for spam recognition.  

 
4. Classification Framework for Spam Recognition 
 

Although letting undetected spam pass through a filter is not as dangerous as blocking a 
legitimate message, one can argue that among one million incoming emails, a few thousand 
unsolicited message that are misclassified as normal is still very costly. Hence, anti-spam 
filters really need to be accurate, especially when they are used in large organizations. 
Advanced ML techniques have been used to improve performance of spam filtering 
systems. Amongst those methods, Artificial Neural Network (ANN) has been gaining strong 
interests from diverse communities due to its ability to identify the patterns that are not 
readily observable. Despite recent successes, ANN based applications still have some 
disadvantages such as extensive computation and unreliable performance. In this study, we 
use a Modified Probabilistic Neural Network (MPNN) which is developed by Zaknich 
(Zaknich, 1998).  
If there exists a corresponding scalar output  for each local region (cluster) which is 
represented by a center vector , MPNN can be modeled as follow (Zaknich, 2003): 

 

With Gaussian function     
Where 

= center vector for cluster i in the input space 
= scalar output related to  
= number of input vectors  within cluster  

 = single smoothing parameter chosen during network training 
M = number of unique centers  
Though MPNN is reported to provide acceptable accuracy and affordable computation, it, 
just like other ANN, cannot classify reliably when an unusual input which differs from their 
training data emerges. As a result, it is essential that some degree of generalization capacity 

 

must be incorporated in the MPNN based classifiers. A possible approach to this problem is 
to incorporate MPNN with a linear model which offers stability, analyzability and fast 
adaptation (Hayes, 1996).  

 
4.1 Description 
Figure 1 shows the overall filtering framework proposed for spam recognition problem. 
There are 4 main phases.  
 

 
Fig. 1. Proposed anti-spam filtering framework 

 
4.1.1. Phase 1: Data Representation and Preprocessing 
The purpose of data preprocessing is to transform messages in the mail corpus into a 
uniform format that can be understood by the learning algorithms. Features found in mails 
are normally transformed into a vector space in which each dimension of the space 
corresponds to a given feature in the entire corpus. Each individual message can then be 
viewed as a feature vector. This is referred to as the “bag of words” approach. There are two 
methods  to represent elements of the feature vector: (1) multi-variate presentation assigns a 
binary value to each element showing that the word occurs in the current mail or not and (2) 
multi-nomial presentation represents each element as a number that shows the occurrence 
frequency of that word in the current mail. A combination of “bag of words” and multi-
variate presentation is used in our experiments (the order of the words is neglected). To 
construct the feature vectors, the important words are selected according to their Mutual 
Information (MI) (Sakkis et al., 2003): 
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The words with the highest MI values are selected as the features. Assume that there are n 
features to be chosen, each mail will be represented by a feature vector  where 

 are the values of binary attributes , indicating the presence or absence of 
an attribute (word) in current message. 
Moreover, word stemming and stop-word removal are two important issues that need to be 
considered in parsing emails. Word stemming refers to converting words to their 
morphological base forms (e.g. “gone” and “went” are reduced to root word “go”). Stop-
word removal is a procedure to remove words that are found in a list of frequently used 
words such as “and, for, a”. The main advantages of applying the two techniques are the 
reduction of feature space dimension and possible improvement on classifiers’ prediction 
accuracy by alleviating the data sparseness problem(Androutsopoulos et al., 2000).  The 
Ling-Spam corpus has four versions, each differs from each other by the usage of a 
lemmatizer and a stoplist (removes the 100 most frequently used words). We use the version 
with lemmatizer  and stoplist enabled because it performs better when different cost 
scenarios are considered (Androutsopoulos et al., 2000). Words that appear less than 4 times 
or longer than 20 characters are discarded. 
Also, it is found that phrasal and non-textual attributes may improve spam recognition 
performance (Androutsopoulos et al., 2000). However, they introduce a manual 
configuration phase. Because our target was to explore fully automatic anti-spam filtering, 
we limited ourselves to word-only attributes. 
Finally, some data cleaning techniques are required after converting raw data into 
appropriate format. In particular, to deal with missing values, the simplest approach is to 
delete all instances where there is at least one missing value and use the remainder. This 
strategy has the advantage of avoiding introducing any data errors. Its main problem is that 
discard of data many damage the reliability of the resulting classifier. Moreover, the method 
cannot be used when a high proportion of instances in the training set have missing values. 
Together, these weaknesses are quite substantial. Although it may be worth trying when 
there are few missing values in the dataset, this approach is generally not recommended. 
Instead, we use an alternative strategy in which any missing values of a categorical attribute 
are replaced by its most commonly occurring value in the training set. For continuous 
attributes, missing values are replaced by its average value in the training set.  

 
4.1.2. Phase 2: Feature Transformation 
The tremendous growth in computing power and storage capacity has made today’s 
databases, especially for text categorization tasks, contain very large number of attributes. 
Although faster processing speeds and larger memories may make it possible to process 
these attributes, this is inevitably a losing struggle in the long term. Besides degraded 
performance, many irrelevant attributes will also place an unnecessary computational 
overhead on any data mining algorithm. There are several ways in which the number of 
attributes can be reduced before a dataset is processed. In this research, a dimension reduction 
(also called feature pruning or feature selection) scheme called Principal Component Analysis 
(PCA) (Jolliffe, 2002) is performed on the data to select the most relevant features. This is 
necessary given the very large size and correlated nature of the input vectors. PCA 

 

eliminates highly correlated features and transforms the original data into lower 
dimensional data with most relevant features. From our observation, the selected features 
are words that express the distinction between spam and non-spam groups, i.e. they are 
either common in spam or legitimate messages, not in both. Several punctuation and special 
symbols (e.g. “$”, “@”) are also selected by PCA, and therefore, they are not eliminated 
during preprocessing. 

 
4.1.3. Phase 3: Email Classification  
The data after being processed by the Feature selection module is input to train the 
Classification Model. The resulting model is then used to label emails as either “legit” or 
“spam”, indicating whether a message is classified as legitimate or a spam email. To 
implement the Classification Model, we propose an intelligent way of combining the linear 
part of the modeling with a simple non-linear model algorithm. In particular, MPNN is 
adapted in the nonlinear compensator which will only model higher ordered complexities 
while linear model will dominate in case of data far away from training clusters.  It is 
described in the following equation.  

 

Where 
   = Linear Regression Model 

= Nonlinear Residual Compensator (MPNN) 
   = initial offset 
   = weights of the linear model 

 Compensation factor 
 = difference between the linear approximation and the training 

output 
 = distance from the input vector to cluster i in the input space 

The combination of linear regression model and MPNN is referred to as Linear Regression – 
Modified Probabilistic Neural Network (LR-MPNN). The piecewise linear regression model 
is firstly approximated by using all available training data in a simple regression fitting 
analysis. The MPNN is then constructed to compensate for higher ordered characteristics of 
the problem. Depending on different portions of the training set and how far the test data is 
away from the training data, the impact of nonlinear residual function is adjusted such that 
the overall Mean Square Error is minimized. This adjustment is formulated by the 
compensation factor . In particular, is computed based on how well the linear model 
performs on a training examples and distances from a test vector to clusters of training data.  
Firstly, the goodness of the linear model  on a particular training data is measures by 

 which is defined as the difference between the linear approximation and the actual 
output of the training data. A very small value of  means that   fits the data well in 
this case and therefore it should have higher priority or the impact of the nonlinear model 

 is minimized. In contrast, large value of  indicates that   should compensate 
more for the degraded accuracy of .  
Secondly, to determine how far a given test vector is away from the available training data, 
a distance  from that vector to each training cluster  is calculated.  For any data which is 
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far away from the training set, i.e.  is large, the value of  will be minimized. As the 
result, will have minimal residual effect and  will dominate. This is because  
has more stable generalization than  for new instances. 

 
4.1.4. Phase 4: Evaluation 
To evaluate the overall performance of the framework, the Cost-sensitive Evaluation 
module computes several performance metrics and also takes into consideration different 
cost scenarios.  

 
4.2. Performance Evaluation 
4.2.1. Performance Measures 
To measure the performance of different learning algorithms, the following measures are 
used: 

 

 

 

 

From the above equations, Spam Recall (SR) is, in fact, the percentage of spam messages 
( ) that are correctly classified ( ) while Spam Precision (SP) compares 
the number of correct spam classifications ( ) to the total number of messages classified 
(correctly and incorrectly) as spam ( ). As the Miss Rate (MR) increases, the 
number of misclassifications of legitimate emails increases while the False Alarm Rate (FAR) 
increases, the number of misclassifications of spam emails (passing from the filter) increases. 
Therefore, both of FAR and MR should be as small as possible for a filter to be effective 
(should be 0 for a perfect filter). 

 
4.2.2. Cost-Sensitive Analysis 

a) Cost Scenarios 
Depending on what action is taken by a spam filter in response to a detected spam message, 
there are three major misclassification cost scenarios. The no-cost case is when the filter 
merely flags a detected spam message. This notification of spam does not risk losing any 
legitimate mail due to misclassification error (no misclassification cost), but it still takes time 
for the human users to check and delete the spam messages manually. To minimize the user 
efforts on eliminating spam, the filter can automatically detect and remove the suspicious 
messages. However, the total cost of misclassification in this case can be extremely high due 
to the seriousness of falsely discarding legitimate mails. This refers to the high-cost scenario.  
Beside the above approaches, the filter may not either flag or completely eliminate the 
detected spam messages. Instead, it might resend the message to the sender. This approach, 
referred to as moderate-cost, combats spamming by increasing its cost via Human Interactive 
Proofs (HIP) (L. F. Cranor & LaMacchia, 1998). That is, the sender is required to give a proof 
of humanity that matches a puzzle before his message is delivered. The puzzles could be, for 

 

example, images containing some text that is difficult to automatically analyze by pattern 
recognition software. Alternatively, for anti-spam programs, simple questions (e.g. “what is 
one plus one”) can be used instead of graphical puzzles.  
The concept of HIP has been implemented in many security related applications. For 
example, certain web-based email systems use HIP to verify that password cracking 
software is not systematically brute-forcing to guess a correct password for email accounts. 
When a user types his password wrong three times, a distorted image is presented that 
contains a word or numbers and the user must verify before being allowed to continue. A 
human can easily convert the image to text, but the same task is extremely difficult for a 
computer. Some email client programs have anti-spam filtering heuristics using HIP 
implemented. When such programs receive an email that is not in the white-list of the user, 
they send the sender a password. A human sender can then resend the email containing the 
received password. This system can effectively defeat spammers because spam is bulk, 
meaning that the spammers do not bother to check replies manually or commonly use a 
forged source email address. The cost of creating and verifying the proofs is small, but they 
can be computationally impossible for automated mass-mailing tools to analyze. Though 
spammers can still use human labor to manually read and provide the proofs and finally 
have their spam message sent. HIP actually restricts the number of unsolicited messages 
that the spammer can send for a certain period of time due to the inability to use cheap 
automated tools (Carreras & Marquez, 2001). This barrier for spammers effectively 
introduces additional cost to sending spam messages. 
In this chapter, spam recognition experiments are conducted in a cost-sensitive manner. As 
emphasized previously, misclassifying a legitimate message as spam is generally more 
severe than mistakenly recognizing a spam message as legitimate. Let  (legitimate 
classified as spam) and  (spam classified as legitimate) denote the two types of error, 
respectively. We invoke a decision-theoretic notion of cost, and assume that  is  times 
more costly than . A mail is classified as spam if the following criterion is met 
(Androutsopoulos et al., 2000): 

 

In the case of anti-spam filtering:  
 

The above criterion becomes: 
 ,with   

Depending on which cost scenarios are considered, the value of  is adjusted accordingly.  
• No-cost scenario (e.g. flagging spam messages):   
• Moderate-cost scenario (e.g. semi-automatic filter which notifies senders about blocked 

messages):   
• High-cost scenario (e.g. automatically removing blocked messages):  

b) Total Cost Ratio 
Accuracy and error rates assign equal weights to the two error types (LS, SL) and are 
defined: 

           
However, in the cost-sensitive contexts, the accuracy and error rates should be made 
sensitive to the cost difference, i.e. each legitimate message is counted for  times. That is, 
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example, images containing some text that is difficult to automatically analyze by pattern 
recognition software. Alternatively, for anti-spam programs, simple questions (e.g. “what is 
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The concept of HIP has been implemented in many security related applications. For 
example, certain web-based email systems use HIP to verify that password cracking 
software is not systematically brute-forcing to guess a correct password for email accounts. 
When a user types his password wrong three times, a distorted image is presented that 
contains a word or numbers and the user must verify before being allowed to continue. A 
human can easily convert the image to text, but the same task is extremely difficult for a 
computer. Some email client programs have anti-spam filtering heuristics using HIP 
implemented. When such programs receive an email that is not in the white-list of the user, 
they send the sender a password. A human sender can then resend the email containing the 
received password. This system can effectively defeat spammers because spam is bulk, 
meaning that the spammers do not bother to check replies manually or commonly use a 
forged source email address. The cost of creating and verifying the proofs is small, but they 
can be computationally impossible for automated mass-mailing tools to analyze. Though 
spammers can still use human labor to manually read and provide the proofs and finally 
have their spam message sent. HIP actually restricts the number of unsolicited messages 
that the spammer can send for a certain period of time due to the inability to use cheap 
automated tools (Carreras & Marquez, 2001). This barrier for spammers effectively 
introduces additional cost to sending spam messages. 
In this chapter, spam recognition experiments are conducted in a cost-sensitive manner. As 
emphasized previously, misclassifying a legitimate message as spam is generally more 
severe than mistakenly recognizing a spam message as legitimate. Let  (legitimate 
classified as spam) and  (spam classified as legitimate) denote the two types of error, 
respectively. We invoke a decision-theoretic notion of cost, and assume that  is  times 
more costly than . A mail is classified as spam if the following criterion is met 
(Androutsopoulos et al., 2000): 

 

In the case of anti-spam filtering:  
 

The above criterion becomes: 
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Depending on which cost scenarios are considered, the value of  is adjusted accordingly.  
• No-cost scenario (e.g. flagging spam messages):   
• Moderate-cost scenario (e.g. semi-automatic filter which notifies senders about blocked 

messages):   
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b) Total Cost Ratio 
Accuracy and error rates assign equal weights to the two error types (LS, SL) and are 
defined: 

           
However, in the cost-sensitive contexts, the accuracy and error rates should be made 
sensitive to the cost difference, i.e. each legitimate message is counted for  times. That is, 
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when a legitimate message is misclassified, this counts as  errors; and when it passes the 
filter, this counts as  successes. This leads to the definition of weighted accuracy and weighted 
error (WAcc and WErr): 

           
The values of performance measures (weighted or not) are misleadingly high. To get a true 
picture of the performance of a spam filter, its performance measures should be compared 
against those of a “baseline” approach where no filter is used. Such a baseline filter never 
blocks legitimate messages while spam emails always pass through the filter. The weighted 
accuracy and error rates for baseline are: 

           
Total cost ratio (TCR) is another measure which evaluates performance of spam filter to that 
of a baseline. 

 

Greater TCR values indicate better performance. For TCR < 1, the baseline is better. If cost is 
proportional to wasted time, a TCR is intuitively equivalent to measuring how much time is 
wasted to manually delete all spam messages when the filter is used ( ) compared to the 
time wasted to manually delete any spam messages that passed the filter ( ) plus the 
time needed to recover from mistakenly blocked legitimate messages ( ) 

 
5.Experiment Results 
 

5.1. Experiment Design 
The proposed spam recognition framework is tested on the Ling-Spam corpus to compare 
with other existing learning methods including Naïve Bayes (NB), Weighted Memory Based 
Learning (WMBL), Boosted Trees (BT), Support Vector Machine (SVM) and Neural Network 
models (Multilayer Perceptron – MLP. Unlike other text categorization tasks, filtering spam 
messages is cost sensitive (Cohen, 1996), hence evaluation measures that account for 
misclassification costs are used. In particular, we define a cost factor  with different values 
corresponding to three cost scenarios: first, no cost considered ( ) e.g. marking messages 
as spam; second, semi-automatic filtering ( ) e.g. issuing a notification about spam; and 
fully automatic filtering ( ), e.g. discarding the spam messages.  
The rate at which a legitimate mail is misclassified as spam is calculated by False Alarm Rate 
(FAR) and it should be low for a filter to be useful. Spam Recall (SR) measures the 
effectiveness of the filter, i.e. the percentage of messages correctly classified as spam, while 
Spam Precision (SP) indicates the filter’s safety, i.e. the degree to which the blocked messages 
are truly spam. Because SR can be derived from FAR (e.g. FAR = 1 – SR), we will use SR, SP, 
and Total Cost Ratio (TCR) for evaluation. Besides comparing how accurately the filters 
perform, their computation is also measured using the computation time (in seconds) 
required for each classifier. Particularly, the total computation time is a summation of the 
time that a classifier needs to perform cross validation, testing on data and to calculate the 
relevant performance metrics (e.g. misclassification rate, accuracy …).  
Stratified tenfold cross validation is employed for all experiments. That is, the corpus is 
partitioned into 10 stratified parts and each experiment was repeated 10 times, each time 

 

reserving a different part as the testing set and using the remaining 9 parts as the training 
set. Performance scores are then averaged over the 10 iterations. 
In addition to the studies conducted by other researchers on the same Ling-Spam corpus 
(NB (Androutsopoulos et al., 2000), WMBL (Sakkis et al., 2003), SVM (Hsu et al., 2003), BT 
(Carreras & Marquez, 2001)), we also reproduced their experiments (based on the average 
value of TCR of three cost scenarios) to confirm and determine the parameters’ values that 
give best performance for different learning methods. The optimal attribute size of these 
methods can be found in Figure 2. An MLP wth 15 neurons in hidden layer is deployed 
using the Matlab Neural Network toolbox.  

 
5.2. Experiment Result 
 

5.2.1. TCR and Attribute Selection 
From Figure 2, for   and , most of filters demonstrate a stable performance, with 
TCR constantly greater than 1. These filters differ from one another in terms of their 
sensitivity on attribute selection and the number of attributes which give maximum TCR. 
Our LR-MPNN is found to be moderately sensitive to attribute selection and it obtains the 
highest TCR  for  with 300 attributes selected. When , LR-MPNN achieves very 
competitive TCR compared to SVM but with less number of attributes (200 attributes) and 
hence involves less computation overheads.  

 
a) 
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c) 

Fig. 2. TCR score of spam recognition methods 
 
For , all classifiers have their TCR reduced significantly for the effect of very high 
misclassification cost. The difference between low and high values of misclassification cost  
is the increased performance of the baseline filter when  increases. That is, without a filter 
in use (baseline), all legitimate mails are retained, preventing the baseline from 
misclassifying those legitimate mails as spam. Therefor, large  benefits the baseline and 
make it hard to be defeated by other filters. Recall that TCR is the measure of performance 
that a filter improves on the baseline case. As a result, TCR generally reduces when  
increases. Another important observation is that, the performance of most classifiers, except 
for BT and LR-MPNN, fall below the base case (TCR<1) for some numbers of selected 
attributes. This is due to the relative insensitivity of BT and LR-MPNN to attribute selection. 
In this case, the LR-MPNN is considered to be the best performing filter with the highest 
TCR.  

 

5.2.2. Spam Precision and Spam Recall 
In this experiment, the classifiers are run iteratively by a tenfold cross-validation process. 
The SP ans SR rates are recorded in Table 1. We observe that, for the no-cost scenario (

), our method, LR-MPNN, is found to have best SP while its SR (0.958) is very similar to the 
highest SR of NB (0.959). For , LR-MPNN obtains the highest SR (0.869) and second 
highest SP (0.991) after BT algorithm. Finally, in the case of extremely high misclassification 
cost ( ), LR-MPNN significantly outperforms other methods with all evaluation 
metrics are of highest values.  

Method λ =1 λ =9 λ =999 
SR      SP SR SP SR SP 

NB 0.959 0.973 0.861 0.975 0.790 0.984 
WMBL 0.860 0.917 0.790 0.982 0.601 0.857 
SVM 0.954 0.981 0.847 0.983 0.671 0.995 
BT 0.957 0.980 0.864 0.993 0.768 0.996 
MLP 0.852 0.975 0.782 0.977 0.623 0.979 
LR-MPNN 0.958 0.986 0.869 0.991 0.793 0.998 

Table 1. Precision/Recall evaluation on Ling-Spam data 

 
5.2.3. Computational Efficiency  
Apart from comparing precision, recall and TCR scores between classifiers, we also measure 
their computational efficiency. Table 2 shows that WMBL had the minimum computation 
time (2.5 mins), followed by NB, LR-MPNN, SVM, MLP, BT respectively. LR-MPNN can 
achieve comparative spam precision and recall with a shorter computation time (3.5 mins) 
compared with BT (11.5 mins) and SVM (5 mins). Moreover, considering TCR scores, the 
models that require less time (WMBL, NB) than LR-MPNN do not perform as accurately as 
LR-MPNN.  

Method Computation Time (mins) λ =1 λ =9 λ =999 
TCR TCR TCR 

NB 3 10.80 7.80 5.02 
WMBL 2.5 7.11 5.62 1.33 
SVM 5 20.47 9.11 3.42 
BT 11.5 21.18 7.35 4.91 
MLP 7 12.20 4.50 0.25 
LR-MPNN 3.5 24.17 8.99 5.25 

Table 2. Computation Time, Memory size evaluation on Ling-Spam data 
 
In summary, the most important finding in our experiment is that the proposed LR-MPNN 
model can achieve very accurate classification (high TCR, SP, SR) compared to other 
conventional learning methods. Such superior performance of LR-MPNN was observed 
most clearly for  though it always obtains the highest TCR and very competitive SP, 
SR rates for other cases of . Our algorithm also requires relatively small computation time 
to obtain comparable or even higher predictive accuracy to other methods.  
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Table 1. Precision/Recall evaluation on Ling-Spam data 

 
5.2.3. Computational Efficiency  
Apart from comparing precision, recall and TCR scores between classifiers, we also measure 
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models that require less time (WMBL, NB) than LR-MPNN do not perform as accurately as 
LR-MPNN.  

Method Computation Time (mins) λ =1 λ =9 λ =999 
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NB 3 10.80 7.80 5.02 
WMBL 2.5 7.11 5.62 1.33 
SVM 5 20.47 9.11 3.42 
BT 11.5 21.18 7.35 4.91 
MLP 7 12.20 4.50 0.25 
LR-MPNN 3.5 24.17 8.99 5.25 

Table 2. Computation Time, Memory size evaluation on Ling-Spam data 
 
In summary, the most important finding in our experiment is that the proposed LR-MPNN 
model can achieve very accurate classification (high TCR, SP, SR) compared to other 
conventional learning methods. Such superior performance of LR-MPNN was observed 
most clearly for  though it always obtains the highest TCR and very competitive SP, 
SR rates for other cases of . Our algorithm also requires relatively small computation time 
to obtain comparable or even higher predictive accuracy to other methods.  
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6. Conclusions and Future Work 
 

In this chapter, we proposed a novel anti-spam filtering framework in which appropriate 
dimension reduction schemes and powerful classification models are employed. 
Particularly, Principal Component Analysis transforms data to a lower dimensional space. 
At the classification stage, we combine a simple linear regression model with a lightweight 
nonlinear neural network in an adjustable way. This learning method, referred to as Linear 
Regression Modified Probabilistic Neural Network (LR-MPNN), can take advantage of the 
virtues of both. That is, the linear model provides reliable generalization capability while the 
nonlinear can compensate for higher order complexities of the data. A cost-sensitive 
evaluation using a publicly available corpus, Ling-Spam, has shown that our LR-MPNN 
classifier compares favorably to other state-of-the-art methods with superior accuracy, 
affordable computation and high system robustness. Especially for extremely high 
misclassification cost, while other methods’ performance deteriorates as  increases, the LR-
MPNN demonstrates an absolutely superior outcome but retains low computation cost. LR-
MPNN also has significant low computational requirement, i.e. its training time is shorter 
than other algorithms with similar accuracy and cost. Though our proposed model achieves 
good results in the conducted experiments, it is not necessarily the best solution for all 
problems. However, comparatively high predictive accuracy along with low computational 
complexity distinguish it from other state-of-the-art learning algorithms, and particularly 
suitable for cost-sensitive spam detection applications.   
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1. Introduction  

Password-based authorization is a key security feature to gain access to accounts, files, and 
like PINs, can be used to control access to secure rooms, cabinets, electronic equipments, 
control panels, and other valuables. It relieves employees from carrying physical keys or 
smart cards and does not require the use of more expensive biometric devices. Memorizing 
a username or user number of ID and a matching password is sufficient to get access to the 
controlled computer account, file, building area or equipment. Typically, a key pad is 
required to key in the user ID followed by the password, non-volatile storage to record and 
save the matching (user ID, password) combination, and some controller for controlling the 
password detection operation. The user ID and passwords entered by the user via the key 
pad are latched (L) and the memorized (user ID, password) pairs on record are retrieved  
from storage, and then compared with the (user ID, password) combination entered by the 
user via the key pad. If there is a match the user is given access, otherwise the reading of 
saved (user ID, password) combinations on record in the storage are read one by one until a 
match is found, or the list of pairs are exhausted in the storage and the user is denied access.  
Other alternative implementations are possible. The major weakness of such digital system 
implementations is the possibility to steal saved (user ID, password) pairs by probing the 
bus connecting the storage to the data path containing the comparator as depicted in Fig. 1. 
Such insecurity can be avoided by encrypting the (user ID, password) pairs prior to saving 
them in storage, and then decrypting them after reading them from storage and prior to 
performing the comparison operation. However this requires either more programmable 
and fast hardware which executes encryption and decryption in software or a dedicated 
encrypt/decrypt hardware engine. If the encryption scheme’s keys are compromised, then 
this probing technique can still reveal the matching (user ID, password) combinations. 
Another security vulnerability of storing the user ID and passwords combinations in a table 
saved in storage is that even though the user IDs and passwords may be encrypted, the 
hacker may modify table entries or create new table entries with fake user ID and password 
combinations.  

29
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An alternative is to employ an artificial neural network circuit which “memorizes” the 
matching (user ID, password) combinations and generates the matching signal as a result of 
presenting the user-entered (user ID, password) pair via the key pad. Such an artificial 
neural network achieves this operation by being trained with a set of (user ID, password, 
output) triplets where the output is 1 when the password matches the user ID, and 0 
otherwise. In the training phase, the artificial neural network refines its link weights to more 
closely match the outputs of each training line. In the training set, the majority of the triplets 
will have an output of 0 (non-matching) and only the matching combination of user ID and 
password will have an output of 1.  Such an artificial neural network has the advantage that 
it can be implemented on a single chip and does not require the matching (user ID, 
password) combinations to be stored on external storage, but requires that the network 
weights be stored. While these can be stored on-chip making the information stealing 
attempt very difficult, the weights can be still be stored externally and retrieved from 
external storage. If the weights are stolen while being read from external storage by probing, 
this stolen information is of little value as it makes the process of deriving the matching 
(user ID, password) pair very difficult. Indeed, the matching (user ID, password) pair is 
“memorized” and integrated in to the neural network’s weights and without knowing the 
internal organization of the network (e.g. whether feedforward, presence of feedback loops, 
number of network layers and number of neurons in each layer) and the exact order of the 
weights and which neural link they correspond to, the process of extracting the matching 
(user ID, password) pair is virtually exhaustive.  
  

 
Fig. 1. Insecure password detection digital system 
 
In this Chapter, we present our research work on feed-forward artificial neural networks for 
secure access authorization. In Section 2, we briefly review artificial neural networks. In 

 

Sections 3 and 4, we review previous work on this subject and present our artificial neural 
network organization, respectively.  In Section 5, we present our data coding for binary and 
analog inputs. Our network’s training, simulation and testing is then described in Section 6. 
The accuracy results of all the variation of trained and tested networks  are then presented 
in Section 7. Section 8 concludes the Chapter. 

  
2. Artificial Neural Networks 

Artificial neural networks model biological neural networks in the brain and have proven 
their effectiveness in a number of applications such as classification and categorization, 
prediction, pattern recognition and control. An artificial neural network consists of an 
interconnected group of artificial neurons. Such a network performs computation and 
manipulates information based on the connectionist approach in a similar but simpler 
fashion than the brain would perform. Many types of artificial neural networks (Faussett, 
1994) exist including feed-forward neural networks, radial basis function (RBF) networks, 
Kohonen self-organizing networks, recurrent networks, stochastic neural networks, 
modular neural networks, dynamic neural networks, cascading neural networks, and neuro-
fuzzy networks. Multi-Layer Perceptron (Rumelhart & Mclellan, 1986; Haykin, 1998) (MLP) 
are perhaps the most popular, where  neurons in a feed-forward type network perform a 
biased weighted averaging of their inputs and this sum is then subjected to a transfer 
function, in order to limit the output value.   
As depicted in Fig. 2, a neuron is made of a cell body bordered by a membrane, inside of 
which is a nucleus, across which incoming electric (or chemical) signals composed of 
polarised ions arrive via neuron inputs known as dendrites. The neuron output or outgoing 
signal travels over a connector or terminal known as axon --where the neurotransmitters 
reside – and which connect to other neuron dendrites via synapses. Ten thousand of neuron 
types are known to exist in the brain of different shapes and terminal densities. A neuron 
may have thousands of dendrites but only one axon. A neuron output –axon—connects to 
another neuron input –dendrite—in an area called a synapse where the axons terminate. 
When enough positive ions gather inside the neuron’s membrane the neuron fires, i.e. a 
large electric signal is generated and travels out over the axon to reach the axon terminal. At 
electric synapses, the output is the electrical signal transmitted over the axon while at 
chemical synapses, the output is a neurotransmitter. Neurons are either sensory, motor or 
inter-neuron. The first type conveys sensory information. The second type conveys motor 
information. The third type conveys information between neurons.   
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Fig. 2. Structure of a neuron network in the brain 
 
An artificial neuron models a real neuron as depicted in Fig. 3. First, electric signals from 
other neurons are multiplied by weights (represented by the rectangles in Fig. 3) and then 
are input into the artificial neuron. The weighted signal values are them summed by an 
adder (““ in Fig. 3) and the sum is subjected to a transfer function (“T” in Fig. 3) which is 
one of: i. linear, where the output is proportional to the weighted sum of inputs; ii. 
threshold, where the output is one of two values based on whether the weighted sum is 
greater or smaller than the threshold value; and iii. sigmoid, a non-linear function which 
most closely mimicks real neurons.  Artificial neural networks are composed of several 
artificial neurons as a real neuron network is composed of many real neurons. Artificial 
neural networks come in different forms and shapes. 

 
Fig. 3. Artificial neuron model 
 
Artificial neural network organizations are either feedforward, or recurrent. Feedforward 
networks do not have cycles and signals flow from input to output. Recurrent neural 
networks have loops, i.e. links to neurons in the same or previous layers. The MLP neural 
network organization, shown in Fig. 4, is an example of feedforward network. Hebbian 
networks are example of recurrent networks. Recurrent networks because of their feedback 

 

cycles go through dynamic state changes until the network stabilizes. Neural networks can 
be either fixed or adaptive. Fixed networks have unchanging weights usually set at the start 
and need not change as the network is expected to keep operating in the same way. 
Adaptive neural networks as those which allow their weights to change (i.e. allow the 
network to adapt and learn).  Adaptive neural networks can therefore learn and their 
learning usually falls under two large classes: supervised or unsupervised.  Supervised 
learning involves a supervisor who tells the network how to learn, i.e. what the network 
output should be for each input combination. In the supervised learning, the inputs and 
corresponding outputs are known, so the neural network learns by applying a “cost” 
function to generate the desired outputs for each input combination.  Popular cost functions 
include the mean squared error function, and random functions.  The mean squared error 
function attempts to minimize the error between the actual output value computed by the 
network and the desired output value.  In unsupervised learning, the network is not told 
what the generated output should be for each input combination but the neural network 
learns by itself by self-organizing the data and identifying the data’s characteristics and 
properties. Yet another class of learning is reinforcement learning. Reinforcement learning 
differs from the supervised learning problem in that correct data inputs and matching 
output are never presented to the network. In addition, sub-optimal actions are not 
explicitly corrected. Instead, in reinforcement learning, agents interact with the environment 
and supply the data to the network which attempts to formulate a policy for agent actions 
which optimizes some cost function. Evolutionary algorithms and simulated annealing are 
examples of other types of neural network training methods.   
The MLP is an example of feedforward artificial neural network with multiple layers and 
where each neuron output in one layer feeds as input to the neurons in the next layer as 
shown in Fig. 4.  A radial basis function (RBF) neural network, pictured in Fig. 5, is a 3-layer 
network where the output is the weighted basis function (usually Gaussian function) of the 
Euclidian distance of the input vector and the neuron’s center vector. 

 
Fig. 4. MLP neural network 
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network where the output is the weighted basis function (usually Gaussian function) of the 
Euclidian distance of the input vector and the neuron’s center vector. 

 
Fig. 4. MLP neural network 
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Fig. 5. RBF neural network 
 
We chose our artificial neural network for secure password detection of the feed-forward 
type due to its simplicity and its suitability for this application.  
We also employ the backpropagation algorithm for supervised training our network, a well 
known and widely used algorithm. The training algorithm minimizes the error between the 
obtained output and the required target output by finding the lowest point or minimum in 
the error surface. Starting with initial weights and thresholds, the training algorithms looks 
for the global minimum of the error surface. Usually the slope of the error surface at the 
present location and guides the next move down. It is the goal of the training algorithm to 
reach a low point on the surface which happens to be the local minimum, and in some 
unlucky situations, the algorithm stops at a local minimum. In the backpropagation 
algorithm, training moves the state along the steepest descent, reducing in each training 
epoch the error. The size of the move during each epoch is a function of the learning rate 
and the gradient (slope). At the end of each epoch, the weights are adjusted as a function of 
the error and the error surface gradient.  The derivatives of the weights are computed to 
determine how the error changes as a result of increasing or decreasing the weights. The 
number of epochs taken to conduct training is determined by the error reaching a 
satisfactory value, or when the number of epochs reaches a predetermined number. 
Alternatively,  training ends when the error stops shrinking.   
Other training algorithms exist such as conjugate gradient descent --where after minimizing 
along one direction on the error surface, next moves assume that the second derivative 
along the first direction is held at zero-- and Quasi-Newton training (Bishop, 1995). 

  
3. Previous work 

Previous work on the subject include the work of (Reyhani & Mahdavi, 2007) who used a 
Radial Basis Function neural network and hash the (user ID, passwords) with a one-way 
hash function and then encrypt them.   The authors claim that RBF trains much faster than 
with backpropagation learning (30x for a 200-sample training set and user ID and password 

 

hashed to 13 characters) as RBF networks allow the selection of parameters for the hidden 
layer without the need for their optimization. Other recent work on the subject can be found 
in  (Ciaramella et al, 2006) and (Wang & Wang, 2008) who used a Hopfield network, and (Li, 
Lin, & Hwang, 2001) who used a multilayer neural network with back-propagation training. 
(Reyhani & Mahdavi, 2007) and  (Wang & Wang, 2008)  both proposed authentication based 
on neural networks. Both (Reyhani & Mahdavi, 2007) and (Wang & Wang, 2008)‘s solution 
are composed of two phases: a registration phase and a  authorization phase. (Wang & 
Wang, 2008) allows a 3rd phase to allow subsequent password change. 
In the registration phase, the neural network is trained to recognize a (user ID, password) 
combination. In both (Reyhani & Mahdavi, 2007) and (Wang & Wang, 2008), the user ID and 
passwords supplied by the user are encrypted before been fed to the neural network. (Wang 
& Wang, 2008) additionally sparsely-encodes the encrypted data with Reed Solomon code.  
In the authorization phase, the user supplies the user ID and a password which are then 
encrypted and subsequently fed as input to the neural network.  The network then 
processes this data and generates an output consisting of the encrypted password. If the two 
encrypted passwords --one generated by the neural network and the other supplied by the 
user in unecrypted form—match, then the password entered by the user matches the user 
ID supplied by the user and the access is authorized. Otherwise, there is no match between 
the user-supplied ID and password and the access is denied. 
In both (Reyhani & Mahdavi, 2007) and (Wang & Wang, 2008), after neural network 
processing completes, the system must compare the ANN-generated password to the one 
provided by the user and determine if there is a match or not. This increases system 
vulnerability as the password generated by the neural network must be transferred to 
hardware which performs comparison. Although the password is encrypted, the password 
can be decrypted if the key is compromised, or the encrypted password can be saved on 
external storage and injected in the circuit (e.g. input of comparison hardware) in the future 
to gain illegal access.  
A better approach which we employ is to let the neural network perform the comparison 
itself without the need for the neural network to generate a password and then transfer it to 
a comparator. In this approach, the neural network “memorizes” the combination of user ID 
and password during training and indirectly “codes” that information in its weights by 
enforcements and inhibitions and directly and internally performs the comparison with the 
user-supplied password without the need to transfer the 2 passwords for comparison by an 
entity external to the neural network. In that case, the output neuron generates a 1 for a 
(user ID, password) match or access authorization, or a 0 for access denial. In this neural 
network-based approach, the table of weights has to store the weights of the neural network 
and store new ones when the password is changed or new users are given permission to 
access the protected and secured valuables. Yet, the weights may not mean much to any one 
if the topology of the neural network (type of network, number of layers, number of 
neurons per layer, …)  and weight format (order or weights and exact mapping of stored 
values into each weight variable) is kept secret. In addition as in (Reyhani & Mahdavi, 2007) 
and (Wang & Wang, 2008), the user ID and password combination can be immediately 
encrypted before being fed to the neural network and the neural network can be trained 
with those encrypted values to match the encrypted password. This is valuable if the 
distance between the keypad and the neural network is long necessitating transfer by 
Ethernet cables or other communication cables. Yet in either case whether the keypad-to-
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to gain illegal access.  
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itself without the need for the neural network to generate a password and then transfer it to 
a comparator. In this approach, the neural network “memorizes” the combination of user ID 
and password during training and indirectly “codes” that information in its weights by 
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access the protected and secured valuables. Yet, the weights may not mean much to any one 
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neurons per layer, …)  and weight format (order or weights and exact mapping of stored 
values into each weight variable) is kept secret. In addition as in (Reyhani & Mahdavi, 2007) 
and (Wang & Wang, 2008), the user ID and password combination can be immediately 
encrypted before being fed to the neural network and the neural network can be trained 
with those encrypted values to match the encrypted password. This is valuable if the 
distance between the keypad and the neural network is long necessitating transfer by 
Ethernet cables or other communication cables. Yet in either case whether the keypad-to-



Pattern Recognition540

 

neural network distance is long or short (both housed in same box), the password can be 
compromised if the box is bugged with a hardware sniffer to record and transmit 
keystrokes. One effective solution to this problem is to combine passwords or PINs with 
biometric data for a larger solution cost. Biometric techniques can render useless sniffing 
techniques employing vibration sensing (resulting from keystroke) or monitoring ground 
lines but also have their weaknesses.  In the remainder of this section, we will assume that 
the keypad is safe and that keystrokes are neither transmitted nor recorded. 
(Reyhani & Mahdavi, 2007) and (Wang & Wang, 2008) report that the training time of multi-
layer networks is long. When a new user ID and password combination requires recognition 
from the neural network, the neural network must be retrained again. However although 
RBF and Hopfield neural networks can be trained faster than multi-layer feedforward 
networks, the training time of multi-layer feedforward networks is often acceptable.  

   
4. Artificial Neural Network Organization 

In our artificial neural network for secure password detection, we chose the number of 
neuron layers to be 3, one for the input layer neurons which hold the input values, one for 
the hidden layer neurons which hold some of the key network’s functionality, and one 
output layer neuron to generate the match/no match result. We later experimented with the 
number of hidden layer to determine which number of hidden layers results in the best 
match accuracy.  
The number of neurons in the input layer is determined by i. the sizes (in characters) of the 
user ID and password; ii. the coding type of the user ID and password information, whether 
with binary values or with analog ones. 
The number of neurons in the middle layer is also affected by the above network attributes 
as well as  the connections between the input layer neurons and the middle layer numbers, 
their number and their origins and destinations. 
In our experiment, we have chosen to limit our user ID and password each to 5 characters 
each, where each character is the A-H letter range, where the case is ignored, meaning that 
upper and lower case versions of the same letter are identical for all practical purposes. Thus 
each user ID has 1 matching password out of 85=32,768 possible password combinations of 
8 letters.    
Fig. 6 shows our artificial neuron organization assuming that each input user ID and 
password character is digitally coded by three (log28) binary values. Note that the top row 
represents the 15 input neurons each representing one of the 3x5=15 input user ID binary 
values (3 neurons per character), and the 15 input neurons below the top row represent the 
15 input password binary values in the same input layer but drawn below for better 
presentation. The hidden layer shows 30 neurons, as many as input layer neuron, with each 
input layer neuron feeding into each of the hidden layer neurons. The bottom row shows 
the single output layer neuron fed from each neuron in the hidden layer. 
When the user ID and password characters are represented by analog values, each analog 
value can be input to a single neuron, so the version of Fig. 6 with analog data values 
contains 10 neurons in the input layer, 10 in the hidden layer and 1 in the output layer. 
Again, all input layer neurons feed into each of the 10 hidden layer neurons which feed in 
turn into the single output layer neuron. 

  

 

 
Fig. 6. Artificial neural network organization. 

  
5. Data Coding 

In the analog coding of the data, each input user ID and password character takes on a real 
number according to Table 1. Thus character “A” or “a” takes any value between 0 and 0.4. 
“B” is represented by all values in the range 0.5-0.9 and so on. Numbers in the boundary 
gaps, e.g. 0.4-0.5, are not intended to represent any useful characters.  

Character Ranges 
A 0 - 0.4 
B 0.5 - 0.9 
C 1.0 – 1.4 
D 1.5 – 1.9 
E 2.0 – 2.4 
F 2.5 – 2.9 
G 3.0 – 3.4 
H 3.5 – 3.9 

Table 1. Real number coding 
 
In the binary data coding version, each input user ID and password character in the range 
A-H is represented by 3 bits according to the coding convention of Table 2.  
One major strength of real number (analog) coding is its cost saving as it represents each 
input character by a single neuron. Its major weakness is that characters at the bottom such 
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number of hidden layer to determine which number of hidden layers results in the best 
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each, where each character is the A-H letter range, where the case is ignored, meaning that 
upper and lower case versions of the same letter are identical for all practical purposes. Thus 
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5. Data Coding 

In the analog coding of the data, each input user ID and password character takes on a real 
number according to Table 1. Thus character “A” or “a” takes any value between 0 and 0.4. 
“B” is represented by all values in the range 0.5-0.9 and so on. Numbers in the boundary 
gaps, e.g. 0.4-0.5, are not intended to represent any useful characters.  

Character Ranges 
A 0 - 0.4 
B 0.5 - 0.9 
C 1.0 – 1.4 
D 1.5 – 1.9 
E 2.0 – 2.4 
F 2.5 – 2.9 
G 3.0 – 3.4 
H 3.5 – 3.9 

Table 1. Real number coding 
 
In the binary data coding version, each input user ID and password character in the range 
A-H is represented by 3 bits according to the coding convention of Table 2.  
One major strength of real number (analog) coding is its cost saving as it represents each 
input character by a single neuron. Its major weakness is that characters at the bottom such 



Pattern Recognition542

 

as “G’ and “H” are assigned larger values than characters on the top such as “A” and “B”. 
This is problematic because input values are multiplied by link weight values before being 
summed by the 2nd and 3rd layer neurons. Thus inputs with larger values result in larger 
products (than inputs with smaller values) which could be wrongly misinterpreted by the 
circuit as a strong match, and must be inhibited by the next layers in order to reduce their 
message strengths. Also smaller products are diluted along large product values when 
summed by a neuron. 
This weakness is avoided in the binary coding where the character is represented by three 
independent and separate bits. The binary coding also removes the fuzziness between 
analog code boundaries such as 0-0.4 and 0.5-0.9 above, as values which fall into the 
boundary areas 0.4-0.5 could be either interpreted as an “A” or a “B.” With 0 and 1 digits, 
the likelihood of getting into these kind of debates is greatly reduced.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2. Binary coding 

  
Compared to real number coding, digital coding requires more neurons. Compared to other 
digitl codigns, one strength of the selected binary coding of Table 2 is that it simplies the 
representation of each character by the least number of bits, rather than, say, to enhance its 
fault tolerance snd/or sparseness as in 1-hot assignment and other encoding schemes. Other 
coding techniques based on Hamming, Reed Solomon, and others could be also used.  We 
just chose the simplest coding.  

  
6. Training, Simulation and Test 
  

We used the BrainMaker (IEEE, 1992) application for training and simulating our network 
and retrieving match accuracy results. BrainMaker is a popular neural network simulation 
package and has been used extensively by researchers such as (Dombi & Lawrence, 1994). 
We created a list of 1000 (user ID, password, output) triplets where only one triplet had an 
output of 1 (means match) for the matching (user ID, password combination). We focused 
on a single user ID so all the user ID values in all 100 triplets were identical.  By providing 
the output match/no-match value during training, we avoided the need to compare the 

Character Binary value 

A "000" 

B "001" 

C "010" 

D "011" 

E "100" 

F "101" 

G "110" 

H "111" 

 

memorized password from the entered password as in (Reyhani & Mahdavi, 2007) and  
(Wang & Wang, 2008). The password values varied slightly to a great extent from the 
matching password value. In the real number coding experiment we assigned values to the 
user ID and password characters as in Table 1 and we simulated a network of 10 input 
neurons and 1 hidden layer neuron and 1 output neuron. In the binary coding experiment, 
we assigned values to the user ID and password characters as in Table 2 and we simulated a 
network of 30 input neurons and 30 hidden layer neurons and 1 output neuron. The created 
training set of 1000 triplets or lines was first written into an Excel spreadsheet and then we 
changed that file’s extension to “.dat.” We then started the NetMaker application to read the 
.dat file and to create from it the BrainMaker files including the definition file, training fact 
file and the testing fact file.  The resulting training set in NetMaker format for analog and 
binary codings are shown in Figs. 7 and 8, respectively. 

 
Fig. 7. Sample real number-coded training data in NetMaker format 
 

 
Fig. 8. Sample binary-coded training data in NetMaker format 
 
A snapshot of the BrainMaker files and their extensions is shown in Fig. 9. 
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Fig. 9. Associated BrainMaker files 
 
The BrainMaker application was then launched to train, test, manipulate data, and run 
network simulations. During the training phase, we could see the changes that occurred to 
the output in graph, numeric or histogram formats, allowing us to immediately discover 
how big a training set was necessary to reach the output neuron’s password match accuracy, 
or if the simulated network with its tested parameters will satisfy our match accuracy 
requirements. 
Out of the 1000 lines in the training set, we reserved 90% or 900 for training the network and 
10% or 100 for testing the network after it has been trained for password detection accuracy, 
as illustrated in Fig. 10. The 10% reserved for testing are not used at all for training the 
network and are exclusively used for testing the network, i.e. checking that it generates a 
correct output, 0 when the password does not match the user ID, and 1 otherwise. 

 
Fig. 10. Creating test set 

 
7. Results 

After training the network with real number coded inputs with the BrainMaker simulator 
and with a training set of 900 lines, we obtained 1.44% incorrect detections and 98.5% good 
password detections. The learn and tolerance values were 0.085 and 0.1, respectively. Next, 
we switched to binary coded inputs, and at the end of training, the accuracy stood at 99.7% 

 

good detections and 0.0022% bad or incorrect detections. In the testing phase, we tested the 
network with binary-coded inputs with the 100 lines and obtained a perfect 100% accuracy.  
Attempting to validate these accuracy results and discovering any correlation to the size of 
the testing set,  we increased the testing file to 50% (500 lines or test cases) instead of 10%. 
The accuracy results did not change which means that our artificial neural network has 
learnt well and has been sufficiently trained. 

  
7.1 Experimenting with number of hidden layers and number of neurons in the hidden 
layer 
Afterwards, we experimented with the number of hidden layers and adding noise as 
illustrated in Fig. 11. By doubling the number of hidden layers to 2, we got 11 incorrect 
detections, and thus more hidden layers reduced the accuracy. By increasing the number of 
neurons in the hidden layer from 30 to 50 neurons, the password detection accuracy also 
decreased. We got 2 bad values (false matches) only when the hidden layer had 30 neurons, 
but after increasing the number of neurons in the hidden layer we got 12 bad values. These 
last two experiments caused our network to overlearn. Extra added neurons or hidden 
layers of neurons falsely twisted the results. This is similar to asking the opinions of two or 
more persons on some subject when they have unidentical opinions, and then somewhat 
averaging their answers in order to make a judgment, rather than taking the advice of a 
fewer number of people but who are in accord. 

 
Fig. 11. Changing the artificial neural network size (number of hidden layers, and number of 
neurons per hidden layer) 

  
7.2 Adding noise to the network 
Moreover, we added noise to the network (see Fig. 12) and observed that as expected, the 
more noise was added the more the results worsened. In fact, as a result of noise addition, 
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and with a training set of 900 lines, we obtained 1.44% incorrect detections and 98.5% good 
password detections. The learn and tolerance values were 0.085 and 0.1, respectively. Next, 
we switched to binary coded inputs, and at the end of training, the accuracy stood at 99.7% 

 

good detections and 0.0022% bad or incorrect detections. In the testing phase, we tested the 
network with binary-coded inputs with the 100 lines and obtained a perfect 100% accuracy.  
Attempting to validate these accuracy results and discovering any correlation to the size of 
the testing set,  we increased the testing file to 50% (500 lines or test cases) instead of 10%. 
The accuracy results did not change which means that our artificial neural network has 
learnt well and has been sufficiently trained. 

  
7.1 Experimenting with number of hidden layers and number of neurons in the hidden 
layer 
Afterwards, we experimented with the number of hidden layers and adding noise as 
illustrated in Fig. 11. By doubling the number of hidden layers to 2, we got 11 incorrect 
detections, and thus more hidden layers reduced the accuracy. By increasing the number of 
neurons in the hidden layer from 30 to 50 neurons, the password detection accuracy also 
decreased. We got 2 bad values (false matches) only when the hidden layer had 30 neurons, 
but after increasing the number of neurons in the hidden layer we got 12 bad values. These 
last two experiments caused our network to overlearn. Extra added neurons or hidden 
layers of neurons falsely twisted the results. This is similar to asking the opinions of two or 
more persons on some subject when they have unidentical opinions, and then somewhat 
averaging their answers in order to make a judgment, rather than taking the advice of a 
fewer number of people but who are in accord. 

 
Fig. 11. Changing the artificial neural network size (number of hidden layers, and number of 
neurons per hidden layer) 

  
7.2 Adding noise to the network 
Moreover, we added noise to the network (see Fig. 12) and observed that as expected, the 
more noise was added the more the results worsened. In fact, as a result of noise addition, 
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the accuracy dropped to 96% and the number of bad result increased to 28 bad values which 
mean 3.11% incorrect detections.  Noise causes the data values to increase or decrease from 
their original values and throws the detection accuracy off but it is important for the 
artificial neural network to keep operating at high accuracies in the presence of noise.  

 
Fig. 12. Adding noise 
 
The results of all our experiments with 1000 (user ID, password) combinations in total, of 
which 900 are used for training and 100 for testing, are summarized in Table 3. 
 

ANN EXPERIMENT Accuracy 
Default (with binary coded inputs, one hidden layer 
& one input layer of 30 neurons each)  
 

100% 
 (after testing phase) 
 

 
Binary coding with 2 hidden layers 
 

 
97.6 % 

 
Binary coding with added noise 
  

 
96 %  

 
Binary Coding, with number of neurons in the 
hidden layer increased to 50 neurons 
  

 
98.2 % 

 
Binary Coding, with number of  neurons in the 
hidden layer reduced to 6 neurons 
 

 
95.6 % 
 

With real number coded inputs 
 

98.4 % 

Table 3. Accuracy results 

 
8. Conclusion 

Artificial neural networks are used in many applications ranging from control, to pattern 
recognition, to classification. In this Chapter, we have described our experience in designing 
artificial neural networks for secure access authorization. We designed our feedforward 
network with 3 layers, created the training set and trained our network with the 

 

backpropagation algorithm. We then simulated and tested our design with BrainMaker and 
collected accuracy results.  We were able to achieve 100% result accuracy with our network. 
Increasing the number of hidden layers or the number of neurons in the hidden layer or 
adding noise all individually hurt our network’s password detection accuracy. 
Potential future work is to extend the network to accept alphanumeric inputs and extend the 
input range to A-Z while keeping the number of neurons under control. 
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1. Introduction 

Traditional keyword-based image retrieval (KBIR) is considered a crippled process that 
suffers the following drawbacks. (1) It is laborious to annotate manually every stored image 
by keywords selected from a predefined set because modern databases easily contain 
thousands of images. (2) A real-world image usually involves many concepts, it is difficult 
to annotate such an image by a small number of keywords. (3) Ambiguities exist between 
different people’s subjects for a given image and would deteriorate retrieval precision when 
matching the query to the stored images.  
Recently, content-based image retrieval (CBIR) (Yoshitaka & Ichikawa, 1999; Smeulders et 
al., 2000) has emerged as one of the solutions to overcome the limitations entailed by KBIR. 
Users access CBIR systems (Flickner & Sawhney, 1995; Pentland et al., 1996; Rui et al., 1997; 
Nastar et al., 1998; Mokhtarian et al., 1996) by directly submitting image examples, object 
sketches, or other visual information (e.g., color, shape, texture, etc.) The retrievals are 
ranked based on image processing and similarity matching techniques, alleviating the 
burden for manual annotations. However, as the ranking of retrievals is calculated 
according to machine’s subject (selected image features), the precision may be unsatisfactory 
due to the gap between the visual and semantic concepts. 
To this end, relevance feedback (RF) treats the retrieval session as repetitive query 
reformulation operations. Through successive human-computer interactions, the query 
descriptive information (features, matching models, metrics or any meta-knowledge) is 
repeatedly modified as a response to the user’s feedback on retrieved results. Therefore, the 
query close to the optimal is eventually produced and the retrieval precision is improved. 
Most of the RF approaches for CBIR applications can be classified into three categories. The 
query vector modification method reformulates the query through user’s feedback, so the 
query is moved towards a region containing more relevant images. The feature relevance 
estimation approach learns the relevance weight for each image feature and uses the weight 
to bias the matching. The classification-based method trains a classifier from historic 
feedbacks for classifying the database images as relevant or irrelevant. Each category of RF 
methods has its own strengths and weaknesses to be noted in the next section. So it is 
difficult to design a new RF method which performs best for all kinds of image content. A 
more practical way is to identify the shared and contrasting features between different RF 

30
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methods and design a complementary strategy which maximizes the synergism between 
multiple RF methods and alleviates the individual weaknesses. In the light of this, we 
propose a general complementary RF framework which identifies three new RF methods 
that have proven to be more effective than traditional methods on a real-world image 
database.  
The remainder of this paper is organized as follows. Section 2 reviews the major RF models. 
Section 3 describes the proposed complementary RF framework. Section 4 presents the 
experimental results and comparative performances. Finally, conclusions are made in 
Section 5. 

 
2. Related Work  

We begin by describing three major RF models. Then, the comparative strengths and 
weaknesses between these models are analyzed.  

 
2.1 RF Models  
Assume that there are n image items stored in a CBIR database provided for access by many 
users using the Query_by_example interface. Let Q be the image example submitted by 
current user and D a database image. Both Q and D are described by r visual features 
(texture, color, shape, etc.) An option to estimate the visual dissimilarity between Q and D is 
to compute the Euclidean distance between their visual feature vectors, Q

  = ),...,,( 21 rqqq  

and D


 = ),...,,( 21 rddd , as follows. 
 distEuclidean ( ) ( )DQDQDQ



−•−=−=  (1) 

where the operation •  denotes the inner product in the Euclidean space. By deriving the 
visual dissimilarity between Q and every database image, the retrieval system is able to 
return a set of v database images that are closest to Q in the visual space. However, owing to 
the imperfection of feature selection and noise in the feature values, not every returned 
image is considered relevant by the user. The RF models accommodating user’s relevance 
feedback on the retrieved result can determine a new list of top v similar images to increase 
the degree of user’s satisfaction. Three major RF methods operating in the visual space are 
reviewed in the following. 
 Query vector modification (QVM) (Rocchio, 1971; Ciocca & Schettini, 1999)     Let R and 
N denote the subsets of the retrieved result that are marked relevant and irrelevant, 
respectively, by the user in the incumbent feedback round. QVM reproduces a new query 
vector by a weighting sum of Q and the mean vectors of R and N. In particular, the new 
query vector is computed by the following formula. 
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where Dj is a retrieved image that belongs to R or N, α is the inertia weight promoting the 
query to move in the same direction as in the previous moving trajectory, and β and γ are 
the weights controlling the relative importance contributed by relevance and irrelevance 
experience. The newly produced query vector is then used for searching the next retrievals 
based on Euclidean metric. QVM has the effect for guiding the reformulation of the query 

 

towards relevant images and away from irrelevant ones, and the moving velocity is 
accelerated by an inertia term considering previous trajectory. 
QVM suffers at least the following drawbacks. (1) QVM assumes that each feature is equally 
relevant to the query; however, the importance of some features may be discounted due to 
the semantic concept the user is seeking. (2) The parameters α, β and γ need to be 
empirically tuned in order to perform both effectively and efficiently on databases with 
various content.  
 Feature relevance estimation (FRE) (Rui et al., 1998; Peng et al., 1999)     The FRE 
approach assumes that each feature can have a various weight in judging the relevance 
between Q and D. The appropriate weight of a feature can be learned from the user’s 
incumbent feedback information. A simple notion to estimate the relevance weight of 
individual feature is the feature projection technique that assesses the retrieval ability (in 
terms of the number of relevant images retrieved) using each feature alone. Firstly, all the 
database images are projected onto the axis of the tested feature, so the top s (≥v) closest 
images to the query with respect to the corresponding feature can be derived. The value of s 
is at least as large as v because there might be no relevant images in the list of the top v 
retrieved images using a single feature and little knowledge can be learned. Typically, we 
set s = 2v. Secondly, let 

iΩ  denote the set of the top s retrieved images using only the ith 
feature, the relevance weight (wi) of this feature is apparently related to the number of 
members of iΩ  that are also in R or N. In general, the relevance weight is estimated by 

( ) ( )iii NgRfw Ω−Ω= 

 where f and g can be linear, quadratic, or exponential 

functions, depending on the desired learning ratio. Finally, the relevance weights are 
normalized such that 1

1
=∑ =

r

i iw  and they are incorporated into the dissimilarity metric to 

express the degree of emphasis on the corresponding feature, viz.,  

 distFRE = ( ) ( )T
W

DQWDQDQ
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where W is the feature weight matrix whose diagonal entries are equal to wi and off-
diagonal entries are zero. So distEuclidean can be viewed as a special case of distFRE where W is 
equal to the identity matrix. 
Practical applications of FRE also manifest a few shortcomings. (1) The query vector cannot 
be moved towards a more desired region in the feature space. It is likely that some relevant 
images may not be selected in the regional neighborhood of the original query. (2) The 
estimation of relevance weight using the projection technique can be computationally 
expensive if the feature space involves large dimension.  
 Classification-Based Method (CBM) (Meilhac & Nastar, 1999; Cox et al., 2000; Tieu & 
Viola, 2000; Huang et al., 2000; Tong & Chang, 2001; Su et al., 2003; Yin et al., 2008; Li & Hsu, 
2008)     The CBM approach realizes the retrieval process as a classification task. The 
collected feedback information (relevant and irrelevant examples) is used as training data 
such that the employed classifier can be incrementally trained to obtain an improving 
capability for classification of database images. The popularly used classifiers for image 
retrieval applications range from Bayes classifier (Meilhac & Nastar, 1999; Cox et al., 2000;  
Su et al., 2003), to boosting (Tieu & Viola, 2000), graph matching (Li & Hsu, 2008), virtual 
feature (Yin et al., 2008), and the support vector machine (SVM) (Huang et al., 2000; Tong & 
Chang, 2001).  
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methods and design a complementary strategy which maximizes the synergism between 
multiple RF methods and alleviates the individual weaknesses. In the light of this, we 
propose a general complementary RF framework which identifies three new RF methods 
that have proven to be more effective than traditional methods on a real-world image 
database.  
The remainder of this paper is organized as follows. Section 2 reviews the major RF models. 
Section 3 describes the proposed complementary RF framework. Section 4 presents the 
experimental results and comparative performances. Finally, conclusions are made in 
Section 5. 
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image is considered relevant by the user. The RF models accommodating user’s relevance 
feedback on the retrieved result can determine a new list of top v similar images to increase 
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N denote the subsets of the retrieved result that are marked relevant and irrelevant, 
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query vector is computed by the following formula. 
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where Dj is a retrieved image that belongs to R or N, α is the inertia weight promoting the 
query to move in the same direction as in the previous moving trajectory, and β and γ are 
the weights controlling the relative importance contributed by relevance and irrelevance 
experience. The newly produced query vector is then used for searching the next retrievals 
based on Euclidean metric. QVM has the effect for guiding the reformulation of the query 

 

towards relevant images and away from irrelevant ones, and the moving velocity is 
accelerated by an inertia term considering previous trajectory. 
QVM suffers at least the following drawbacks. (1) QVM assumes that each feature is equally 
relevant to the query; however, the importance of some features may be discounted due to 
the semantic concept the user is seeking. (2) The parameters α, β and γ need to be 
empirically tuned in order to perform both effectively and efficiently on databases with 
various content.  
 Feature relevance estimation (FRE) (Rui et al., 1998; Peng et al., 1999)     The FRE 
approach assumes that each feature can have a various weight in judging the relevance 
between Q and D. The appropriate weight of a feature can be learned from the user’s 
incumbent feedback information. A simple notion to estimate the relevance weight of 
individual feature is the feature projection technique that assesses the retrieval ability (in 
terms of the number of relevant images retrieved) using each feature alone. Firstly, all the 
database images are projected onto the axis of the tested feature, so the top s (≥v) closest 
images to the query with respect to the corresponding feature can be derived. The value of s 
is at least as large as v because there might be no relevant images in the list of the top v 
retrieved images using a single feature and little knowledge can be learned. Typically, we 
set s = 2v. Secondly, let 
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where W is the feature weight matrix whose diagonal entries are equal to wi and off-
diagonal entries are zero. So distEuclidean can be viewed as a special case of distFRE where W is 
equal to the identity matrix. 
Practical applications of FRE also manifest a few shortcomings. (1) The query vector cannot 
be moved towards a more desired region in the feature space. It is likely that some relevant 
images may not be selected in the regional neighborhood of the original query. (2) The 
estimation of relevance weight using the projection technique can be computationally 
expensive if the feature space involves large dimension.  
 Classification-Based Method (CBM) (Meilhac & Nastar, 1999; Cox et al., 2000; Tieu & 
Viola, 2000; Huang et al., 2000; Tong & Chang, 2001; Su et al., 2003; Yin et al., 2008; Li & Hsu, 
2008)     The CBM approach realizes the retrieval process as a classification task. The 
collected feedback information (relevant and irrelevant examples) is used as training data 
such that the employed classifier can be incrementally trained to obtain an improving 
capability for classification of database images. The popularly used classifiers for image 
retrieval applications range from Bayes classifier (Meilhac & Nastar, 1999; Cox et al., 2000;  
Su et al., 2003), to boosting (Tieu & Viola, 2000), graph matching (Li & Hsu, 2008), virtual 
feature (Yin et al., 2008), and the support vector machine (SVM) (Huang et al., 2000; Tong & 
Chang, 2001).  
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Cox et al. (2000) used a Bayesian framework to estimate the a posteriori probability that a 
database image is relevant to the query given the a priori probability densities of feature 
values contributed by the labeled examples from history of feedbacks. Since the probability 
density function is updated after each feedback round, the system is able to improve the 
performance of next retrieval. Tieu and Viola (2000) extracted the 20 most relevant features 
for a given query from more than 45,000 highly selective ones based on the boosting 
technique. They assumed that relevant images share some visual causes and the learned 
classifier can focus on a small set of relevant features for a particular query, so the matching 
is computationally efficient even for a very large database. Huang et al. (2000) incorporated 
the SVM to determine the preference weight of each positive example collected from the 
relevance feedback. The farthest positive example from the optimal separating hyperplane 
(OSH) learned by the SVM receives the highest weight and vice versa. This mechanism 
releases the user from manually providing the preference weight for each positive example.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Illustration of SVMActive method. 
 
Tong and Chang (2001) proposed an SVM active learner (SVMActive) for CBIR with relevance 
feedback. The database images residing in the farthest places at the positive side from the 
OSH are returned as current retrievals while the selective images closest to the OSH are 
shown to the user for providing his/her relevance feedback. Those images marked as 
relevant or irrelevant are subject to the training of the SVM for next retrievals. So the SVM 
actively learns from the selective images instead of those randomly presented. The idea of 
SVMActive method is illustrated in Fig. 1 where two selected features f1 and f2 are assumed for 
simplicity. The zero-page retrievals (S0) before any relevance feedback are the nearest 
neighbors of the user-submitted query Q according to the Euclidean distance (Eq. (1)). Based 
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on the user’s feedback regarding to S0, an SVM is trained and the OSH (L1) is obtained. The 
farthest images from the positive side of L1 are returned as next retrievals (S1), while the 
selective images (T1) closest to L1 are shown to the user for providing his/her relevance 
feedback. The SVM is thus trained again using current feedback information and another 
OSH (L2) is obtained. The images farthest to L1 and L2 are presented as next retrievals (S2), 
and the images (T2) located nearest to L2 are subject to those asking user’s next feedback. 
Repeating this process, the SVM classifier can be incrementally trained using T1, T2, etc. and 
improves its retrieval performance.  
SVMActive method entails the following issues. The SVM treats the retrieval problem as a 
two-class classification task, when the relevance information is little at the beginning of the 
query session, the retrieval precision could be very low (see S1 in Fig. 1). The number of 
false alarms could be great because the number of relevant images is significantly smaller 
than the number of total images stored in the database. Furthermore, the set of retrieved 
images is disjoint from the set of images requesting user’s feedback. Although this design 
actively selects the example images that are most useful for the SVM training, it also incurs 
additional costs for the user to examine two sets of images. 

 
2.2 Comparative Analysis  
Our computation experience shows that each RF model imposes individual bias in inferring 
the image relevance because of its model assumptions. The inference biases of the major RF 
models are summarized in Table 1. We found that QVM assumes equal relevance weight in 
similarity matching for each used feature, however, the positive images may be not equally 
relevant to the query along every feature. The FRE stipulates that the query vector is fixed to 
the original vector example submitted by the user and will not be reformulated during the 
query session, so the query vector is incapable of moving to desired regions. The CBM 
method, on the other hand, treats the retrieval problem as a classification task, the employed 
classifier could easily impose a great number of false alarms because the number of relevant 
images is significantly smaller than the number of total images stored in the database. 

 
RF Models Inference Biases 

QVM ● Assume equal relevance weight for each feature, however, the positive images 
may be not equally relevant to the query along every feature.  

FRE ● Query vector is not reformulated, so it cannot be moved towards a more 
desired region of the feature space.  

CBM ● Trained classifier could be severely biased due to insufficiency of training data. 
The initial performance could be unsatisfactory. 

Table 1. Inference biases of major RF models. 
 

Recently, some researchers began studying hybrid methods which provide a chance to 
improve the performance that can be obtained based on existing RF methods. Yin & Liu 
(2009) proposed an RF strategy combining QVM and FRE. This strategy moves the query 
vector to a desired region and simultaneously assigns each feature an appropriate weight of 
relevance. Yin et al. (2005) proposed a sophisticated framework that automatically chooses 
the best RF model at a particular feedback round for a given query. They used a 
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Cox et al. (2000) used a Bayesian framework to estimate the a posteriori probability that a 
database image is relevant to the query given the a priori probability densities of feature 
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relevance feedback. The farthest positive example from the optimal separating hyperplane 
(OSH) learned by the SVM receives the highest weight and vice versa. This mechanism 
releases the user from manually providing the preference weight for each positive example.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.  Illustration of SVMActive method. 
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on the user’s feedback regarding to S0, an SVM is trained and the OSH (L1) is obtained. The 
farthest images from the positive side of L1 are returned as next retrievals (S1), while the 
selective images (T1) closest to L1 are shown to the user for providing his/her relevance 
feedback. The SVM is thus trained again using current feedback information and another 
OSH (L2) is obtained. The images farthest to L1 and L2 are presented as next retrievals (S2), 
and the images (T2) located nearest to L2 are subject to those asking user’s next feedback. 
Repeating this process, the SVM classifier can be incrementally trained using T1, T2, etc. and 
improves its retrieval performance.  
SVMActive method entails the following issues. The SVM treats the retrieval problem as a 
two-class classification task, when the relevance information is little at the beginning of the 
query session, the retrieval precision could be very low (see S1 in Fig. 1). The number of 
false alarms could be great because the number of relevant images is significantly smaller 
than the number of total images stored in the database. Furthermore, the set of retrieved 
images is disjoint from the set of images requesting user’s feedback. Although this design 
actively selects the example images that are most useful for the SVM training, it also incurs 
additional costs for the user to examine two sets of images. 

 
2.2 Comparative Analysis  
Our computation experience shows that each RF model imposes individual bias in inferring 
the image relevance because of its model assumptions. The inference biases of the major RF 
models are summarized in Table 1. We found that QVM assumes equal relevance weight in 
similarity matching for each used feature, however, the positive images may be not equally 
relevant to the query along every feature. The FRE stipulates that the query vector is fixed to 
the original vector example submitted by the user and will not be reformulated during the 
query session, so the query vector is incapable of moving to desired regions. The CBM 
method, on the other hand, treats the retrieval problem as a classification task, the employed 
classifier could easily impose a great number of false alarms because the number of relevant 
images is significantly smaller than the number of total images stored in the database. 

 
RF Models Inference Biases 

QVM ● Assume equal relevance weight for each feature, however, the positive images 
may be not equally relevant to the query along every feature.  

FRE ● Query vector is not reformulated, so it cannot be moved towards a more 
desired region of the feature space.  

CBM ● Trained classifier could be severely biased due to insufficiency of training data. 
The initial performance could be unsatisfactory. 

Table 1. Inference biases of major RF models. 
 

Recently, some researchers began studying hybrid methods which provide a chance to 
improve the performance that can be obtained based on existing RF methods. Yin & Liu 
(2009) proposed an RF strategy combining QVM and FRE. This strategy moves the query 
vector to a desired region and simultaneously assigns each feature an appropriate weight of 
relevance. Yin et al. (2005) proposed a sophisticated framework that automatically chooses 
the best RF model at a particular feedback round for a given query. They used a 
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reinforcement learning algorithm to maximize the accumulated precision over all submitted 
queries.  
Wang et al. (2003) incorporated the Euclidean search into the SVM active learning in two 
ways. (1) If an image is classified by the trained SVM as relevant, it is assigned a 
dissimilarity score equivalent to its Euclidean distance from the known relevant image that 
is farthest to the OSH. (2) Otherwise, a penalized dissimilarity score is given which is equal 
to the sum of the distance from the image to the OSH and the maximal distance obtained in 
(1). Wang’s method ensures that an SVM classified negative image would be less preferable 
than any SVM classified positive image. Moreover, the next included retrievals are the 
images closest to the known relevant image instead of those farthest to the OSH as 
employed by the SVMActive method.     

 
3. The Proposed Method 

In this section, we propose a general RF framework, named the complementary method, which 
takes advantage of multiple existing RF methods and exploits the synergism between them 
to improve the performance. We differentiate complementary methods from hybrid 
methods by the following features. (1) Complementary methods combine two different 
approaches that are complementary to each other in a hope to eradicate the weaknesses of 
individual approach, while hybrid methods in general look for a combination scheme of two 
different methods as long as the overall performance is improved. (2) Complementary 
methods exploit synergism between two categories of methods, so a general meta-strategy is 
created and the conception can be implemented in several variations. By contrast, the hybrid 
methods deal with two carefully selected methods and design all the implementation details 
instructing how the two methods interweave.   
In what follows, we elaborate a complementary RF framework which depicts a general 
conception for collaborating two types of RF models and identify three effective RF 
methods. 

 
3.1 Complementary RF Framework 
Our complementary RF framework combines two RF models denoted by Θ and Ω where Θ 
belongs to the classification-based methods (CBM) and Ω could be any alternative method 
using vector space model or probabilistic model. Fig. 2 shows the conception of the 
proposed complementary RF framework. Let Q denote the incumbent query submitted by 
the user. The system fist applies Ω to retrieve a set of v database images that are most similar 
to Q. These retrievals are presented to the user requesting for relevance feedback. The 
entered relevant (R) and irrelevant (N) feedback information is exploited in two folds. First, 
the received R and N feedbacks are used to update parameters of the employed RF model Ω, 
so the retrieval performance is improved. Second, the CBM method Θ is incrementally 
trained by the accumulated set of R and N and the learned classification boundaries become 
increasingly accurate. All the database images are classified using the trained classifier Θ 
into two classes: positive (C1) and negative (C2) sets. Set C1 contains those images that are 
residing at the same side of the classification boundaries as that by the training set R, while 
C2 consists of the remaining database images which locate at the other side of the 
classification boundaries. Set C2 is filtered out by the system, only set C1 is used as the image 

 

pool for next retrieval performed by the RF model Ω. So Ω is actually working on the set C1 
instead of the whole database. Fig. 3 summarizes the algorithm of the proposed 
complementary RF framework. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2.  Conception of the complementary RF framework. 
 

1.  Let Q be the current query. 
2.  Compute v nearest images to Q using the Euclidean distance metric.  
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   (c)  Update the parameters of the RF model Ω using R and N.  
   (d)  Retrain the classifier Θ using the collective R and N. 
  (e)  Use Θ to classify the database images into two classes, C1 (positive class) 
  and C2 (negative class). 

   (f)  Retrieve from C1 the v most similar images to Q using the RF model Ω. 
 

Fig. 3.  Algorithmic summary of the complementary RF framework. 
 
The complementary RF framework collaborates Θ and Ω together and maximizes synergism 
between them. As found in the literature (2003), the CBM method (Θ) usually has low 
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reinforcement learning algorithm to maximize the accumulated precision over all submitted 
queries.  
Wang et al. (2003) incorporated the Euclidean search into the SVM active learning in two 
ways. (1) If an image is classified by the trained SVM as relevant, it is assigned a 
dissimilarity score equivalent to its Euclidean distance from the known relevant image that 
is farthest to the OSH. (2) Otherwise, a penalized dissimilarity score is given which is equal 
to the sum of the distance from the image to the OSH and the maximal distance obtained in 
(1). Wang’s method ensures that an SVM classified negative image would be less preferable 
than any SVM classified positive image. Moreover, the next included retrievals are the 
images closest to the known relevant image instead of those farthest to the OSH as 
employed by the SVMActive method.     

 
3. The Proposed Method 

In this section, we propose a general RF framework, named the complementary method, which 
takes advantage of multiple existing RF methods and exploits the synergism between them 
to improve the performance. We differentiate complementary methods from hybrid 
methods by the following features. (1) Complementary methods combine two different 
approaches that are complementary to each other in a hope to eradicate the weaknesses of 
individual approach, while hybrid methods in general look for a combination scheme of two 
different methods as long as the overall performance is improved. (2) Complementary 
methods exploit synergism between two categories of methods, so a general meta-strategy is 
created and the conception can be implemented in several variations. By contrast, the hybrid 
methods deal with two carefully selected methods and design all the implementation details 
instructing how the two methods interweave.   
In what follows, we elaborate a complementary RF framework which depicts a general 
conception for collaborating two types of RF models and identify three effective RF 
methods. 

 
3.1 Complementary RF Framework 
Our complementary RF framework combines two RF models denoted by Θ and Ω where Θ 
belongs to the classification-based methods (CBM) and Ω could be any alternative method 
using vector space model or probabilistic model. Fig. 2 shows the conception of the 
proposed complementary RF framework. Let Q denote the incumbent query submitted by 
the user. The system fist applies Ω to retrieve a set of v database images that are most similar 
to Q. These retrievals are presented to the user requesting for relevance feedback. The 
entered relevant (R) and irrelevant (N) feedback information is exploited in two folds. First, 
the received R and N feedbacks are used to update parameters of the employed RF model Ω, 
so the retrieval performance is improved. Second, the CBM method Θ is incrementally 
trained by the accumulated set of R and N and the learned classification boundaries become 
increasingly accurate. All the database images are classified using the trained classifier Θ 
into two classes: positive (C1) and negative (C2) sets. Set C1 contains those images that are 
residing at the same side of the classification boundaries as that by the training set R, while 
C2 consists of the remaining database images which locate at the other side of the 
classification boundaries. Set C2 is filtered out by the system, only set C1 is used as the image 
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irrelevant images stored in the database. The classifier Θ easily produces too many false 
alarms when the training data (user’s feedback) are limited at the early feedback period of 
the query session. But for the same reason, we observed that the negative set produced by Θ 
are very reliable because the classifier Θ rarely classifies a true relevant image as irrelevant, 
and this information can be very helpful to another RF model Ω to filter out probable 
irrelevant images before retrieving. Thus, the proximity for retrieving relevant images using 
Ω is not constrained to a hyper-sphere or Gaussian neighborhood, but is shaped by the 
classification boundaries learned by Θ. Moreover, the application of Euclidean-based RF 
model Ω can avoid producing unsatisfactory precision at the early query session period as 
encountered by using Θ alone since the retrievals are restrained in the proximity to the 
reformulated query instead of the farthest positive images to the classification boundaries.  
In the following, we identify three implementations of the complementary RF framework 
that empirically prove to be effective in our experiments. 

 
3.1.1 SVM-complementing QVM 
The SVM-complementing QVM (SVMcQVM) uses SVM as the classifier Θ and QVM as the 
RF model Ω. As previously noted, QVM reformulates the query vector by reference to the 
feedback information and intends to move the query vector towards a region containing 
more relevant images. However, QVM does not produce a classification boundary optimally 
separating the feedback data and, therefore, the next retrievals in the proximity to the 
reformulated query may include some undesired images that should have been ruled out by 
carefully exploiting the feedback data. This phenomenon is shown in Fig. 4 where Fig. 4(a) 
illustrates the retrieving process using QVM and Fig. 4(b) corresponds to the retrieving 
process using SVMcQVM. It is observed from Fig. 4(a) that QVM reformulates the original 
query Q0 based on feedback information contained in S0 to generate a new query Q1, so the 
images in the proximity to Q1 are returned as new retrievals (S1). However, some irrelevant 
images are also contained in S1 and deteriorate the retrieval precision. On the other hand, as 
shown in Fig. 4(b), SVMcQVM can improve retrievals by learning a classification boundary 
(L1) using the feedback information contained in S0. The images residing at the same side of 
L1 as that by the previously retrieved irrelevant images (denoted by “−”) are filtered out by 
the SVM classifier, the proximity S1 thus extends to seduce more potential images as 
retrievals that are not reachable using the traditional QVM. Also, the proximity S1 of the 
reformulated query Q1 is not constrained to a spherical neighborhood, but is shaped by the 
classification boundary. As the system proceeds with more feedback rounds, the 
classification boundary learned by the SVM classifier would be more accurate (see Fig. 1), 
hence, the improving on the retrievals is remarkable. 

 
3.1.2 SVM-complementing FRE 
The SVM-complementing FRE (SVMcFRE) uses SVM as the classifier Θ and FRE as the RF 
model Ω. As shown in Fig. 5(a), the traditional FRE estimates the feature relevance weights 
by feature projection of the feedbacks and incorporates the weights into the Euclidean 
metric. So the proximity (S0) to the query Q is reformed to an elliptical neighborhood (S1) to 
search more potentially relevant images. Analogous to the case of using traditional QVM, 
FRE does not produce a classification boundary from the feedback data and could invite 
irrelevant retrievals that are likely to be easily screened by the SVM classifier Θ.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4. Comparison between QVM and SVMcQVM methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Comparison between FRE and SVMcFRE methods. 
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irrelevant images stored in the database. The classifier Θ easily produces too many false 
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irrelevant images before retrieving. Thus, the proximity for retrieving relevant images using 
Ω is not constrained to a hyper-sphere or Gaussian neighborhood, but is shaped by the 
classification boundaries learned by Θ. Moreover, the application of Euclidean-based RF 
model Ω can avoid producing unsatisfactory precision at the early query session period as 
encountered by using Θ alone since the retrievals are restrained in the proximity to the 
reformulated query instead of the farthest positive images to the classification boundaries.  
In the following, we identify three implementations of the complementary RF framework 
that empirically prove to be effective in our experiments. 
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feedback information and intends to move the query vector towards a region containing 
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separating the feedback data and, therefore, the next retrievals in the proximity to the 
reformulated query may include some undesired images that should have been ruled out by 
carefully exploiting the feedback data. This phenomenon is shown in Fig. 4 where Fig. 4(a) 
illustrates the retrieving process using QVM and Fig. 4(b) corresponds to the retrieving 
process using SVMcQVM. It is observed from Fig. 4(a) that QVM reformulates the original 
query Q0 based on feedback information contained in S0 to generate a new query Q1, so the 
images in the proximity to Q1 are returned as new retrievals (S1). However, some irrelevant 
images are also contained in S1 and deteriorate the retrieval precision. On the other hand, as 
shown in Fig. 4(b), SVMcQVM can improve retrievals by learning a classification boundary 
(L1) using the feedback information contained in S0. The images residing at the same side of 
L1 as that by the previously retrieved irrelevant images (denoted by “−”) are filtered out by 
the SVM classifier, the proximity S1 thus extends to seduce more potential images as 
retrievals that are not reachable using the traditional QVM. Also, the proximity S1 of the 
reformulated query Q1 is not constrained to a spherical neighborhood, but is shaped by the 
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classification boundary learned by the SVM classifier would be more accurate (see Fig. 1), 
hence, the improving on the retrievals is remarkable. 
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Using the SVMcFRE approach, it is seen from Fig. 5(b) that SVMcFRE learns the classification 
boundaries (L1) separating the feedback data labeled as relevant (“+”) and irrelevant (“−”). 
The boundaries help FRE to filter out the images residing at the same side of L1 as that by 
the labeled irrelevant images, so the proximity S1 can further extend to promising area 
containing potentially relevant images that are however not reachable by traditional FRE.  

 
3.1.3 SVM-complementing Bayes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6. Comparison between Bayes and SVMcBayes methods. 
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boundaries that maximize the margin from the boundaries to the support vectors. Fig. 6(b) 
gives the retrieving process using SVMcBayes. It is observed that the classification 
boundaries (L1) learned by SVM separate the labeled relevant and irrelevant data without 
considering their distributions and help the Bayesian framework invite potentially relevant 
images with relatively low values of )(YJ  that are originally not of interest.  

 
4. Experimental Results  

We have implemented the major RF models in the literature including QVM (Ciocca & 
Schettini, 1999), FRE (Peng et al., 1999), Bayes (Cox et al., 2000), and SVMActive (Tong & 
Chang, 2001), and the proposed complementary RF methods, namely SVMcQVM, SVMcFRE, 
and SVMcBayes. The parameter values of the exiting methods follow the suggested values 
from their original papers. A real-world image database is used for performance evaluation.  

 
4.1 Testing Database and Performance Measure 
To testify the robustness and effectiveness of our complementary RF framework, the 
experiments have been conducted on a real-world image database (UCR database, 2008) 
containing 2,026 images classified into 19 topics such as ocean, forest, buildings, cars, 
humans, animals, etc. The sample images from each topic are shown in Fig. 7. To evaluate 
the retrieval performance of competing methods, the images from the same topic are 
considered relevant and the images from different topics are deemed irrelevant, so the 
retrieval precision obtained at different rounds of feedback can be computed automatically. 
The features used for image matching in our experiments consist of 22 visual features, 
namely, 16 Gabor features (mean and standard deviation of Gabor images at 4 orientation 
and 2 scales) and 6 color features (mean and standard deviation from the HSV color 
domain). 

 

 

 
Fig. 7.  Sample images from the 19 topics of the testing database. 
 
We use the Average Precision (AP) measure defined by NIST TREC video (TRECVID) in our 
experiment for performance evaluation. Each database image is presented as a query and 
proceeds with 10 rounds of feedback. The feedback is automatically executed by reference to 
the 19 topics. The AP value that can be obtained at each round is defined as the average of 
precision value obtained after each relevant image is retrieved. The precision value is the 
ratio between the retrieved relevant images and the number of images currently retrieved. 
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4. Experimental Results  
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4.1 Testing Database and Performance Measure 
To testify the robustness and effectiveness of our complementary RF framework, the 
experiments have been conducted on a real-world image database (UCR database, 2008) 
containing 2,026 images classified into 19 topics such as ocean, forest, buildings, cars, 
humans, animals, etc. The sample images from each topic are shown in Fig. 7. To evaluate 
the retrieval performance of competing methods, the images from the same topic are 
considered relevant and the images from different topics are deemed irrelevant, so the 
retrieval precision obtained at different rounds of feedback can be computed automatically. 
The features used for image matching in our experiments consist of 22 visual features, 
namely, 16 Gabor features (mean and standard deviation of Gabor images at 4 orientation 
and 2 scales) and 6 color features (mean and standard deviation from the HSV color 
domain). 

 

 

 
Fig. 7.  Sample images from the 19 topics of the testing database. 
 
We use the Average Precision (AP) measure defined by NIST TREC video (TRECVID) in our 
experiment for performance evaluation. Each database image is presented as a query and 
proceeds with 10 rounds of feedback. The feedback is automatically executed by reference to 
the 19 topics. The AP value that can be obtained at each round is defined as the average of 
precision value obtained after each relevant image is retrieved. The precision value is the 
ratio between the retrieved relevant images and the number of images currently retrieved. 
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Let P  be the AP obtained at the current round of feedback and it is computed by 
RPP

RD i
i

∑ ∈
=  where Pi denotes the precision value obtained after the system retrieves i 

relevant images, Di is one of the relevant images, R is the set of all relevant images that 
belong to the same topic as the query, and R  denotes the cardinality of R. As an example, 

assume one of the topics consists of six relevant images and the retrieval system ranks these 
relevant images at the first, second, fourth, seventh, thirteenth, and eighteenth places. Thus, 
the precision value obtained when each relevant image is retrieved is 1, 1, 0.75, 0.57, 0.38, 
and 0.33, respectively. The AP computes the average of these precision values and it is 0.67. 
The AP calculated over all relevant images can avoid precision fluctuation that is usually 
encountered by the traditional precision measure. 

 
4.2 Comparative Performance Evaluation 
In this section, we compare the complementary RF method with its counterparts by 
submitting each of the 2,026 database images as a query and compute the average AP 
obtained at various numbers of feedback rounds. Fig. 8 shows the average AP obtained by 
SVMcQVM and its related methods, the individual SVMActive and QVM. We observe that 
SVMActive performs relatively worse during the first three rounds because it does not rely on 
the Euclidean-based proximity to the query. Instead, SVMActive retrieves the farthest images 
to the optimal separating hyperplane (OSH) and could result in low precision when the 
training feedback data are limited. When the system experiences more than three rounds of 
feedback, SVMActive becomes more effective and the average AP increases quickly. On the 
other hand, QVM is effective at the first few rounds of feedback since it progressively 
predicts the promising region adjacent to the centroid of known relevant images, and moves 
the reformulated query to that region. But its performance is constrained by the assumption 
that the retrievals are located in a spherical-shaped proximity to the reformulated query.   

 
Fig. 8. The average AP obtained by QVM, SVMcQVM, and SVMActive at different numbers of 
feedback rounds. 
 

 

By complementing the two methods, SVMcQVM filters out highly possible irrelevant images 
and shapes the retrieval neighborhood for QVM by the classification boundaries learned by 
SVMActive. In essence, the retrieval neighborhood used for SVMcQVM is no longer 
constrained by a hyper-sphere and can take any forms of shape. Further, as SVMcQVM 
applies the query reformulation and locates the most promising region, so it avoids the 
suffering of inferior performance at early feedback rounds as encountered by SVMActive. It is 
seen from Fig. 8 that SVMcQVM attains the best performance among the compared 
methods, manifesting the synergistic effect between SVMActive and QVM.  

 
Fig. 9. The average AP obtained by FRE, SVMcFRE, and SVMActive at different numbers of 
feedback rounds. 

 
Fig. 10.  The average AP obtained by Bayes, SVMcBayes, and SVMActive at different numbers 
of feedback rounds. 
 
Figs. 9 and 10 show the comparative performances obtained using SVMcFRE, SVMcBayes 
and their counterparts, respectively. Similar phenomena are observed in these figures. The 
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complementary RF methods always outperform their counterparts at every round of 
feedback. This means that the proposed complementary RF framework is general and can be 
applied to a broad range of existing RF methods. By contrast, the traditional ad-hoc hybrid 
method specifically sticks to the combination components and is hard to be applied to other 
components. The complementary RF framework is in fact a meta-strategy that guides the 
search of embedded models to maximize their synergism by exploiting the complementarity 
between them.    

 
4.3 Retrieval Examples 
Here, we present visual results of some retrieval examples using competing methods. Fig. 
11(a) shows the zero-page retrieval results before performing any relevance feedback. The 
query example image is shown at the top of the figure. The retrieved images are ranked 
according to their Euclidean distances to the query and seven of them belong to the same 
topic as the query, obtaining a precision value of 35%. By marking the retrieved images as 
relevant or irrelevant, we obtain various next retrieval results with different degrees of 
precision improving. The traditional QVM, FRE, and Bayes are able to assist the system to 
locate ten, seven, and nine relevant images in the new retrievals, respectively, as shown in 
Figs. 11(b)-11(d). However, it is seen in Fig. 11(e) that SVMActive only find three relevant 
images after the first feedback round because SVMActive searches the farthest positive images 
to the OSH instead of the closest images to the reformulated query, this mechanism is not 
effective when the feedback information is little, as most of other machine learning 
algorithms suffer this limitation as well. By contrast, our proposed complementary RF 
methods, namely, SVMcQVM, SVMcFRE, and SVMcBayes are very effective in utilizing the 
relevance feedback, obtaining 12, 13, and 12 relevant images, respectively, as seen in Figs. 
11(f)-11(h). The results exhibit a significant performance improving on their combining 
components. This remarkable contribution should be dedicated to the filtering of highly-
possible irrelevant images, the classification boundaries learned by SVM shape the 
similarity neighborhood used by QVM, FRE, and Bayes more accurately. 
The synergistic effect produced by our complementary methods is more profound after the 
second round of relevance feedback. As shown in Figs. 12(a)-12(d), QVM, FRE, Bayes, and 
SVMActive improve the retrievals by finding 13, 10, 12, and 15 relevant images, compared to 
just locating 10, 7, 9, and 3 relevant images in the results obtained in the first round. It is 
noteworthy that SVMActive, although less effective in the first round, surpasses QVM, FRE, 
and Bayes in the second round because the volume of feedback information is increasing 
and the learned classification boundaries are more accurate. This also enhances the filtering 
capability of complementary methods. We observe from Figs. 12(e)-12(g) that SVMcQVM, 
SVMcFRE, and SVMcBayes find 17, 16, and 17 relevant images in the second feedback round, 
revealing the synergism between the combining components is being maximized.  
Table 2 summarizes the retrieval results obtained using the competing methods at different 
rounds of relevance feedback. Clearly, our complementary methods can enhance the 
retrieval capability of combining methods at all rounds of relevance feedback.  
 

 

  
(a)                                                                  (b) 

  
(c)                                                                  (d) 

Fig. 11. Visual results of some retrieval examples in the zero-page and the first feedback 
round using competing methods. 
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(e)                                                                      (f) 

  
(g)                                                                   (h) 

Fig. 11. Visual results of some retrieval examples in the zero-page and the first feedback 
round using competing methods (continued.) 
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(c)                                                                (d) 

Fig. 12. Visual results of some retrieval examples in the second feedback round using 
competing methods. 
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(g)                                                                   (h) 

Fig. 11. Visual results of some retrieval examples in the zero-page and the first feedback 
round using competing methods (continued.) 
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Fig. 12. Visual results of some retrieval examples in the second feedback round using 
competing methods. 
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(e)                                                                   (f) 

 
    (g) 

Fig. 12. Visual results of some retrieval examples in the second feedback round using 
competing methods (continued.) 
 

 QVM FRE Bayes SVMActive SVMcQVM SVMcFRE SVMcBayes 

1st round 10 7 9 3 12 13 12 
2nd round 13 10 12 15 17 16 17 

Table 2. Retrieval results obtained using the competing methods at different rounds of 
relevance feedback. 
 
 
 

 

5. Conclusions 

Our recent survey on previous relevance feedback (RF) approaches disclosed that each type 
of RF methods has its own strengths and weaknesses, and that there is no RF method which 
performs best for all kinds of image content. We thus have proposed an innovation for the 
design of complementary methods which exploit the complementarity between different 
types of RF methods and create a meta-strategy that maximizes the synergism by guiding 
the collaboration between the combining RF methods. In particular, we have identified three 
implementations of the complementary methods, namely, the SVMcQVM, SVMcFRE, and 
SVMcBayes. These methods not only essentially avoid the inferior performance during early 
period of query session as suffered by SVMActive, but also shape the retrieval proximity to the 
reformulated query by classification boundaries, relaxing the restriction to hyper-spherical 
or Gaussian neighborhoods as faced by QVM, FRE, and Bayes. Experimental results 
obtained by testing on a real-world image database manifest that the proposed 
complementary methods outperform their original counterparts and the improving on 
retrievals is significant.  
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